Skip to main content Skip to main navigation menu Skip to site footer

Antibacterial and photocatalytic activity of undoped and (Ag, Fe) co-doped CuO nanoparticles via microwave-assisted method

  • Naveen Thakur
  • Anu
  • Kuldeep Kumar
  • Vijay Kumar Thakur
  • Sanjeev Soni
  • Ashwani Kumar
  • Sher Singh Samant

Abstract

Nanoparticles (NPs) are miniature materials ranging from 1 to 100 nm. The NPs have unique chemical and physical properties due to their shape, size and high surface area. This research paper gives a detailed summary of the synthesis, characterization and applications of undoped and (Ag, Fe) co-doped CuO NPs with a diverse concentration of Fe (0.02, 0.04, 0.06 and 0.08 M) at a constant concentration of Ag (0.02 M). X-ray diffractometer (XRD) results revealed average crystallite size of NPs varies in the range 13.10-24.98 nm. Scanning electron microscopy (FE-SEM) showed that the morphology of pure synthesized CuO NPs and Energy dispersive x-ray spectroscopy (EDX) recognized the presence of Ag, Fe elements in the CuO lattice. The particle size obtained by transmission electron microscope (HR-TEM) images was found in the range 19.73-21.47 nm. Cu-O bond stretching of NPs was also confirmed by Fourier Transform Infrared (FTIR) techniques. The values of direct and indirect band gap for CuO were found to be 1.41-1.54 eV and 0.69-1.51 eV respectively.  Antibacterial activity for synthesized NPs tested against gram-negative and gram-positive pathogenic bacteria. The photocatalytic properties of synthesized NPs were investigated by monitoring the methyl orange/methylene blue degradation in ultraviolet visible spectroscopy (UV-Vis).

Section

References

  1. L.V. Devi, T. Selvalakshmi, S. Sellaiyan, A. Uedono, K. Sivaji, S. Sankar, Effect of La Doping on the Lattice Defects and Photoluminescence Properties of CuO, J. Alloy Compd. 709 (2017) 496-504.
  2. Z. H. Ibupoto, A. Tahira, H. Raza, G. Ali, A. A. Khand, N. S. Jilani, A. B. Mallah, C. Yu, M. Willander,Synthesis of Heart/Dumbbell-Like CuO Functional Nanostructures for the Development of Uric Acid Biosensor. Mater. 11 (2018) 2-13.
  3. H. R. Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh, H. Nagabhushana, Green Synthesis of CuO Nanoparticles using Gloriosa superba L. Extract and their Antibacterial Activity. J. Taibah Univ. Sci. 9 (2015) 7-12.
  4. A. Balkrishna, A. Kumar, V. Arya, A. Rohela, R. Verma, E. Nepovimova, O. Krejcar, D. Kumar, N. Thakur, K. Kuca. Phytoantioxidant Functionalized Nanoparticles: A Green Approach to Combat Nanoparticle-Induced Oxidative Stress. Oxid. Med. Cell. Longev. 2021 (2021).
  5. L. Attou, B. Jaber, H. E. Zahraouy, Effect of Annealing Temperature on Structural, Optical and Photocatalytic properties of CuO Nanoparticles, Mediterr. J. Chem. 7 (2018) 308-316.
  6. Anu, N. Thakur, J. Kumar, Synthesis and characterization of pure and Zn-doped copper oxide. Int. J. Adv. Eng. 7 (2018) 1-5.
  7. N. Thakur, Anu, K. Kumar, A. Kumar, Effect of (Ag, Zn) co-doping on structural, optical and bactericidal properties of CuO nanoparticles synthesized by a microwave-assisted method. Dalton Trans. 50 (2021) 6188-6203.
  8. K. A. Mishjil, K. Qader, W. A. Jabber, Z. A. Toma, Study the Effect of Mn-doped CuO Thin Film on its Optical Properties, Mater. Sci. Ind. J. 13(2015) 389-392.
  9. F. Teng, W. Yao, Y. Zheng, Y. Ma, Y. Teng, T. Xu, S. Liang, Y. Zhu, Synthesis of Flower-like CuO Nanostructures as a Sensitive Sensor for Catalysis, Sensor. Actuat. B 134 (2008) 761-768.
  10. A. M. E Sayed, M. Shaban, Structural, Optical and Photocatalytic Properties of Fe and (Co, Fe) co-doped Copper Oxide Spin Coated Films, Spectrochim. Acta A Mol. Biomol. Spectrosc.149 (2015) 638-646.
  11. Y. Gulen, F. Bayansal, B. Sahin, H.A. Cetinkara, H.S. Guder, Fabrication and characterization of Mn-doped CuO thin films by the SILAR method, Ceram. Int. 39 (2013) 6475-6480.
  12. A. Suganthi, S. J. K. Vethanathan, S. Perumal, D. P. Koilpillai, S. Karpagavalli, Optical and Electrical Properties of Solvothermally Synthesized Manganese Doped Cuprous Oxide Nanoparticles, IOSR J. Appl. Phy. 1 (2017) 43-48.
  13. K. Kannan, D. Radhika, S. Vijayalakshmi, K. K. Sadasivuni, A. A. Ojiaku, U. Verma, Facile Fabrication of CuO Nanoparticles via Microwave Assisted Method: Photocatalytic, Antimicrobial and Anticancer Enhancing Performance, Int. J. Environ. Anal. Chem. (2020) 1-14.
  14. Anu, N. Thakur, K. Kumar, K. K. Sharma, Application of Co-doped Copper Oxide Nanoparticles Against Different Multidrug Resistance Bacteria, Inorg. Nano-Metal Chem. (2020) 1-12.
  15. N. M. Basith, J. J. Vijaya, L. J. Kennedy, M. Bououdina, Structural, Morphological, Optical, and Magnetic Properties of Ni Doped CuO Nanostructures Prepared by a Rapid Microwave Combustion Method, Mat. Sci. Semicon. Proc. 17 (2014) 110-118.
  16. H. Khmissi, A. M. E. Sayed, M. Shaban, Structural, Morphological, Optical Properties and Wettability of Spin-coated Copper Oxide, Influences of Film Thickness, Ni, and (La, Ni) co-doping, J. Mater. Sci. 51 (2016) 5924-5938.
  17. A. Balkrishna, V. Arya, A. Rohela, A. Kumar, R. Verma, D. Kumar, E. Nepovimova, K. Kuca, N. Thakur, N. Thakur, P. Kumar. Nanotechnology Interventions in the Management of COVID-19: Prevention, Diagnosis and Virus-Like Particle Vaccines. Vaccines 9 (2021) 1129.
  18. F. Bayansal, T. Taskopru, B. Sahin, H. A. Cetinkara, Effect of Cobalt Doping on Nanostructured CuO Thin Films, Metall. Mater. Trans. A, 45A (2014), 3671-3674.
  19. G. Viruthagiri, E. Gopinathan, N. Shanmugam, R. Gobi, Synthesis and Characterization of ZrO2-CuO co-doped Ceria Nanoparticles via Chemical Precipitation Method, Spectrochim. Acta A Mol. Biomol. Spectrosc. 131 (2014) 556-563.
  20. S. M. Yakout, A. M. El-Sayed, Structural, Morphological and Ferromagnetic Properties of Pure and (Mn, Co) codoped CuO Nanostructures. J. Supercond. Nov. Magn. 29(2016), 2961-2968.
  21. Y. Lv, L. Li, P. Yin, T. Lei, Synthesis and Evaluation of the Structural and Antibacterial Properties of Doped Copper Oxide. Dalton Trans. 49 (2020) 4699-4709.
  22. C. Khatana, A. Kumar, M. W. Alruways, N. Khan, N. Thakur, D. Kumar, A. Kumar. Antibacterial Potential of Zinc Oxide Nanoparticles Synthesized using Aloe vera (L.) Burm. f.: A Green Approach to Combat Drug Resistance. J. Pure Appl. Microbiol. 15 (2021) 1907-1914.
  23. A. Azam, A. S. Ahmed, M. Oves, M., M. S. Khan, A. Memic, Size-dependent Antimicrobial Properties of CuO Nanoparticles against Gram-positive and-negative Bacterial Strains. Int. J. Nanomedicine. 7 (2012) 1-8.
  24. R. Dadi, R. Azouani, M. Traore, C. Mielcarek, Kanaev, A, Antibacterial Activity of ZnO and CuO Nanoparticles against Gram positive and Gram negative Strains. Mater. Sci. Eng. C, 104 (2019) 109968.
  25. N. Dasineh Khiavi, R. Katal, S. Kholghi Eshkalak, S, Masudy-Panah, S. Ramakrishna, H. Jiangyong, Visible light driven heterojunction photocatalyst of CuO–Cu2O thin films for photocatalytic degradation of organic pollutants. Nanomater., 9(2019), 2-12.
  26. P. Kar, K. Shukla, P. Jain, R. K. Gupta, An activated carbon fiber supported Fe 2 O 3@ bismuth carbonate heterojunction for enhanced visible light degradation of emerging pharmaceutical pollutants. Reac. Chem. Engineer., 6(2021), 2029-2041.
  27. B. Balasubramaniam, N. Singh, P. Kar, A. Tyagi, J. Prakash, R. K. Gupta, Engineering of transition metal dichalcogenides-based 2D nanomaterials through doping for environmental applications. Mol. Syst. Des. Eng., 4(2019), 804-827.
  28. P. Kar, P. Jain, V. Kumar, R. K. Gupta, Interfacial engineering of Fe2O3@ BOC heterojunction for efficient detoxification of toxic metal and dye under visible light illumination. J. Environ. Chem. Eng., 7(2019), 102843.
  29. B. Sharma, S. Thakur, G. Mamba, R. K. Gupta, V. K. Gupta, V. K. Thakur, Titania modified gum tragacanth based hydrogel nanocomposite for water remediation. J. Environ. Chem. Eng., 9(2021), 104608.
  30. P. Jain, A. Kumar, N. Verma, R. K. Gupta, In-situ synthesis of TiO2 nanoparticles in ACF: Photocatalytic degradation under continuous flow. Solar Energy, 189 (2019), 35-44.
  31. N. Singh, R. Chakraborty, R. K. Gupta,. Mutton bone derived hydroxyapatite supported TiO2 nanoparticles for sustainable photocatalytic applications. J. Environ. Chem. Eng., 6(2018) 459-467.
  32. T. S. Vijayakumar, S. Karthikeyeni, S. Vasanth, A. Ganesh, G. Bupesh, R. Ramesh, M. Manimegalai, P. Subramanian, Synthesis of Silver-Doped Zinc Oxide Nanocomposite by Pulse Mode Ultrasonication and its Characterization Studies, J. Nanosci. (2013) 1-7.
  33. R. Gupta, N. K. R. Eswar, J. M. Modak, G. Madras, Ag and CuO impregnated on Fe doped ZnO for Bacterial Inactivation under Visible Light, Catal. Today 300 (2017) 71-80.
  34. S. Sharma, K. Kumar. Aloe-vera leaf extract as a green agent for the synthesis of CuO nanoparticles inactivating bacterial pathogens and dye. J. Dispers. Sci. Technol. 42 (2021) 1950-1962.
  35. S. Sharma, K. Kumar, N. Thakur, S. Chauhan, M. S. Chauhan. Eco-friendly Ocimum tenuiflorum green route synthesis of CuO nanoparticles: Characterizations on photocatalytic and antibacterial activities. J. Environ. Chem. 9 (2021) 105395.
  36. A. P. kumar, N. S. kumar, K. C. M. G. Malar, M. Meena, I. V. Potheher, A Comparative Analysis on the Dye Degradation Efficiency of pure, Co, Ni and Mn-doped CuO Nanoparticles, J. Mater. Sci. Mater. Electron. (2019) 1-17.
  37. D. Djouadi, O. Slimi, L. Hammiche, A. Chelouche, T. Touam. Effects of (Ce, Cu) Co-doping on the Structural and Optical Properties of ZnO Aerogels Synthesized in Supercritical Ethanol. J. Phys.: Conf. Ser. 987 (2018) 1-10.
  38. A. Bakravi, Y. Ahamadian, H. Hashemi, H. Namazi, Synthesis of Gelatin-Based Biodegradable Hydrogel Nanocomposite and their Application as Drug Delivery Agent. Adv. Polym. Technol. 37 (2018) 2625-2635.
  39. N. Thakur, Anu, K. Kumar, Effect of (Ag, Co) Co-doping on the Structural and Antibacterial Efficiency of CuO Nanoparticles: A Rapid Microwave Assisted Method, J. Environ. Chem. Eng. 8 (2020) 1-9.
  40. J.D. Visurraga, C. Daza, C. Pozo, A. Becerra, C. V. Plessing, A. Garcia, Study on Antibacterial Alginate-Stabilized Copper Nanoparticles by FT-IR and 2D-IR Correlation Spectroscopy, Int. J. Nanomed. 7 (2012) 3597-3612.
  41. A. A. Radhakrishnan, B. B. Beena, Structural and Optical Absorption Analysis of CuO Nanoparticles, Ind. J. Adv. Chem. Sci. 2 (2014) 158-161.
  42. S. Dhanuskodi, M. Manikandan, K. Karthik, Structural, Optical and Dielectric Properties of Fe Doped CuO Nanoparticles,Proceedings of National Laser Symposium (NLS-22), Manipal University, Manipal, (2014) 8-11.
  43. L. S. Miller,. Electron Energy Bands. Electr. Mater., Springer, Boston, MA, 9-17.
  44. S. Sharma, K. Kumar, N. Thakur, S. Chauhan, M. S. Chauhan, The effect of shape and size of ZnO nanoparticles on their antimicrobial and photocatalytic activities: a green approach, Bull. Mater. Sci. 43 (2020) 1-10.
  45. S. Sharma, K. Kumar, N. Thakur, M.S. Chauhan, Ocimum Tenuiforum leaf extract as a green mediator for the synthesis of ZnO nanocapsules inactivating bacterial pathogens, Chemical Papers, 50 (2020) 1-11.
  46. S. Sharma, K. Kumar, N. Thakur. Green synthesis of silver nanoparticles and evaluation of their anti-bacterial activities: use of Aloe barbadensis miller and Ocimum tenuiflorum leaf extracts. Nanofabrication, 6 (2021), 52-67.
  47. M. Saraf, M. Tavakkoli Yaraki, Prateek, Y. N. Tan, Y.N. , R. K. Gupta, Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS Appl. Nano. Mater. 4(2021), 911-948.
  48. Z. Usmani, T. Lukk, D. K. Mohanachandran, V. K. Thakur, V.K. Gupta, D. Robert, J. Raj, F. Scarpa, R.K. Gupta, Biosafe sustainable antimicrobial encapsulation and coatings for targeted treatment and infections prevention: Preparation for another pandemic. Curr. Res. Green. Sustainable. Chem., 4(2021), 1-5.
  49. B. Balasubramaniam, Prateek, S. Ranjan, M. Saraf, P. Kar, S. P. Singh, V. K. Thakur, A. Singh, R. K. Gupta, Antibacterial and antiviral functional materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics. ACS Pharmacol. Translat. Sci., 4(2021), 8-54.
  50. N. Thakur, N. Thakur, V. Bhullar, S. Sharma, A. Mahajan, K. Kumar, D. Pathak, TiO2 nanofibers fabricated by electrospinning technique and degradation of MO dye under UV light, Z. Kristallogr. Cryst. Mater. 236 (2021), 239-250.
  51. G. Hitkari, S. Sandhya, P. Gajanan, M. K. Shrivash, D. Kumar, Synthesis of Chromium Doped Cobalt Oxide (Cr: Co3O4) Nanoparticles by Co-Precipitation Method and Enhanced Photocatalytic Properties in the Visible Region, J. Mater. Sci. Eng. 7 (2018), 2-6.
  52. T. N. M. Ravishankar, D. O. Vaz, S. R. Teixeira, The Effects of Surfactant in the sol-gel Synthesis of CuO/TiO2 Nanocomposites on its Photocatalytic Activities under UV-visible and visible light illuminations, New J. Chem. 44 (2020) 1888-1904.

How to Cite

Antibacterial and photocatalytic activity of undoped and (Ag, Fe) co-doped CuO nanoparticles via microwave-assisted method. (2022). Nanofabrication, 7, 62-88. https://doi.org/10.37819/nanofab.007.186

How to Cite

Antibacterial and photocatalytic activity of undoped and (Ag, Fe) co-doped CuO nanoparticles via microwave-assisted method. (2022). Nanofabrication, 7, 62-88. https://doi.org/10.37819/nanofab.007.186

HTML
4855

Total
670

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2022 Naveen Thakur, Anu, Kuldeep Kumar, Vijay Kumar Thakur, Sanjeev Soni, Ashwani Kumar, Sher Singh Samant

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.