Skip to main content Skip to main navigation menu Skip to site footer

Flower flake-shaped zinc oxide nanoparticles synthesized by microwave technique with different plant extracts for anti-bacterial activity

  • Nirdosh Verma
  • Lacy Loveleen
  • Surendra Nimesh
  • Sunil Kumar
  • Kuldeep Kumar
  • Kamal Jeet
  • Naveen Thakur

Abstract

Plants are recognized for containing crucial phytochemicals that play a significant role in reducing and capping nanoparticles, contributing to advancements in nanoparticle synthesis. The use of plant extracts as stabilizing agents in nanoparticle synthesis has gained immense popularity in contemporary research. These stabilizing agents also help mitigate the potential toxic effects of chemicals used in the synthesis process. In this study, four distinct plants-Psidiumguajava, Colocasiaesculenta, Phyllanthusemblica, and Murrayakoenigiiwere selected as stabilizers for the synthesis of ZnO nanoparticles using the microwave technique. Various characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), UV-Vis spectroscopy, and Fourier-transform infrared spectroscopy (FTIR), were employed to elucidate the morphology, band gap, and functional groups of the synthesized nanoparticles. XRD analysis revealed crystallite sizes of 14 nm for Psidiumguajava, 12 nm for Colocasiaesculenta, 17 nm for Phyllanthusemblica, and 13 nm for Murrayakoenigii. The corresponding band gaps were 3.28 eV, 3.33 eV, 3.35 eV, and 3.20 eV, respectively. SEM analysis showed that the nanoparticle shapes resembled flowers. Additionally, the assessment of antibacterial activity against pathogens, along with a comparative study, aids in evaluating the optimal utilization of nanoparticles in industries such as food packaging and cosmetics.

Section

References

  1. Anbukkarasi, V., Srinivasan, R., &Elangovan, N. (2015). Antimicrobial activity of green synthesized zinc oxide nanoparticles from Emblicaofficinalis. Int. J. Pharm. Sci. Rev. Res, 33(2), 110-115.
  2. Anitha, R., Ramesh, K. V., Ravishankar, T. N., Kumar, K. S., &Ramakrishnappa, T. (2018). Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the Artocarpusgomezianus fruit mediated facile green combustion method. Journal of Science: Advanced Materials and Devices, 3(4), 440-451. https://doi.org/10.1016/j.jsamd.2018.11.001
  3. Azizi, S., Mohamad, R., Bahadoran, A., Bayat, S., Rahim, R. A., Ariff, A., &Saad, W. Z. (2016). Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusaitalica. Journal of Photochemistry and Photobiology B: Biology, 161, 441-449. https://doi.org/10.1016/j.jphotobiol.2016.06.007
  4. Baker, S., Rakshith, D., Kavitha, K. S., Santosh, P., Kavitha, H. U., Rao, Y., &Satish, S. (2013). Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. BioImpacts: BI, 3(3), 111. doi: 10.5681/bi.2013.012
  5. Bindu, P., & Thomas, S. (2014). Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Journal of Theoretical and Applied Physics, 8, 123-134. https://doi.org/10.1007/s40094-014-0141-9
  6. Dadi, R., Azouani, R., Traore, M., Mielcarek, C., &Kanaev, A. (2019). Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Materials Science and Engineering: C, 104, 109968. https://doi.org/10.1016/j.msec.2019.109968
  7. Dobrucka, R., &Długaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifoliumpratense flower extract. Saudi journal of biological sciences, 23(4), 517-523. https://doi.org/10.1016/j.sjbs.2015.05.016
  8. Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V., &Ashokkumar, S. (2015). RETRACTED: Facile, eco-friendly and template free photosynthesis of cauliflower like ZnO nanoparticles using leaf extract of Tamarindusindica (L.) and its biological evolution of antibacterial and antifungal activities. https://doi.org/10.1016/j.saa.2014.09.129
  9. Farzana, M. H., &Meenakshi, S. (2015). Visible light-driven photoactivity of zinc oxide impregnated chitosan beads for the detoxification of textile dyes. Applied Catalysis A: General, 503, 124-134. https://doi.org/10.1016/j.apcata.2014.12.034
  10. Hossain, M. S., Mahmud, M., Mobarak, M. B., & Ahmed, S. (2022). Crystallographic analysis of biphasic hydroxyapatite synthesized by different methods: an appraisal between new and existing models. Chemical Papers, 1-13. https://doi.org/10.1007/s11696-021-01949-5
  11. Karthik, K., Pushpa, S., Naik, M. M., &Vinuth, M. (2020). Influence of Sn and Mn on structural, optical and magnetic properties of spray pyrolysedCdS thin films. Materials Research Innovations. https://doi.org/10.1080/14328917.2019.1597436
  12. Koutu, V., Shastri, L., & Malik, M. M. (2016). Effect of NaOH concentration on optical properties of zinc oxide nanoparticles. Materials Science-Poland, 34(4), 819-827. DOI: 10.1515/msp-2016-0119
  13. Kloprogge, J. T., Hickey, L., & Frost, R. L. (2004). FT‐Raman and FT‐IR spectroscopic study of synthetic Mg/Zn/Al‐hydrotalcites. Journal of Raman Spectroscopy, 35(11), 967-974.
  14. Kołodziejczak-Radzimska, A., &Jesionowski, T. (2014). Zinc oxide—from synthesis to application: a review. Materials, 7(4), 2833-2881. https://doi.org/10.3390/ma7042833
  15. Kumar, P., Kumar, S., Tapwal, A., & Thakur, N. (2024a). Chemical/green synthesized cobalt/copper-doped α-Fe2O3 nanoparticles: potential for environmental remediation. Journal of Materials Research, 39(5), 836-849. https://doi.org/10.1557/s43578-023-01274-5
  16. Kumar, P., Pathak, D. & Thakur, N. Trimetallic doped hematite (α-Fe2O3) (2024b). Nanoparticles using biomolecules of Azadirachtaindica leaf extract for photocatalytic dye removal: insights into catalyst stability and reusability. emergent mater. . https://doi.org/10.1007/s42247-024-00742-w.
  17. Kumar, P., Tapwal, A., Kumar, S., & Thakur, N. (2024c). Improved photocatalytic and free radical scavenging studies of synthesized polymer PVP/Azadirachtaindica leave extract-mediated Ni-Zn doped hematite nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 15(2), 025014. Doi: 10.1088/2043-6262/ad50bb
  18. Kumar, P., Thakur, N., Kumar, K., Kumar, S., Dutt, A., Thakur, V. K., ...& Thakur, N. (2024d). Catalyzing innovation: Exploring iron oxide nanoparticles-Origins, advancements, and future application horizons. Coordination Chemistry Reviews, 507, 215750. https://doi.org/10.1016/j.ccr.2024.215750
  19. Madan, H. R., Sharma, S. C., Suresh, D., Vidya, Y. S., Nagabhushana, H., Rajanaik, H., ... &Maiya, P. S. (2016). Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: their antibacterial, antioxidant, photoluminescent and photocatalytic properties. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 152, 404-416. https://doi.org/10.1016/j.saa.2015.07.067
  20. Mahendra, C., Murali, M., Manasa, G., Ponnamma, P., Abhilash, M. R., Lakshmeesha, T. R., ...&Sudarshana, M. S. (2017). Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermumreligiosum (L.). Microbial pathogenesis, 110, 620-629. https://doi.org/10.1016/j.micpath.2017.07.051
  21. Malaikozhundan, B., Vaseeharan, B., Vijayakumar, S., Pandiselvi, K., Kalanjiam, M. A. R., Murugan, K., &Benelli, G. (2017). Biological therapeutics of Pongamiapinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells. Microbial pathogenesis, 104, 268-277. https://doi.org/10.1016/j.micpath.2017.01.029
  22. MaslowskyJr, E. (2019). Vibrational spectra of organometallics: theoretical and experimental data. John Wiley & Sons.
  23. Mirza, A. U., Kareem, A., Nami, S. A., Bhat, S. A., Mohammad, A., &Nishat, N. (2019). Maluspumila and Juglenregia plant species mediated zinc oxide nanoparticles: synthesis, spectral characterization, antioxidant and antibacterial studies. Microbial pathogenesis, 129, 233-241. https://doi.org/10.1016/j.micpath.2019.02.020
  24. Mobarak, M. B., Hossain, M. S., Yeasmin, Z., Mahmud, M., Rahman, M. M., Sultana, S., ...& Ahmed, S. (2022). Probing the photocatalytic competency of hydroxyapatite synthesized by solid state and wet chemical precipitation method. Journal of Molecular Structure, 1252, 132142. https://doi.org/10.1016/j.molstruc.2021.132142
  25. Pai, S., Sridevi, H., Varadavenkatesan, T., Vinayagam, R., &Selvaraj, R. (2019). Photocatalytic zinc oxide nanoparticles synthesis using Peltophorumpterocarpum leaf extract and their characterization. Optik, 185, 248-255. https://doi.org/10.1016/j.ijleo.2019.03.101
  26. Prakasham, R. S., Kumar, B. S., Kumar, Y. S., & Kumar, K. P. (2014). Production and characterization of protein encapsulated silver nanoparticles by marine isolate Streptomyces parvulus SSNP11. Indian journal of microbiology, 54, 329-336. https://doi.org/10.1007/s12088-014-0452-1
  27. Prasad, K. S., Prasad, S. K., Veerapur, R., Lamraoui, G., Prasad, A., Prasad, M. N., ...&Shivamallu, C. (2021). Antitumor potential of green synthesized ZnONPs using root extract of Withaniasomnifera against human breast cancer cell line. Separations, 8(1), 8. https://doi.org/10.3390/separations8010008
  28. Qidwai, A., Pandey, A., Kumar, R., Shukla, S. K., &Dikshit, A. (2018). Advances in biogenic nanoparticles and the mechanisms of antimicrobial effects. Indian Journal of Pharmaceutical Sciences, 80(4).
  29. Rajabi, H. R., Naghiha, R., Kheirizadeh, M., Sadatfaraji, H., Mirzaei, A., &Alvand, Z. M. (2017). Microwave assisted extraction as an efficient approach for biosynthesis of zinc oxide nanoparticles: synthesis, characterization, and biological properties. Materials Science and Engineering: C, 78, 1109-1118. https://doi.org/10.1016/j.msec.2017.03.090
  30. Rajendran, N. K., George, B. P., Houreld, N. N., &Abrahamse, H. (2021). Synthesis of zinc oxide nanoparticles using Rubusfairholmianus root extract and their activity against pathogenic bacteria. Molecules, 26(10), 3029. https://doi.org/10.3390/molecules26103029
  31. Ramya, V., Kalaiselvi, V., Kannan, S. K., Shkir, M., Ghramh, H. A., Ahmad, Z., ...&Vidhya, N. (2022). Facile synthesis and characterization of zinc oxide nanoparticles using Psidiumguajava leaf extract and their antibacterial applications. Arabian Journal for Science and Engineering, 47(1), 909-918. https://doi.org/10.1007/s13369-021-05717-1
  32. Rana, A., Kumar, P., Thakur, N., Kumar, S., Kumar, K., & Thakur, N. (2024). Investigation of photocatalytic, antibacterial and antioxidant properties of environmentally green synthesized zinc oxide and yttrium doped zinc oxide nanoparticles. Nano-Structures & Nano-Objects, 38, 101188. https://doi.org/10.1016/j.nanoso.2024.101188
  33. Rehan, M., Ahmed-Farid, O. A., Ibrahim, S. R., Hassan, A. A., Abdelrazek, A. M., Khafaga, N. I., &Khattab, T. A. (2019). Green and sustainable encapsulation of Guava leaf extracts (Psidiumguajava L.) into alginate/starch microcapsules for multifunctional finish over cotton gauze. ACS sustainable chemistry & engineering, 7(22), 18612-18623. https://doi.org/10.1021/acs.iecr.4c01969
  34. Ren, F., Xin, R., Ge, X., &Leng, Y. (2009). Characterization and structural analysis of zinc-substituted hydroxyapatites. Actabiomaterialia, 5(8), 3141-3149. https://doi.org/10.1016/j.actbio.2009.04.014
  35. Rouhi, J., Mahmud, S., Naderi, N., Ooi, C. R., &Mahmood, M. R. (2013). Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnOnanorods. Nanoscale research letters, 8, 1-6. https://doi.org/10.1186/1556-276X-8-364
  36. Ruangtong, J., Jiraroj, T., & T-Thienprasert, N. P. (2020). Green synthesized ZnOnanosheets from banana peel extract possess anti-bacterial activity and anti-cancer activity. Materials Today Communications, 24, 101224. https://doi.org/10.1016/j.mtcomm.2020.101224
  37. Saha, R., Subramani, K., Raju, S. A. K. P. M., Rangaraj, S., &Venkatachalam, R. (2018). Psidiumguajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Progress in Organic Coatings, 124, 80-91. https://doi.org/10.1016/j.porgcoat.2018.08.004
  38. Samat, N. A., &Nor, R. M. (2013). Sol–gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts. Ceramics International, 39, S545-S548. https://doi.org/10.1016/j.ceramint.2012.10.132
  39. Sharma, S., & Kumar, K. (2021). Aloe-vera leaf extract as a green agent for the synthesis of CuO nanoparticles inactivating bacterial pathogens and dye. Journal of Dispersion Science and Technology, 42(13), 1950-1962. https://doi.org/10.1080/01932691.2020.1791719
  40. Siddiqi, K. S., Husen, A., &Rao, R. A. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of nanobiotechnology, 16, 1-28. https://doi.org/10.1186/s12951-018-0334-5
  41. Singhai, M., Chhabra, V., Kang, P., & Shah, D. O. (1997). Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion. Materials Research Bulletin, 32(2), 239-247. https://doi.org/10.1016/S0025-5408(96)00175-4
  42. Song, J. Y., & Kim, B. S. (2008). Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean Journal of Chemical Engineering, 25, 808-811. https://doi.org/10.1007/s11814-008-0133-z
  43. Sukri, S. N. A. M., Shameli, K., Wong, M. M. T., Teow, S. Y., Chew, J., & Ismail, N. A. (2019). Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punicagranatum (pomegranate) fruit peels extract. Journal of Molecular Structure, 1189, 57-65. https://doi.org/10.1016/j.molstruc.2019.04.026
  44. Sun, J. H., Dong, S. Y., Feng, J. L., Yin, X. J., & Zhao, X. C. (2011). Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation. Journal of Molecular Catalysis A: Chemical, 335(1-2), 145-150. https://doi.org/10.1016/j.molcata.2010.11.026
  45. Thakur, N., & Thakur, N. (2024a). Degradation of textiles dyes and scavenging activity of spherical shape obtained anatase phase of Co–Ni-doped TiO2 nanocatalyst. Journal of Materials Science: Materials in Electronics, 35(2), 134. https://doi.org/10.1007/s10854-023-11851-3
  46. Thakur, N., & Thakur, N. (2024b). Photocatalytic adsorption and scavenging potential of chemical and green encapsulated anatase phase of coupled doped Zn-Co TiO2 nanoparticles. Journal of Dispersion Science and Technology, 1-16. https://doi.org/10.1080/01932691.2024.2312841
  47. Thakur, N., Thakur, N., Kumar, A., Thakur, V. K., Kalia, S., Arya, V., ...&Kyzas, G. Z. (2024c). A critical review on the recent trends of photocatalytic, antibacterial, antioxidant and nanohybrid applications of anatase and rutile TiO2 nanoparticles. Science of The Total Environment, 169815. https://doi.org/10.1016/j.scitotenv.2023.169815
  48. Thakur, S., Kumar, P., Thakur, N., Kumar, K., Jeet, K., Kumar, S., & Thakur, N. (2024d). Photocatalytic, antibacterial and antioxidant potential of spheroidal shape chromium and yttrium doped cobalt oxide nanoparticles: A green approach. Journal of the Indian Chemical Society, 101199. https://doi.org/10.1016/j.jics.2024.101199
  49. Thakur, N., Kumar, A., & Thakur, N. (2023). Tinosporacordifolia and polyvinylpyrrolidone encapsulated dual doped Ni-Cu TiO2 emerging nanocatalyst for the removal of organic dyes from wastewater and its free radical assay activity. Hybrid Advances, 4, 100086. https://doi.org/10.1016/j.hybadv.2023.100086
  50. Verma, N., Pathak, D., & Thakur, N. (2024). Eco-friendly green synthesis of (Cu, Ce) dual-doped ZnO nanoparticles with Colocasiaesculenta plant extract using microwave assisted technique for antioxidant and antibacterial activity. Next Materials, 5, 100271. https://doi.org/10.1016/j.nxmate.2024.100271
  51. Vijayakumar, S., Vaseeharan, B., Malaikozhundan, B., &Shobiya, M. (2016). Laurusnobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomedicine & Pharmacotherapy, 84, 1213-1222. https://doi.org/10.1016/j.biopha.2016.10.038
  52. Zare, E., Pourseyedi, S., Khatami, M., &Darezereshki, E. (2017). Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity. Journal of Molecular Structure, 1146, 96-103. https://doi.org/10.1016/j.molstruc.2017.05.118
  53. Zhang, L., Gu, F. X., Chan, J. M., Wang, A. Z., Langer, R. S., &Farokhzad, O. C. (2008). Nanoparticles in medicine: therapeutic applications and developments. Clinical pharmacology & therapeutics, 83(5), 761-769. https://doi.org/10.1038/sj.clpt.6100400

How to Cite

Flower flake-shaped zinc oxide nanoparticles synthesized by microwave technique with different plant extracts for anti-bacterial activity. (2025). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2035

How to Cite

Flower flake-shaped zinc oxide nanoparticles synthesized by microwave technique with different plant extracts for anti-bacterial activity. (2025). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2035

HTML
12

Total
8

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Nirdosh Verma, Lacy Loveleen, Surendra Nimesh, Sunil Kumar, Kuldeep Kumar, Kamal Jeet, Naveen Thakur

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.