Skip to main content Skip to main navigation menu Skip to site footer

Biosynthesized Carbon-derived Nanomaterials as a Photocatalytic Solution for Sustainable Water Pollution Control

  • Ravi Kumar
  • Shweta Kaushal
  • Naveen Thakur
  • Kuldeep Kumar

Abstract

Carbon nanomaterials are one of the most widely investigated nano-materials for the degradation of organic and inorganic pollutants like dyes and insecticides in an environmentally benign and that too in sustainable manner. The problems associated with the existing catalysts are related to their high band gap values and large particle sizes. In this review, the photocatalytic degradation of pollutants from industrial wastewater by using negligible amounts of carbon nanocatalysts has been covered as a solution to such types of problems. The photocatalytic activity of the carbon nanocomposites was reported to be affected by factors like particle size, nature of crystallinity, band gap, morphology and total surface area of the nanomaterials per unit mass. Despite various required optimizations, the carbon-containing nanomaterials such as carbon nanotubes, graphene, and metal oxide nanocomposites synthesized by using different methods have shown better photocatalytic activity as compared to others. This review article may open a new avenue to control water pollution efficiently and cost-effectively.

Section

References

  1. Abebe, B., Murthy, H. A., & Amare, E. (2018). Summary on adsorption and photocatalysis for pollutant remediation: Mini review. Journal of Encapsulation and Adsorption Sciences 8, 225-255. https://doi.org/10.4236/jeas.2018.84012
  2. Abid, N., Khan, A. M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., Haider, J., Khan, M., Khan, Q., & Maqbool, M. (2022). Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science 300, 102597. https://doi.org/10.1016/j.cis.2021.102597
  3. Accorsi, G., Armaroli, N. (2010). Taking advantage of the electronic excited states of [60]-fullerenes. Journal of Physical Chemistry C 114, 1385-1403. https://doi.org/10.1021/jp9092699
  4. Aggarwal, R., Saini, D., Singh, B., Kaushik, J., Garg, A. K., & Sonkar, S. K. (2020). Bitter apple peel derived photoactive carbon dots for the sunlight induced photocatalytic degradation of crystal violet dye. Solar Energy 197, 326-331. https://doi.org/10.1016/j.solener.2020.01.010
  5. Aggarwal, R., Saini, D., Singh, B., Kaushik, J., Garg, A. K., Sonkar, S. K. (2020). Bitter apple peel derived photoactive carbon dots for the sunlight induced photocatalytic degradation of crystal violet dye. Solar Energy 197, 326-331. https://doi.org/10.1016/j.solener.2020.01.010
  6. Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of Advanced Research 7, 17-28. https://doi.org/10.1016/j.jare.2015.02.007.
  7. Akshatha, S., Sreenivasa, S., Parashuram, L., Alharthi, F. A., & Rao, T. M. C. (2021). Microwave assisted green synthesis of p-type Co3O4@ Mesoporous carbon spheres for simultaneous degradation of dyes and photocatalytic hydrogen evolution reaction. Mater Science in Semiconductor Processing 121, 105432. https://doi.org/10.1016/j.mssp.2020.105432
  8. Alamier, W. M., Hasan, N., Nawaz, M. S., Ismail, K. S., Shkir, M., Malik, M. A., & Oteef, M. D. (2023). Biosynthesis of NiFe2O4 nanoparticles using Murayya koenigii for photocatalytic dye degradation and antibacterial application. Journal of Material Research and Technology 22, 1331-1348. https://doi.org/10.1016/j.jmrt.2022.11.181
  9. Al-Hamadani Y. A., Chu, K. H., Son, A., Heo, J., Her, N., Jang, M., Park, C. M., & Yoon, Y. (2015). Stabilization and dispersion of carbon nanomaterials in aqueous solutions: A review. Separation and Purification Technology 156, 861-874. https://doi.org/10.1016/j.seppur.2015.11.002
  10. Al-Hamadani, Y. A., Chu, K. H., Son, A., Heo, J., Her, N., Jang, M., Park, C. M., & Yoon, Y. (2015). Stabilization and dispersion of carbon nanomaterials in aqueous solutions: A review. Separation and Purification Technology 156, 861-874. https://doi.org/10.1016/j.seppur.2015.11.002
  11. Ali, I. (2012). New generation adsorbents for water treatment. Chemical Review 112, 5073-5091. https ://doi.org/10.1021/cr300133d
  12. Al-Musawi, T. J., McKay, G., Rajiv, P., Mengelizadeh, N., & Balarak, D. (2022). Efficient sonophotocatalytic degradation of acid blue 113 dye using a hybrid nanocomposite of CoFe2O4 nanoparticles loaded on multi-walled carbon nanotubes. Journal of Photochemistry Photobiology A: Chemistry 424, 113617. https://doi.org/10.1016/j.jphotochem.2021.113617
  13. Arbogast, J. W., Darmanyan, A. P., Foote, C. S., Diederich, F. N., Whetten, R. L., Rubin, Y., Alvarez, M., & Anz, S. J. (1991). Photophysical properties of sixty atom carbon molecule (C60). The Journal of Physical Chemistry 95, 11-12. https://doi.org/10.1021/j100154a006
  14. Arsalani, N., Panahian, Y., Nasiri, R. (2019). Fabrication of novel magnetic F-TiO2(B)/carbon nanostructures nanocomposites as photocatalysts for malachite green degradation under visible light. Materials Science and Engineering :B 251, 114448. https://doi.org/10.1016/j.mseb.2019.114448
  15. Arun, J., Nirmala, N., Priyadharsini, P., Dawn, S. S., Santhosh, A., Gopinath, K. P., & Govarthanan, M. (2022). A mini-review on bioderived carbon and its nanocomposites for removal of organic pollutants from wastewater. Material Letters 310, 131476. https://doi.org/10.1016/j.matlet.2021.131476
  16. Atchudan, R., Edison, T. N. J. I., Perumal, S., Karthik, N., Karthikeyan, D., Shanmugam, M., & Lee. Y. R. (2018). Concurrent synthesis of nitrogen-doped carbon dots for cell imaging and ZnO@ nitrogen-doped carbon sheets for photocatalytic degradation of methylene blue. Journal of Photochemistry and Photobiology A: Chemistry 350, 75-85. https://doi.org/10.1016/j.jphotochem.2017.09.038
  17. Atchudan, R., Edison, T. N. J. I., Perumal, S., Vinodh, R., & Lee, Y. R. (2018). In-situ green synthesis of nitrogen-doped carbon dots for bioimaging and TiO2 nanoparticles@ nitrogen-doped carbon composite for photocatalytic degradation of organic pollutants. Journal of Alloys and Compounds 766, 12-24. https://doi.org/10.1016/j.jallcom.2018.06.272
  18. Benn, T. M., Westerhoff, P., & Herckes, P. (2011). Detection of fullerenes (C60 and C70) in commercial cosmetics. Environmental Pollution 159, 1334-1342. https://doi.org/10.1016/j.envpol.2011.01.018
  19. Bhati, A., Anand, S. R., Gunture Garg, A. K., Khare, P., & Sonkar, S. K. (2018). Sunlight-induced photocatalytic degradation of pollutant dye by highly fluorescent red-emitting Mg-N-embedded carbon dots. ACS Sustainable Chemistry and Engineering 6, 9246-9256. https://doi.org/10.1021/acssuschemeng.8b01559
  20. Bibi, I., Nazar, N., Ata, S., Sultan, M., Ali, A., Abbas, A., Jilani, K., Kamal, S., Sarim, F. M., Khan, M. I., & Jalal, F. (2019). Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. Journal of Materials Research and Technology 8, 6115-6124. https://doi.org/10.1016/j.jmrt.2019.10.006
  21. Bickley, R. I., & Stone, F. S. (1973). Photoadsorption and photocatalysis at rutile surfaces: I. Photoadsorption of oxygen. Journal of Catalysis 31, 389-397. https://doi.org/10.1016/0021-9517(73)90310-2
  22. Camargo, P. H. C., Satyanarayana, K. G., Wypyc, F. (2009). Nanocomposites: synthesis, structure, properties and new application opportunities. Material Research 12, 1-39, https://doi.org/10.1590/S1516-14392009000100002.
  23. Cha, C., Shin, S, R., Annabi, N., Dokmeci, M. R., & Khademhosseini, A. (2013). Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7, 2891-2897. https ://doi.org/10.1021/nn401 196a
  24. Chistyakov, V. A., Smirnova, Y. O., Prazdnova, E. V., & Soldatov, A. V. (2013). Possible mechanisms of fullerene C 60 antioxidant action. Biomed Research International, 2013. https://doi.org/10.1155/2013/821498
  25. Cui, P., & Wu, Q. (2024). Computationally engineering optoelectronic properties and photocatalytic performance in graphene quantum dot/platinum (II) complex photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry 447, 115199.
  26. Decher, G. (1997). Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232-1237. https://doi.org/10.1126/science.277.5330.1232.
  27. Dorraj, M, Sadjadi, S., & Amani, A. (2021). Pd on a novel nitrogen doped porous carbon derived from task specific ionic liquid and biomass: An efficient catalyst for reduction of organic dyes. Materials Chemistry and Physics 273, 124913. https://doi.org/10.1016/j.matchemphys.2021.124913
  28. Du, J., & Gebicki, J. M. (2004). Proteins are major initial cell targets of hydroxyl free radicals. The International Journal of Biochemistry and Cell Biology 36, 2334-2343. https://doi.org/10.1016/j.biocel.2004.05.012
  29. Edison, T. N. J. I., Atchudan, R., Karthik, N., Balaji, J., Xiong, D., & Lee, Y. R. (2020). Catalytic degradation of organic dyes using green synthesized N-doped carbon supported silver nanoparticles. Fuel 280, 118682. https://doi.org/10.1016/j.fuel.2020.118682
  30. Fan, Y., Su, J., Wang, Z, Liu, S., Li, X., & Cao, S. (2023). Degradation of oxytetracycline in wastewater based on activated persulfate by biosynthesized iron oxide nanoparticles and carbon nanotube-modified biochar. Journal of Environmental Chemical Engineering, 110377. https://doi.org/10.1016/j.jece.2023.110377
  31. Fatimah, I., Citradewi, P. W., Purwiandono, G., Hidayat, H., & Sagadevan, S. (2023). Nickel oxide decorated reduced graphene oxide synthesized using single bioreductor of Pometia pinnata leaves extract as photocatalyst in tetracycline photooxidation and antibacterial agent. Inorganic Chemistry Communication 148, 110287. https://doi.org/10.1016/j.inoche.2022.110287
  32. Fayazi, M. (2021). Preparation and characterization of carbon nanotubes/pyrite nanocomposite for degradation of methylene blue by a heterogeneous Fenton reaction. Journal of the Taiwan Institute Chemical Engineers 120, 229-235. https://doi.org/10.1016/j.jtice.2021.03.033
  33. Ganesan, K., Jothi, V. K., Natarajan, A., Rajaram, A., Ravichandran, S., Ramalingam, S. (2020). Green synthesis of Copper oxide nanoparticles decorated with graphene oxide for anticancer activity and catalytic applications. Arabian Journal of Chemistry 13, 6802-6814. https://doi.org/10.1016/j.arabjc.2020.06.033
  34. Gao, H., Mo, Z., Guo, R., Niu, X., & Li, Z. (2018). Formation of snowflake-like CdS/reduced graphene oxide composite for efficient photocatalytic organic dye degradation. Journal of Material Science: Materials in Electronice 29, 5944-5953. 10.1007/s1085 4-018-8567-5
  35. Ge, Y. L., Zhang, Y. F., Yang, Y., Xie, S., Liu, Y., Maruyama, T., Deng, Z. Y., & Zhao, X. (2019). Enhanced adsorption and catalytic degradation of organic dyes by nanometer iron oxide anchored to single-wall carbon nanotubes. Applied Surface Science 488, 813-826. https://doi.org/10.1016/j.apsusc.2019.05.221
  36. Golmohammadi, M., Hanafi-Bojd, H., & Shiva, M. (2023). Photocatalytic degradation of ciprofloxacin antibiotic in water by biosynthesized silica supported silver nanoparticles. Ceramics International 49, 7717-7726.https://doi.org/10.1016/j.ceramint.2022.10.261
  37. Goswami, S., Kushwaha, A., Goswami, L., Gupta, N. R., Kumar, V., Bhan, U., Reddy, B. S., & Tripathi, K. M. (2022). Nanobiochar-a green catalyst for wastewater remediation. In Bio-Based Nanomaterials (109-132). Elsevier. https://doi.org/10.1016/B978-0-323-85148-0.00010-5
  38. Govindaraju, S., Arumugasamy, S. K., Chellasamy, G., Yun, K. (2022). Zn-MOF decorated bio activated carbon for photocatalytic degradation, oxygen evolution and reduction catalysis. Journal of Hazardous Materials 421, 126720. https://doi.org/10.1016/j.jhazmat.2021.126720
  39. Guldi, D. M., & Prato, M. (2000). Excited-state properties of C60 fullerene derivatives. Accounts of Chemical Research 33, 695-703. https://doi.org/10.1021/ar990144m
  40. Hazarika, S. J., Mohanta, D. (2017). Inorganic fullerene-type WS2 nanoparticles: Processing, characterization and its photocatalytic performance on malachite green. Applied Physics A 123, 1-10. https://doi.org/10.1007/s00339-017-0965-7
  41. Hu, Z., Zhang, C., Tang, P., Li, C., Yao, Y., Sun, S., Zhang, L., & Huang, Y. (2012). Protection of cells from nitric oxide‐mediated apoptotic death by glutathione C60 derivative. Cell Biology International 36, 677-681. https://doi.org/10.1042/CBI20110566
  42. Huang, Y., Liu, M., Chen, J., Gao, C., & Gong, Q. (2012). A novel magnetic triple-responsive composite semi-IPN hydrogels for targeted and controlled drug delivery. European Polymer Journal 48, 1734-1744. https://doi.org/10.1016/j.eurpolymj.2012.06.012
  43. Hui, K. C., Ang, W. L., & Sambudi, N. S. (2021). Nitrogen and bismuth-doped rice husk-derived carbon quantum dots for dye degradation and heavy metal removal. Journal of Photochemistry and Photobiology A: Chemistry, 418: 113411. https://doi.org/10.1016/j.jphotochem.2021.113411
  44. Iqbal, A., Ahamad, T., Qais, F. A., Ahmad, N., Shafi, A., Ahmed, A. S., & Srivastava, S. (2023). Proficient visible-light-driven photocatalytic and anti-biofilm activity of biosynthesized CeO2-graphene oxide nanocomposites. Material Chemistry and Physics 298, 127397. https://doi.org/10.1016/j.matchemphys.2023.127397
  45. Islam, M. T., Jing, H., Yang, T., Zubia, E., Goos, A. G., Bernal, R. A., Botez, C. E., Narayan, M., Chan, C. K., Noveron, J. C. (2018). Fullerene stabilized gold nanoparticles supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol. Journal of Environmental Chemical Engineering 6, 3827-3836. https://doi.org/10.1016/j.jece.2018.05.032
  46. Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology 53, 101174. https://doi.org/10.1016/j.jddst.2019.101174
  47. Jansanthea, P., Inyai, N., Chomkitichai, W., Ketwaraporn, J., Ubolsook, P., Wansao, C., Wanaek, A., Wannawek, A., Kuimalee, S., & Pookmanee, P. (2024). Green synthesis of CuO/Fe2O3/ZnO ternary composite photocatalyst using grape extract for enhanced photodegradation of environmental organic pollutant. Chemosphere, 141212. https://doi.org/10.1016/j.chemosphere.2024.141212
  48. Jassby, D., Farner, Budarz, J., Wiesner, M. (2012). Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Environmental Science and Technology 46, 6934-6941.
  49. Jothi, V. K., Ganesan, K., Natarajan, A., & Rajaram, A. (2021). Green synthesis of self-passivated fluorescent carbon dots derived from rice bran for degradation of methylene blue and fluorescent ink applications. Journal of Fluorescence 31, 427-436. https://doi.org/10.1007/s10895-020-02652-6
  50. Kayalvizhi, S., Selvam, K., Sudhakar, C., Selvankumar, T., Al-Ansari, M. M., Al-Humaid, L., Vijayalakshmi, S. (2021). Biofabrication of copper oxide nanoparticles@ graphene oxide nanocomposite using Annona muricata leaf extract and its antibacterial and photocatalytic activity. Applied Nanoscience, 1-9. https://doi.org/10.1007/s13204-021-02093-y
  51. Khan, S. B., Faisal, M., Rahman, M. M., Akhtar, K., Asiri, A. M., Khan, A., & Alamry, K. A. (2013). Effect of particle size on the photocatalytic activity and sensing properties of CeO2 nanoparticles. International Journal of Electrochemical Science 8, 7284-7297.
  52. Kharisov, B. I., Kharissova, O. V., Leija, Gutierrez, H., Ortiz, Méndez, U. (2009). Recent advances on the soluble carbon nanotubes. Industrial and Engineering Chemistry Research 48, 572-590.
  53. Kiani, M., Rabiee, N., Bagherzadeh, M., Ghadiri, A. M., Fatahi, Y., Dinarvand, R., & Webster, T. J. (2021). Improved green biosynthesis of chitosan decorated Ag-and Co3O4-nanoparticles: A relationship between surface morphology, photocatalytic and biomedical applications. Nanomedicine, Nanotechnology, Biology and Medicine 32, 102331. https://doi.org/10.1016/j.nano.2020.102331
  54. Kumar, K., Kumar, R., Kaushal, S., Thakur, N., Umar, A., Akbar, S., Ibrahim, A. A., & Baskoutas, S. (2023). Biomass waste-derived carbon materials for sustainable remediation of polluted environments: A comprehensive review. Chemosphere, 140419. https://doi.org/10.1016/j.chemosphere.2023.140419
  55. Kumar, R., Kumar, K., & Thakur, N. (2023). Biosynthesis of CuO/Cu2O-ZnO Nanocomposites via Commelina benghalensis leaf extract and their antibacterial, photocatalytic and antioxidant assessment. Inorganic Chemistry Communication, 111400. https://doi.org/10.1016/j.inoche.2023.111400
  56. Kumar, R., Kumar, K., & Thakur, N. (2024). Phyto-fabrication of CuO-Co3O4 nanocomposites for antibacterial, photocatalytic and antioxidant evaluations: An in-vitro investigation. Hybrid Advances 5, 100129. doi: https://doi.org/10.1016/j.hybadv.2023.100129
  57. Kumar, R., Kumar, K., Sharma, S., Thakur, N., & Thakur, N. (2023). Multifunctional properties of microwave assisted CuO/Cu2O-ZnO mixed metal oxide nanocomposites. Journal of Material Science: Materials in Electronics 34, 1255. https://doi.org/10.1007/s10854-023-10693-3
  58. Kumar, R., Kumar, K., Thakur, N., & Chauhan, M. S. (2023). Harnessing microwaves for the Biosynthesis of CuO-Co3O4 NCs: a dual study on photocatalytic process and antibacterial effectiveness. International Journal of Environmental Analytical Chemistry, 1-20. https://doi.org/10.1080/03067319.2023.2289172
  59. Kusiak-Nejman, E., Wojnarowicz, J., Morawski, A. W., Narkiewicz, U., Sobczak, K., Gierlotka, S., & Lojkowski, W. (2021). Size-dependent effects of ZnO nanoparticles on the photocatalytic degradation of phenol in a water solution. Applied Surface Science 541, 148416.
  60. Laddha, H., Yadav, P., Agarwal, M., & Gupta, R. (2022). Quick and hassle-free smartphone’s RGB-based color to photocatalytic degradation rate assessment of malachite green dye in water by fluorescent Zr–N–S co-doped carbon dots. Environmental Science and Pollution Research 29, 56684-56695. https://doi.org/10.1007/s11356-022-19808-5
  61. Li, D., Song, H., Meng, X., Shen, T., Sun, J., Han, W., & Wang, X. (2020). Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials 10, 546.
  62. Li, Y. F., & Liu, Z. P. (2011). Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings. Journal of American Chemical Society 133, 15743-15752.
  63. Li, Y. F., & Liu, Z. P. (2011). Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings. Journal of American Chemical Society 133, 15743-15752.
  64. Liaqat, M., Iqbal, T., Maryam, I., Riaz, K. N., Afsheen, S., Sohaib, M., Al-Zaqri, N., Warad, I., & Al-Fatesh, A. S. (2024). Enhancing photocatalytic activity: investigating the synthesis and characterization of BiVO4/Cu2O/graphene ternary nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry 446, 115122.
  65. Lin, H. F., Liao, S. C., & Hung, S. W. (2005). The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry 174, 82-87. https://doi.org/10.1016/j.jphotochem.2005.02.015
  66. Lin, Y., Wu, S., Li, X., Wu, X., Yang, C., Zeng, G., Peng, Y., Zhou, Q., & Lu, L. (2018). Microstructure and performance of Z-scheme photocatalyst of silver phosphate modified by MWCNTs and Cr-doped SrTiO3 for malachite green degradation. Applied Catalysis B: Environment and Energy 227, 557-570. https ://doi.org/10.1016/j.apcat b.2018.01.054
  67. Liu, H., Ren, M., Zhang, Z., Qu, J., Ma, Y., & Lu, N. (2018). A novel electrocatalytic approach for effective degradation of Rh-B in water using carbon nanotubes and agarose. Environmental Science and Pollution Research 25, 12361-12372. https ://doi.org/10.1007/s1135 6-018-1516-2
  68. Liu, P., Guo, Y., Xu, Q., Wang, F., Li, Y., & Shao, K. (2014). Enhanced photocatalytic performance of ZnO/multi-walled carbon nanotube nanocomposites for dye degradation. Ceramics International 40, 5629-5633. https: //doi.org/10.1016/j. ceram int.2013.10.157
  69. Liu, Q., Wei, L., Wang, J., Peng, F., Luo, D., Cui, R., Niu, Y., Qin, X., Liu, Y., Sun, H., & Yang, J. (2012). Cell imaging by graphene oxide based on surface enhanced Raman scattering. Nanoscale 4, 7084-7089. https://doi.org/10.1039/C2NR32525J
  70. Liu, Q., Zhao, Y., Wan, Y., Zheng, J., Zhang, X., Wang, C., Fang, X., Lin, J. (2010). Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano 4, 5743-5748.
  71. Lonkar, S. P., Pillai, V., & Abdala, A. (2019). Solvent-free synthesis of ZnO-graphene nanocomposite with superior photocatalytic activity. Applied Surface Science, 465. 1107-1113. https://doi.org/10.1016/j.apsusc.2018.09.264
  72. Lucky, S. S., Soo, K. C., Zhang, Y. (2015). Nanoparticles in photodynamic therapy. Chemical Review 115, 1990-2042. https://doi.org/10.1021/cr5004198
  73. Lv, K., Xu, Y. (2006). Effects of polyoxometalate and fluoride on adsorption and photocatalytic degradation of organic dye X3B on TiO2: the difference in the production of reactive species. Journal of Physical Chemistry B 110, 6204-6212. https://doi.org/10.1021/jp055228t
  74. Madima, N., Mishra, S. B., Inamuddin, I., & Mishra, A. K. (2020). Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater. A review. Environmental Chemistry Letters 18 (4), 1169-1191. https://doi.org/10.1007/s10311-020-01001-0
  75. Malik, A. R., Sharif, S., Shaheen, F., Khalid, M., Iqbal, Y., Faisal, A., Aziz, M. H., Atif, M., Ahmad, S., Fakhar-e-Alam, M., & Hossain, N. (2022). Green synthesis of RGO-ZnO mediated Ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity. Journal of Saudi Chemical Society 26,101438. https://doi.org/10.1016/j.jscs.2022.101438
  76. Maslamani, N., Khan, S. B., Danish, E. Y., Bakhsh, E. M., Zakeeruddin, S. M., & Asiri, A. M. (2021). Super adsorption performance of carboxymethyl cellulose/copper oxide-nickel oxide nanocomposite toward the removal of organic and inorganic pollutants. Environmental Science and Pollution Research 28, 38476-38496. https://doi.org/10.1007/s11356-021-13304-y
  77. Moalem-Banhangi, M., Ghaeni, N., & Ghasemi, S. (2021). Saffron derived carbon quantum dot/N-doped ZnO/fulvic acid nanocomposite for sonocatalytic degradation of methylene blue. Synthetic Metals 271, 116626. https://doi.org/10.1016/j.synthmet.2020.116626
  78. Mohamed, M. M., Ghanem, M. A., Khairy, M., Naguib, E., & Alotaibi, N. H. (2019). Zinc oxide incorporated carbon nanotubes or graphene oxide nanohybrids for enhanced sonophotocatalytic degradation of methylene blue dye. Applied Surface Science 487, 539-549. https://doi.org/10.1016/j.apsusc.2019.05.135
  79. Mohammed Mohammed, H. A., Souhaila, M., Eddine, L. S., Hasan, G. G., Kir, I., & Mahboub, M. S. (2023). A novel biosynthesis of MgO/PEG nanocomposite for organic pollutant removal from aqueous solutions under sunlight irradiation. Environmental Science and Pollution Research 30, 57076-57085. https://doi.org/10.1007/s11356-023-26422-6
  80. Mohanta, Y. K., Biswas, K., Mahanta, S., & Muthupandian, S. edition (2024). Graphene-Based Nanomaterials: Application in Food, Agriculture and Healthcare. CRC Press.
  81. Mubarak, N.M., Sazila, N., Nizamuddin, S., Abdullah, E. C., & Sahu, J. N. (2017). Adsorptive removal of phenol from aqueous solution by using carbon nanotubes and magnetic biochar. Nanoworld J 1. https://doi.org/10.17756 /nwj.2017-043
  82. Murthy, S., Effiong, P., & Fei, C. C. (2020). Metal oxide nanoparticles in biomedical applications. In Metal oxide powder technologies (233-251). Elsevier. https://doi.org/10.1016/B978-0-12-817505-7.00011-7
  83. Nagajyothi, P. C., Veeranjaneya Reddy, L., Devarayapalli, K. C., Prabhakar Vattikuti, S. V., Wee, Y. J., & Shim, J. (2021). Environmentally friendly synthesis: photocatalytic dye degradation and bacteria inactivation using Ag/f-MWCNTs composite. Journal of Cluster Science 32, 711-718. https://doi.org/10.1007/s10876-020-01821-8
  84. Naqvi, S. T. R., Rasheed, T., Hussain, D., ul Haq, M. N., Majeed, S., Ahmed, N., & Nawaz, R. (2020). Modification strategies for improving the solubility/dispersion of carbon nanotubes. Journal of Molecular Liquids 297, 111919. https://doi.org/10.1016/j.molliq.2019.111919
  85. Neklyudov, V. V., Khafizov, N. R., Sedov, I. A., & Dimiev, A. M. (2017). New insights into the solubility of graphene oxide in water and alcohols. Physical Chemistry Chemical Physics 19, 17000-17008.
  86. Nu, T. T. V., Tran, N. H. T., Truong, P. L., Phan, B. T., Dinh, M. T. N., Dinh, V. P., Phan, T. S., Go, S., Chang, M., Trinh, K. T. L., & Van Tran, V. (2022). Green synthesis of microalgae-based carbon dots for decoration of TiO2 nanoparticles in enhancement of organic dye photodegradation. Environmental Research 206, 112631. https://doi.org/10.1016/j.envres.2021.112631
  87. Panahian, Y., & Arsalani, N. (2017). Synthesis of hedgehoglike F-TiO2 (B)/CNT nanocomposites for sonophotocatalytic and photocatalytic degradation of malachite green (MG) under visible light: kinetic study. Journal of Physical Chemistry A 121, 5614-5624. https://doi.org/10.1021/acs.jpca.7b02580
  88. Panahian, Y., Arsalani, N., Nasiri, R. (2018). Enhanced photo and sono-photo degradation of crystal violet dye in aqueous solution by 3D flower like F-TiO2 (B)/fullerene under visible light. Journal of Photochemistry and Photobiology A: Chemistry 365, 45-51. https://doi.org/10.1016/j.jphotochem.2018.07.035
  89. Parvathi, V. P., Umadevi, M., Raj, R. B. (2015). Improved waste water treatment by bio-synthesized graphene sand composite. Journal of Environmental Management 162, 299-305.https://doi.org/10.1016/j.jenvman.2015.07.055
  90. Parveen, K., Banse, V., & Ledwani, L. (2016). April. Green synthesis of nanoparticles: Their advantages and disadvantages. In AIP conference proceedings (Vol. 1724, No. 1). AIP Publishing. https://doi.org/10.1063/1.4945168
  91. Patel, K. D., Singh, R. K., & Kim, H. W. (2019). Carbon-based nanomaterials as an emerging platform for theragnostic. Material Horizons 6, 434-469. https://doi.org/10.1039/C8MH00966J
  92. Pebdeni, A. B., Khurshid, C. A., Abkenar, S. D., & Hosseini, M. (2021). Green Synthesis of Carbon Quantum Dots Doped on Nickel Oxide Nanoparticles as Recyclable Visible Light Photocatalysts for Enhanced Degradation of Malachite Green. ChemistrySelect 6, 5034-5042. https://doi.org/10.1002/slct.202101116
  93. Perumal, S., Edison, T. N. J. I., Atchudan, R., Sundramoorthy, A. K., & Lee, Y. R. (2022). Green-routed carbon dot-adorned silver nanoparticles for the catalytic degradation of organic dyes. Catalysis 12, 937. https://doi.org/10.3390/catal12090937
  94. Prabhakar, U. P. S., Shanmugam, P., Boonyuen, S., Chandrasekar, L. P., Pothu, R., Boddula, R., Radwan, A. B., & Al-Qahtani, N. (2024) Non-covalent functionalization of surfactant-assisted graphene oxide with silver nanocomposites for highly efficient photocatalysis and anti-biofilm applications. Material Science for Energy Technologies 7, 205-215.
  95. Prasannan, A., & Imae, T. (2013). One-pot synthesis of fluorescent carbon dots from orange waste peels. Industrial and Engineerig Chemistry Research 52, 15673-15678. https://doi.org/10.1021/ie402421s
  96. Preethi, S., Abarna, K., Nithyasri, M., Kishore, P., Deepika, K., Ranjithkumar, R., Bhuvaneshwari, V., & Bharathi, D. (2020). Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications. International Journal of Biological Macromolecules 164, 2779-2787. https://doi.org/10.1016/j.ijbiomac.2020.08.047
  97. Qumar, U., Hassan, J. Z., Bhatti, R. A., Raza, A., Nazir, G., Nabgan, W., & Ikram, M. (2022). Photocatalysis vs adsorption by metal oxide nanoparticles. Journal of Material Science and Technology 131, 122-166. https://doi.org/10.1016/j.jmst.2022.05.020
  98. Radovic, L. R., & Bockrath, B. (2005). On the chemical nature of graphene edges: origin of stability and potential for magnetism in carbon materials. Journal of the American Chemical Society 127, 5917-5927.
  99. Rajput, R. B., Mane, R. S., Jamble, S. N., Jha, N., & Kale, R. B. (2024). N-doped carbon/TiO2 composites with enhanced photocatalytic performance for the removal of organic pollutants. Journal of Physics and Chemistry of Solids 184, 111677. https://doi.org/10.1016/j.jpcs.2023.111677
  100. Rana, A. K. (2023). Nanocellulose-based Hydrogels: Preparation Strategies, Dye Adsorption and Factors Impacting. Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.1757
  101. Rana, A. K., Gupta, V. K., Hart, P., & Thakur, V. K. (2023). Cellulose-alginate hydrogels and their nanocomposites for water remediation and biomedical applications. Environmental Research, 117889. https://doi.org/10.1016/j.envres.2023.117889
  102. Rana, A. K., Gupta, V. K., Hart, P., Scarpa, F., & Thakur, V. K. (2024). Sustainable MXene-chitosan/chitin composites for Interdisciplinary applications in water purification, bio-medical, bio-sensing and electronic fields. Materials Today Sustainability, 100671. https://doi.org/10.1016/j.mtsust.2024.100671
  103. Rani, M., Pandey, S., Sharma, S., & Shanker, U. (2024). Sunlight assisted highly efficient photocatalytic remediation of organic pollutants by green biosynthesized ZnO@ WO3 nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry 446, 115160. https://doi.org/10.1016/j.jphotochem.2023.115160
  104. Ravichandran, S., Sengodan, P., & Radhakrishnan, J. (2023). Evaluation of biosynthesized nickel oxide nanoparticles from Clerodendrum phlomidis: A promising photocatalyst for methylene blue and acid blue dyes degradation. Ceramics International 49, 12408-12414. https://doi.org/10.1016/j.ceramint.2022.12.100
  105. Rosu, M. C., Coros, M., Pogacean, F., Magerusan, L., Socaci, C., Turza, A., & Pruneanu, S. (2017). Azo dyes degradation using TiO2-Pt/graphene oxide and TiO2-Pt/reduced graphene oxide photocatalysts under UV and natural sunlight irradiation. Solid State Science 70, 13-20. https://doi.org/10.1016/j.solidstatesciences.2017.05.013
  106. Roushani, M., Mavaei, M., Daneshfar, A., & Rajabi, H. R. (2017). Application of graphene quantum dots as green homogenous nanophotocatalyst in the visible-light-driven photolytic process. Journal of Material Science: Materials in Electronics 28, 5135-5143. https://doi.org/10.1007/s10854-016-6169-7
  107. Ruiyi, L., Xiaoyue, L., & Zaijun, L. (2024). Nb2O5-graphene heterojunction composite with ultrahigh photocatalytic activity for solar light driven photodegradation of ciprofloxacin. Journal of Photochemistry and Photobiology A: Chemistry 446, 115188.
  108. Ryan, J. J., Bateman, H. R., Stover, A., Gomez, G., Norton, S. K., Zhao, W., Schwartz, L. B., Lenk, R., & Kepley, C. L. (2007). Fullerene nanomaterials inhibit the allergic response. The Journal of Immunology 179, 665-672.
  109. Safaee, M. M., Gravely, M., Lamothe, A., McSweeney, M., & Roxbury, D. (2019). Enhancing the thermal Stability of carbon nanomaterials with DNA. Scientific Reports 9, 11926. https://doi.org/10.1038/s41598-019-48449-x
  110. Saini, D., Garg, A. K., Dalal, C., Anand, S. R., Sonkar, S. K., Sonker, A. K., & Westman, G. (2022). Visible-light-promoted photocatalytic applications of carbon dots: a review. ACS Applied Nano Materials 5, 3087-3109. https://doi.org/10.1021/acsanm.1c04142
  111. Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S. K., Grace, A. N., & Bhatnagar, A. (2016). Role of nanomaterials in water treatment applications: a review. Chemical Engineering Journal 306, 1116-1137.
  112. Sardar, S., Munawar, T., Mukhtar, F., Nadeem, M. S., Khan, S. A., Koc, M., Manzoor, S., Ashiq, M. N., Iqbal, F. (2023). Fullerene trigged energy storage and photocatalytic ability of La2O3-ZnO@ C60 core-shell nanocomposite. Material Science and Engineering B 288, 116151. https://doi.org/10.1016/j.mseb.2022.116151
  113. Sargin, I., Baran, T., & Arslan, G. (2020). Environmental remediation by chitosan-carbon nanotube supported palladium nanoparticles: Conversion of toxic nitroarenes into aromatic amines, degradation of dye pollutants and green synthesis of biaryls. Separation and Purification Technology 247,116987. https://doi.org/10.1016/j.seppur.2020.116987
  114. Sarkar, B., Mandal, S., Tsang, Y.F. et al. (2018). Designer carbon nanotubes for contaminant removal in water and wastewater: a critical review. Science of the Total Environment. 612, 561–581. https://doi.org/10.1016/j.scito tenv.2017.08.132
  115. Sayes, C. M., Fortner, J. D., Guo, W., Lyon, D., Boyd, A. M., Ausman, K. D., Tao, Y. J., Sitharaman, B., Wilson, L. J., Hughes, J. B., & West, J. L. (2004). The differential cytotoxicity of water-soluble fullerenes. Nano Letters, 4, 1881-1887. https://doi.org/10.1021/nl0489586
  116. Sekar, A., & Yadav, R. (2021). Green fabrication of zinc oxide supported carbon dots for visible light-responsive photocatalytic decolourization of Malachite Green dye: Optimization and kinetic studies. Optik 242, 167311. https://doi.org/10.1016/j.ijleo.2021.167311
  117. Selvam, K., Albasher, G., Alamri, O., Sudhakar, C., Selvankumar, T., Vijayalakshmi, S., & Vennila, L. (2022). Enhanced photocatalytic activity of novel Canthium coromandelicum leaves based copper oxide nanoparticles for the degradation of textile dyes. Environmental Research 211, 113046. https://doi.org/10.1016/j.envres.2022.113046
  118. Sepahvand, S., & Farhadi, S. (2018). Fullerene-modified magnetic silver phosphate (Ag3PO 4/Fe 3O4/C60) nanocomposites: Hydrothermal synthesis, characterization and study of photocatalytic, catalytic and antibacterial activities. RSC Advance 8, 10124-10140. 10.1039/C8RA00069G
  119. Shafei, A., & Sheibani, S. (2019). Visible light photocatalytic activity of Cu doped TiO2-CNT nanocomposite powder prepared by sol-gel method. Material Research Bulletin 110, 198-206. https: //doi.org/10.1016/j. mater resbu ll.2018.10.035
  120. Shan, S. J., Zhao, Y., Tang, H., & Cui, F.Y. (2017). A mini-review of carbonaceous nanomaterials for removal of contaminants from wastewater. IOP Conference Series Earth Environmental Science. https ://doi.org/10.1088/1755-1315/68/1/01200 3
  121. Shanker, U., Jassal, V., Rani, M., & Kaith, B. S. (2016). Towards green synthesis of nanoparticles: From bio-assisted sources to benign solvents. A review, Int J Environ Anal Chem 96: 801-835, https://doi.org/10.1080/03067319.2016.1209663.
  122. Sharma, S. K., Chiang, L. Y., Hamblin, M. R. (2011). Photodynamic therapy with fullerenes in vivo: reality or a dream? Nanomedicine 6, 1813-1825. https://doi.org/10.2217/nnm.11.144
  123. Smrithi, S. P., Kottam, N., Narula, A., Madhu, G. M., Mohammed, R., & Agilan, R. (2022). Carbon dots decorated cadmium sulphide heterojunction-nanospheres for the enhanced visible light driven photocatalytic dye degradation and hydrogen generation. Journal of Colloid Interface and Science 627, 956-968. https://doi.org/10.1016/j.jcis.2022.07.100
  124. Sultana, S., Khan, M. Z., Umar, K., & Muneer, M. (2013). Electrical, thermal, photocatalytic and antibacterial studies of metallic oxide nanocomposite doped polyaniline. Journal of Material Science and Technology 29, 795-800, https://doi.org/10.1016/j.jmst.2013.06.001.
  125. Tang, X., Wang, Z., & Wang, Y. (2018). Visible active N-doped TiO2/reduced graphene oxide for the degradation of tetracycline hydrochloride. Chemical Physics Letters 691, 408-414. 10.1016/j.cplet t.2017.11.037
  126. Teymourinia, H., Salavati-Niasari, M., Amiri, O., Safardoust-Hojaghan, H. (2017). Synthesis of graphene quantum dots from corn powder and their application in reduce charge recombination and increase free charge carriers. Journal of Molecular Liquids 242, 447-455. https://doi.org/10.1016/j.molliq.2017.07.052
  127. Thines, R. K., Mubarak, N. M., Nizamuddin, S et al. (2017) Application potential of carbon nanomaterials in water and wastewater treatment: a review. Journal of the Taiwan Institute of Chemical Engineers 72, 116-133. https ://doi.org/10.1016/j.jtice .2017.01.018
  128. Tomar, R., Abdala, A. A., Chaudhary, R. G., & Singh, N. B. (2020). Photocatalytic degradation of dyes by nanomaterials. Materials Today: Proceedings 29, 967-973. https://doi.org/10.1016/j.matpr.2020.04.144
  129. Tran, T. H., Nosaka, A. Y., & Nosaka, Y. (2006). Adsorption and photocatalytic decomposition of amino acids in TiO2 photocatalytic systems. Journal of Physical Chemistry B, 110: 25525-25531.
  130. Tripathi, V. K., Tripathi, K. M., Shrivastava, M., & Dhiman, N. (2023). Degradation of Textile Waste for Environmental Protection. In Nano-engineered Materials for Textile Waste Remediation (pp. 201-225). Singapore: Springer Nature Singapore.
  131. Vinothkannan, M., Karthikeyan, C., Kim, A. R., & Yoo, D. J. (2015). One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 136, 256-264. https://doi.org/10.1016/j.saa.2014.09.031
  132. Wang, C., Xu, J., Zhang, R., & Zhao, W. (2022). Facile and low-energy-consumption synthesis of dual-functional carbon dots from Cornus walteri leaves for detection of p-nitrophenol and photocatalytic degradation of dyes. Colloids and Surfaces A: Physicochemical and Engineering 640, 128351. https://doi.org/10.1016/j.colsurfa.2022.128351
  133. Wang, M., Nalla, V., Jeon, S., Mamidala, V., Ji, W., Tan, L. S., Cooper, T., & Chiang, L. Y., (2011). Large femtosecond two-photon absorption cross sections of fullerosome vesicle nanostructures derived from a highly photoresponsive amphiphilic C60-light-harvesting fluorene dyad. Journal of Physical Chemistry C 115, 18552-18559. https://doi.org/10.1021/jp207047k
  134. Wang, R., Xiong, Y., Yue, M., Hao, M., & Yue, J. (2020). Investigating the effectiveness of carbon nanomaterials on asphalt binders from hot storage stability, thermodynamics, and mechanism perspectives. Journal of Cleaner Production 276, 124180.
  135. Wei, M., Shi, X., Xiao, L., & Zhang, H. (2020). Synthesis of polyimide-modified carbon nanotubes as catalyst for organic pollutant degradation via production of singlet oxygen with peroxymonosulfate without light irradiation. Journal of Hazardous Materials 382, 120993. https://doi.org/10.1016/j.jhazmat.2019.120993
  136. Wu, Z. Y., Xu, Y. J., Huang, L. J., Zhang, Q. X., Tang, D. L. (2021). Fullerene-cored star-shaped polyporphyrin-incorporated TiO2 as photocatalysts for the enhanced degradation of rhodamine B. Journal of Environmental Chemical Engineering 9, 106142. https://doi.org/10.1016/j.jece.2021.106142
  137. Yang, L., Chu, D., Wang, L., Wu, X., & Luo, J. (2016). Synthesis and photocatalytic activity of chrysanthemum-like Cu2O/Carbon Nanotubes nanocomposites. Ceramic International 42, 2502-2509. https://doi.org/10.1016/j.ceramint.2015.10.051
  138. Yaqoob, A. A., Parveen, T., Umar, K., & Mohamad Ibrahim, M. N. (2020). Role of nanomaterials in the treatment of wastewater: A review. Water 12, 495. https://doi.org/10.3390/w12020495
  139. Yazdani, E. B., & Mehrizad, A. (2018). Sonochemical preparation and photocatalytic application of Ag-ZnS-MWCNTs composite for the degradation of Rhodamine B under visible light: experimental design and kinetics modeling. Journal of Molecular Liquids 255, 102-112. https :// doi.org/10.1016/j.molli q.2018.01.154
  140. Ye, A., Fan, W., Zhang, Q., Deng, W., & Wang, Y. (2012). CdS-graphene and CdS-CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catalalysis Science and Technology 2, 969-978. https ://doi.org/10.1039/c2cy2 0027a
  141. Yin, L., Zhou, H., Lian, L., Yan, S., & Song, W. (2016). Effects of C60 on the photochemical formation of reactive oxygen species from natural organic matter. Environmental Science and Technology 50, 11742-11751. L. https://doi.org/10.1021/acs.est.6b04488
  142. Younas, U., Gulzar, A., Ali, F., Pervaiz, M., Ali, Z., Khan, S., Saeed, Z., Ahmed, M., & Alothman, A. A. (2021). Antioxidant and organic dye removal potential of Cu-Ni bimetallic nanoparticles synthesized using Gazania rigens extract. Water 13, 2653, https://doi.org/10.3390/w13192653
  143. Zhai, Y., Zhu, Z., Zhu, C., Ren, J., Wang, E., & Dong, S. (2014). Multifunctional water-soluble luminescent carbon dots for imaging and Hg2+ sensing. Journal of Material Chemistry B 2, 6995-6999. https://doi.org/10.1039/C4TB01035C
  144. Zhang, H., Yang, S., Zhou, X. (2022). Mn-doped carbon dots as a visible-light-driven catalyst for degradation of acid fuchsin and malachite green. Jounal of Material Science: Materials in Electronics 33, 4170-4183. https://doi.org/10.1007/s10854-021-07613-8
  145. Zhang, J. Z. (1997). Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: effects of size and surface. Accounts of Chemical Research 30, 423-429. https://doi.org/10.1021/ar960178j
  146. Zhang, J., Ye, Y., Chen, Y., Pregot, C., Li, T., Balasubramaniam, S., Hobart, D. B., Zhang, Y., Wi, S., Davis, R. M., & Madsen, L. A. (2014). Gd3N@C84 (OH) x: a new egg-shaped metallofullerene magnetic resonance imaging contrast agent. Journal of American Chemical Society 136, 2630-2636. https://doi.org/10.1021/ja412254k
  147. Zhang, W., Chen, M., Gong, X., & Diao, G. (2013). Universal water-soluble cyclodextrin polymer-carbon nanomaterials with supramolecular recognition. Carbon 61, 154-163. https://doi.org/10.1016/j.carbon.2013.04.079
  148. Zhao, P., & Zhu, L. (2018). Dispersibility of carbon dots in aqueous and/or organic solvents. Chemistry Communication 54, 5401-5406. https://doi.org/10.1039/C8CC02279H
  149. Zhao, Y., Zhang, X., Liu, J., Wang, C., Li, J., & Jin, H. (2018). Graphene oxide modified nano-sized BaTiO3 as photocatalyst. Ceramics International 44, 15929-15934. https ://doi.org/10.1016/j.ceram int.2018.06.013
  150. Zhu, Z., Yang, P., Li, X., Luo, M., Zhang, W., Chen, M., & Zhou, X. (2020). Green preparation of palm powder-derived carbon dots co-doped with sulfur/chlorine and their application in visible-light photocatalysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 227, 117659. https://doi.org/10.1016/j.saa.2019.117659
  151. Zinatloo-Ajabshir, S., Morassaei, M. S., & Salavati-Niasari, M. (2019). Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Composites Part B: Engineering 167, 643-653. https://doi.org/10.1016/j.compositesb.2019.03.045

How to Cite

Biosynthesized Carbon-derived Nanomaterials as a Photocatalytic Solution for Sustainable Water Pollution Control. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1827

How to Cite

Biosynthesized Carbon-derived Nanomaterials as a Photocatalytic Solution for Sustainable Water Pollution Control. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1827

HTML
236

Total
76

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Ravi Kumar, Shweta Kaushal, Naveen Thakur, Kuldeep Kumar

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.