Skip to main content Skip to main navigation menu Skip to site footer

Revisiting the advancement with painless microneedles for the diagnosis and treatment of dermal infections: A review

  • Popat Mohite
  • Meenakshi Patel
  • Abhijeet Puri
  • Anil Pawar
  • Sudarshan Singh
  • Bhupendra Prajapati

Abstract

Dermal infections present a major health risk and challenge in clinical and community settings. Painful procedures are often involved in conventional diagnostic and treatment methods, causing patient discomfort and non-compliance. Pain-free and minimally invasive approaches are offered by microneedles as a promising technology for the diagnosis and mitigation of dermal infections. The focus of this paper is on the advancements and approaches to fabricating painless microneedles for the mitigation and diagnosis of dermal infections. Microneedles provide a painless and minimally invasive option compared to traditional techniques. Additionally, it emphasizes incorporating sensing technologies to diagnose infections. Microneedles that don't cause pain could change dermatology practices by offering patient-friendly and effective solutions for diagnosing and managing dermal infections. The article covers regulatory concerns, scalability, and cost-effectiveness, stressing the necessity for additional research and development for implementing this technology in clinical settings. The significance of painless microneedles in improving patient comfort, adherence, and early detection of dermal infections is emphasized. In conclusion, the invention of pain-free microneedles is notable progress in preventing and diagnosing skin infections. The successful implementation of painless microneedles has the potential to revolutionize dermatology practices, enabling effective and patient-friendly approaches for the management and diagnosis of dermal infections.

Section

References

  1. Ahmed Saeed Al-Japairai, K., Mahmood, S., Hamed Almurisi, S., Reddy Venugopal, J., Rebhi Hilles, A., Azmana, M., & Raman, S. (2020). Current trends in polymer microneedle for transdermal drug delivery. International journal of pharmaceutics, 587, 119673. https://doi.org/https://doi.org/10.1016/j.ijpharm.2020.119673
  2. Alkrad, J. A., & Neubert, R. H. H. (2022). Dermal and transdermal peptide delivery using enhancer molecules and colloidal carrier systems. Part V: Transdermal administration of insulin. International journal of pharmaceutics, 616, 121511.
  3. Amani, H., Shahbazi, M.-A., D'Amico, C., Fontana, F., Abbaszadeh, S., & Santos, H. A. (2021). Microneedles for painless transdermal immunotherapeutic applications. Journal of Controlled Release, 330, 185-217.
  4. Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., & Qamar, M. U. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and drug resistance, 11, 1645.
  5. Aulton, M. E., & Taylor, K. (2013). Aulton's pharmaceutics: the design and manufacture of medicines. Elsevier Health Sciences.
  6. Avcil, M., & Çelik, A. (2021). Microneedles in Drug Delivery: Progress and Challenges. Micromachines (Basel), 12(11). https://doi.org/10.3390/mi12111321
  7. Bao, L., Park, J., Qin, B., & Kim, B. (2022). Anti-SARS-CoV-2 IgM/IgG antibodies detection using a patch sensor containing porous microneedles and a paper-based immunoassay. Scientific Reports, 12(1), 10693.
  8. Bäsler, K., Bergmann, S., Heisig, M., Naegel, A., Zorn-Kruppa, M., & Brandner, J. M. (2016). The role of tight junctions in skin barrier function and dermal absorption. Journal of Controlled Release, 242, 105-118.
  9. Bilgic, A., & Akman-Karakas, A. (2019). Bleomycin therapy using multipuncture technique for resistant warts. Turkish Journal of Dermatology, 13(2), 91.
  10. Boehm, R. D., Jaipan, P., Skoog, S. A., Stafslien, S., VanderWal, L., & Narayan, R. J. (2016). Inkjet deposition of itraconazole onto poly (glycolic acid) microneedle arrays. Biointerphases, 11(1), 011008.
  11. Brown, K. E., Dohmeier, D. M., Moseman, J. T., Zhang, Y., Harris, A., Hattersley, G., & Dick, L. A. (2020). Zinc compositions for coated microneedle arrays. In: Google Patents.
  12. Brown, M. B., Martin, G. P., Jones, S. A., & Akomeah, F. K. (2006). Dermal and transdermal drug delivery systems: current and future prospects. Drug delivery, 13(3), 175-187.
  13. Cárcamo-Martínez, Á., Mallon, B., Domínguez-Robles, J., Vora, L. K., Anjani, Q. K., & Donnelly, R. F. (2021). Hollow microneedles: A perspective in biomedical applications. International journal of pharmaceutics, 599, 120455. https://doi.org/https://doi.org/10.1016/j.ijpharm.2021.120455
  14. Chandran, R., Tohit, E. R. M., Stanslas, J., & Mahmood, T. M. T. (2019). Recent advances and challenges in microneedle-mediated transdermal protein and peptide drug delivery. Biomaterials and Bionanotechnology, 495-525.
  15. Chen, J., Wang, M., Ye, Y., Yang, Z., Ruan, Z., & Jin, N. (2019). Fabrication of sponge-forming microneedle patch for rapidly sampling interstitial fluid for analysis. Biomedical microdevices, 21, 1-10.
  16. Chen, W., Cai, B., Geng, Z., Chen, F., Wang, Z., Wang, L., & Chen, X. (2020). Reducing false negatives in COVID-19 testing by using microneedle-based oropharyngeal swabs. Matter, 3(5), 1589-1600.
  17. Chen, Y., Yang, Y., Xian, Y., Singh, P., Feng, J., Cui, S., Carrier, A., Oakes, K., Luan, T., & Zhang, X. (2019). Multifunctional graphene-oxide-reinforced dissolvable polymeric microneedles for transdermal drug delivery. ACS Applied Materials & Interfaces, 12(1), 352-360.
  18. Cui, M., Wiraja, C., Chew, S. W. T., & Xu, C. (2020). Nanodelivery systems for topical management of skin disorders. Molecular Pharmaceutics, 18(2), 491-505.
  19. Dardano, P., De Martino, S., Battisti, M., Miranda, B., Rea, I., & De Stefano, L. (2021). One-Shot Fabrication of Polymeric Hollow Microneedles by Standard Photolithography. Polymers, 13(4).
  20. Daugimont, L., Baron, N., Vandermeulen, G., Pavselj, N., Miklavcic, D., Jullien, M.-C., Cabodevila, G., Mir, L. M., & Préat, V. (2010). Hollow Microneedle Arrays for Intradermal Drug Delivery and DNA Electroporation. The Journal of membrane biology, 236(1), 117-125. https://doi.org/10.1007/s00232-010-9283-0
  21. Detamornrat, U., McAlister, E., Hutton, A. R. J., Larrañeta, E., & Donnelly, R. F. (2022). The Role of 3D Printing Technology in Microengineering of Microneedles [https://doi.org/10.1002/smll.202106392]. Small, 18(18), 2106392. https://doi.org/https://doi.org/10.1002/smll.202106392
  22. Dharadhar, S., Majumdar, A., Dhoble, S., & Patravale, V. (2019). Microneedles for transdermal drug delivery: a systematic review. Drug development and industrial pharmacy, 45(2), 188-201. https://doi.org/10.1080/03639045.2018.1539497
  23. Dixon, R. V., Lau, W. M., Moghimi, S. M., & Ng, K. W. (2020). The diagnostic potential of microneedles in infectious diseases. Precision Nanomedicine.
  24. Dixon, R. V., Skaria, E., Lau, W. M., Manning, P., Birch-Machin, M. A., Moghimi, S. M., & Ng, K. W. (2021). Microneedle-based devices for point-of-care infectious disease diagnostics. Acta Pharmaceutica Sinica B, 11(8), 2344-2361.
  25. Dixon, R. V., Skaria, E., Lau, W. M., Manning, P., Birch-Machin, M. A., Moghimi, S. M., & Ng, K. W. (2021). Microneedle-based devices for point-of-care infectious disease diagnostics. Acta Pharm Sin B, 11(8), 2344-2361. https://doi.org/10.1016/j.apsb.2021.02.010
  26. Donnelly, R. F., Morrow, D. I. J., McCrudden, M. T. C., Alkilani, A. Z., Vicente‐Pérez, E. M., O'Mahony, C., González‐Vázquez, P., McCarron, P. A., & Woolfson, A. D. (2014). Hydrogel‐forming and dissolving microneedles for enhanced delivery of photosensitizers and precursors. Photochemistry and photobiology, 90(3), 641-647.
  27. Dragicevic, N., & Maibach, H. I. (2017). Percutaneous penetration enhancers drug penetration into/through the skin: Methodology and general considerations. Springer.
  28. Elahpour, N., Pahlevanzadeh, F., Kharaziha, M., Bakhsheshi-Rad, H. R., Ramakrishna, S., & Berto, F. (2021). 3D printed microneedles for transdermal drug delivery: A brief review of two decades. International journal of pharmaceutics, 597, 120301. https://doi.org/https://doi.org/10.1016/j.ijpharm.2021.120301
  29. Eltayib, E., Brady, A. J., Caffarel-Salvador, E., Gonzalez-Vazquez, P., Alkilani, A. Z., McCarthy, H. O., McElnay, J. C., & Donnelly, R. F. (2016). Hydrogel-forming microneedle arrays: Potential for use in minimally-invasive lithium monitoring. European journal of pharmaceutics and biopharmaceutics, 102, 123-131.
  30. Eron, L. J., Lipsky, B. A., Low, D. E., Nathwani, D., Tice, A. D., & Volturo, G. A. (2003). Managing skin and soft tissue infections: expert panel recommendations on key decision points. Journal of Antimicrobial Chemotherapy, 52(suppl_1), i3-i17.
  31. Falagas, M. E., & Kompoti, M. (2006). Obesity and infection. The Lancet infectious diseases, 6(7), 438-446.
  32. Fernandes, D. (2005). Minimally invasive percutaneous collagen induction. Oral and Maxillofacial Surgery Clinics, 17(1), 51-63.
  33. Gallo, R. L., & Nizet, V. (2008). Innate barriers against skin infection and associated disorders. Drug Discovery Today: Disease Mechanisms, 5(2), e145-e152.
  34. Ganeson, K., Alias, A. H., Murugaiyah, V., Amirul, A. A., Ramakrishna, S., & Vigneswari, S. (2023). Microneedles for Efficient and Precise Drug Delivery in Cancer Therapy. Pharmaceutics, 15(3). https://doi.org/10.3390/pharmaceutics15030744
  35. García, L. E. G., MacGregor, M. N., Visalakshan, R. M., Ninan, N., Cavallaro, A. A., Trinidad, A. D., Zhao, Y., Hayball, A. J. D., & Vasilev, K. (2019). Self-sterilizing antibacterial silver-loaded microneedles. Chemical Communications, 55(2), 171-174.
  36. Gerstel, M. S., & Place, V. A. (1976). Drug Delivery Device. Google Patents. US Patent No. US3964482A.
  37. Gholami, S., Mohebi, M.-M., Hajizadeh-Saffar, E., Ghanian, M.-H., Zarkesh, I., & Baharvand, H. (2019). Fabrication of microporous inorganic microneedles by centrifugal casting method for transdermal extraction and delivery. International journal of pharmaceutics, 558, 299-310.
  38. Gilaberte, Y., Prieto-Torres, L., Pastushenko, I., & Juarranz, Á. (2016). Anatomy and Function of the Skin. In Nanoscience in dermatology (pp. 1-14). Elsevier.
  39. Gorzelanny, C., Mess, C., Schneider, S. W., Huck, V., & Brandner, J. M. (2020). Skin barriers in dermal drug delivery: which barriers have to be overcome and how can we measure them? Pharmaceutics, 12(7), 684.
  40. Günzel, D., & Yu, A. S. L. (2013). Claudins and the modulation of tight junction permeability. Physiological reviews, 93(2), 525-569.
  41. Halder, J., Gupta, S., Kumari, R., Gupta, G. D., & Rai, V. K. (2021). Microneedle array: applications, recent advances, and clinical pertinence in transdermal drug delivery. Journal of Pharmaceutical Innovation, 16, 558-565.
  42. Han, D., Morde, R. S., Mariani, S., La Mattina, A. A., Vignali, E., Yang, C., Barillaro, G., & Lee, H. (2020). 4D Printing of a Bioinspired Microneedle Array with Backward-Facing Barbs for Enhanced Tissue Adhesion [https://doi.org/10.1002/adfm.201909197]. Advanced Functional Materials, 30(11), 1909197. https://doi.org/https://doi.org/10.1002/adfm.201909197
  43. Han, T. Y., Park, K. Y., Ahn, J. Y., Kim, S. W., Jung, H. J., & Kim, B. J. (2012). Facial skin barrier function recovery after microneedle transdermal delivery treatment. Dermatologic surgery, 38(11), 1816-1822.
  44. Haq, M. I., Smith, E., John, D. N., Kalavala, M., Edwards, C., Anstey, A., Morrissey, A., & Birchall, J. C. (2009). Clinical administration of microneedles: skin puncture, pain and sensation. Biomedical microdevices, 11, 35-47.
  45. Hardy, J. G., Larrañeta, E., Donnelly, R. F., McGoldrick, N., Migalska, K., McCrudden, M. T. C., Irwin, N. J., Donnelly, L., & McCoy, C. P. (2016). Hydrogel-forming microneedle arrays made from light-responsive materials for on-demand transdermal drug delivery. Molecular Pharmaceutics, 13(3), 907-914.
  46. Henry, S., McAllister, D. V., Allen, M. G., & Prausnitz, M. R. (1998). Microfabricated microneedles: a novel approach to transdermal drug delivery. Journal of pharmaceutical sciences, 87(8), 922-925.
  47. Ishida‐Yamamoto, A., Igawa, S., Kishibe, M., & Honma, M. (2018). Clinical and molecular implications of structural changes to desmosomes and corneodesmosomes. The Journal of dermatology, 45(4), 385-389.
  48. Jamaledin, R., Yiu, C. K. Y., Zare, E. N., Niu, L. N., Vecchione, R., Chen, G., Gu, Z., Tay, F. R., & Makvandi, P. (2020). Advances in antimicrobial microneedle patches for combating infections. Advanced Materials, 32(33), 2002129.
  49. Jeong, H.-R., Kim, J.-Y., Kim, S.-N., & Park, J.-H. (2018). Local dermal delivery of cyclosporin A, a hydrophobic and high molecular weight drug, using dissolving microneedles. European journal of pharmaceutics and biopharmaceutics, 127, 237-243.
  50. Jiang, X., & Lillehoj, P. B. (2020). Microneedle-based skin patch for blood-free rapid diagnostic testing. Microsystems & nanoengineering, 6(1), 96.
  51. Khan, N. H., Mir, M., Qian, L., Baloch, M., Ali Khan, M. F., Rehman, A.-u., Ngowi, E. E., Wu, D.-D., & Ji, X.-Y. (2022). Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. Journal of advanced research, 36, 223-247. https://doi.org/https://doi.org/10.1016/j.jare.2021.06.014
  52. Kim, Y.-C., Park, J.-H., & Prausnitz, M. R. (2012). Microneedles for drug and vaccine delivery. Advanced drug delivery reviews, 64(14), 1547-1568. https://doi.org/https://doi.org/10.1016/j.addr.2012.04.005
  53. Kumar, A., Shah, S. R., Jayeoye, T. J., Kumar, A., Parihar, A., Prajapati, B., Singh, S., & Kapoor, D. U. (2023). Biogenic metallic nanoparticles: biomedical, analytical, food preservation, and applications in other consumable products [Review]. Frontiers in Nanotechnology, 5. https://doi.org/10.3389/fnano.2023.1175149
  54. Lan, X., She, J., Lin, D.-a., Xu, Y., Li, X., Yang, W.-f., Lui, V. W. Y., Jin, L., Xie, X., & Su, Y.-X. (2018). Microneedle-mediated delivery of lipid-coated cisplatin nanoparticles for efficient and safe cancer therapy. ACS Applied Materials & Interfaces, 10(39), 33060-33069.
  55. Lee, A.-Y. (2020). Molecular mechanism of epidermal barrier dysfunction as primary abnormalities. International Journal of Molecular Sciences, 21(4), 1194.
  56. Lee, K., Xue, Y., Lee, J., Kim, H. J., Liu, Y., Tebon, P., Sarikhani, E., Sun, W., Zhang, S., & Haghniaz, R. (2020). A patch of detachable hybrid microneedle depot for localized delivery of mesenchymal stem cells in regeneration therapy. Advanced Functional Materials, 30(23), 2000086.
  57. Li, Q. Y., Zhang, J. N., Chen, B. Z., Wang, Q. L., & Guo, X. D. (2017). A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin. RSC Advances, 7(25), 15408-15415.
  58. Lim, D.-J., & Kim, H.-J. (2022). Microneedles in Action: Microneedling and Microneedles-Assisted Transdermal Delivery. Polymers, 14(8).
  59. Liu, G.-S., Kong, Y., Wang, Y., Luo, Y., Fan, X., Xie, X., Yang, B.-R., & Wu, M. X. (2020). Microneedles for transdermal diagnostics: Recent advances and new horizons. Biomaterials, 232, 119740.
  60. Lopez‐Ramirez, M. A., Soto, F., Wang, C., Rueda, R., Shukla, S., Silva‐Lopez, C., Kupor, D., McBride, D. A., Pokorski, J. K., & Nourhani, A. (2020). Built‐in active microneedle patch with enhanced autonomous drug delivery. Advanced Materials, 32(1), 1905740.
  61. Ma, G., & Wu, C. (2017). Microneedle, bio-microneedle and bio-inspired microneedle: A review. Journal of Controlled Release, 251, 11-23.
  62. Manu, M., & Anand, G. (2022). A review of medical device regulations in India, comparison with European Union and way-ahead. Perspect Clin Res, 13(1), 3-11. https://doi.org/10.4103/picr.PICR_222_20
  63. Matsui, T., & Amagai, M. (2015). Dissecting the formation, structure and barrier function of the stratum corneum. International immunology, 27(6), 269-280.
  64. Men, Z., Su, T., Tang, Z., Liang, J., & Shen, T. (2022). Tacrolimus nanocrystals microneedle patch for plaque psoriasis. International Journal of Pharmaceutics, 627, 122207.
  65. Microneedling, R. (2023). RF Microneedling For Younger, Smoother Skin. Retrieved 24 from
  66. Mills, N. L., Donaldson, K., Hadoke, P. W., Boon, N. A., MacNee, W., Cassee, F. R., Sandström, T., Blomberg, A., & Newby, D. E. (2009). Adverse cardiovascular effects of air pollution. Nature clinical practice Cardiovascular medicine, 6(1), 36-44.
  67. Miyano, T., Tobinaga, Y., Kanno, T., Matsuzaki, Y., Takeda, H., Wakui, M., & Hanada, K. (2005). Sugar micro needles as transdermic drug delivery system. Biomedical microdevices, 7, 185-188.
  68. Mu, Q., Wang, L., Dunn, C. K., Kuang, X., Duan, F., Zhang, Z., Qi, H. J., & Wang, T. (2017). Digital light processing 3D printing of conductive complex structures. Additive Manufacturing, 18, 74-83. https://doi.org/https://doi.org/10.1016/j.addma.2017.08.011
  69. Nagarkar, R., Singh, M., Nguyen, H. X., & Jonnalagadda, S. (2020). A review of recent advances in microneedle technology for transdermal drug delivery. Journal of Drug Delivery Science and Technology, 59, 101923. https://doi.org/https://doi.org/10.1016/j.jddst.2020.101923
  70. Naik, A., Kalia, Y. N., & Guy, R. H. (2000). Transdermal drug delivery: overcoming the skin’s barrier function. Pharmaceutical science & technology today, 3(9), 318-326.
  71. Nguyen, A. V., & Soulika, A. M. (2019). The dynamics of the skin’s immune system. International Journal of Molecular Sciences, 20(8), 1811.
  72. Nguyen, J., Ita, K. B., Morra, M. J., & Popova, I. E. (2016). The influence of solid microneedles on the transdermal delivery of selected antiepileptic drugs. Pharmaceutics, 8(4), 33.
  73. Nie, J., Fu, X., & Han, W. (2013). Microenvironment‐dependent homeostasis and differentiation of epidermal basal undifferentiated keratinocytes and their clinical applications in skin repair. Journal of the European Academy of Dermatology and Venereology, 27(5), 531-535.
  74. Omolu, A., Bailly, M., & Day, R. M. (2017). Assessment of solid microneedle rollers to enhance transmembrane delivery of doxycycline and inhibition of MMP activity. Drug delivery, 24(1), 942-951.
  75. Ono, A., Azukizawa, H., Ito, S., Nakamura, Y., Asada, H., Quan, Y.-S., Kamiyama, F., Katayama, I., Hirobe, S., & Okada, N. (2017). Development of novel double-decker microneedle patches for transcutaneous vaccine delivery. International journal of pharmaceutics, 532(1), 374-383.
  76. Pamornpathomkul, B., Ngawhirunpat, T., Tekko, I. A., Vora, L., McCarthy, H. O., & Donnelly, R. F. (2018). Dissolving polymeric microneedle arrays for enhanced site-specific acyclovir delivery. European journal of pharmaceutical sciences, 121, 200-209.
  77. Pamornpathomkul, B., Niyomtham, N., Yingyongnarongkul, B.-E., Prasitpuriprecha, C., Rojanarata, T., Ngawhirunpat, T., & Opanasopit, P. (2018). Cationic niosomes for enhanced skin immunization of plasmid DNA-encoding ovalbumin via hollow microneedles. Aaps Pharmscitech, 19, 481-488.
  78. Patzelt, A., & Lademann, J. (2020). Recent advances in follicular drug delivery of nanoparticles. Expert opinion on drug delivery, 17(1), 49-60.
  79. Peng, K., Vora, L. K., Tekko, I. A., Permana, A. D., Domínguez-Robles, J., Ramadon, D., Chambers, P., McCarthy, H. O., Larrañeta, E., & Donnelly, R. F. (2021). Dissolving microneedle patches loaded with amphotericin B microparticles for localised and sustained intradermal delivery: Potential for enhanced treatment of cutaneous fungal infections. Journal of Controlled Release, 339, 361-380.
  80. Permana, A. D., Mir, M., Utomo, E., & Donnelly, R. F. (2020). Bacterially sensitive nanoparticle-based dissolving microneedles of doxycycline for enhanced treatment of bacterial biofilm skin infection: A proof of concept study. International journal of pharmaceutics: X, 2, 100047.
  81. Peterson, A. R., Nash, E., & Anderson, B. J. (2019). Infectious disease in contact sports. Sports Health, 11(1), 47-58.
  82. Polomska, A. K., Proulx, S. T., Brambilla, D., Fehr, D., Bonmarin, M., Brändli, S., Meboldt, M., Steuer, C., Vasileva, T., & Reinke, N. (2019). Minimally invasive method for the point-of-care quantification of lymphatic vessel function. JCI insight, 4(4).
  83. Prausnitz, M. R. (2004). Microneedles for transdermal drug delivery. Advanced drug delivery reviews, 56(5), 581-587.
  84. Proksch, E., Fölster-Holst, R., & Jensen, J.-M. (2006). Skin barrier function, epidermal proliferation and differentiation in eczema. Journal of dermatological science, 43(3), 159-169.
  85. Qu, M., Kim, H.-J., Zhou, X., Wang, C., Jiang, X., Zhu, J., Xue, Y., Tebon, P., Sarabi, S. A., & Ahadian, S. (2020). Biodegradable microneedle patch for transdermal gene delivery. Nanoscale, 12(32), 16724-16729.
  86. Radhadevi, N., Balamuralidhara, V., Kumar, T. M. P., & Ravi, V. (2012). Regulatory guidelines for medical devices in India: An overview. Asian Journal of Pharmaceutics (AJP), 6(1).
  87. Rajoli, R. K. R., Flexner, C., Chiong, J., Owen, A., Donnelly, R. F., Larrañeta, E., & Siccardi, M. (2019). Modelling the intradermal delivery of microneedle array patches for long-acting antiretrovirals using PBPK. European journal of pharmaceutics and biopharmaceutics, 144, 101-109.
  88. Ranjan Yadav, P., Iqbal Nasiri, M., Vora, L. K., Larrañeta, E., Donnelly, R. F., Pattanayek, S. K., & Bhusan Das, D. (2022). Super-swelling hydrogel-forming microneedle based transdermal drug delivery: Mathematical modelling, simulation and experimental validation. International journal of pharmaceutics, 622, 121835. https://doi.org/https://doi.org/10.1016/j.ijpharm.2022.121835
  89. Rzhevskiy, A. S., Singh, T. R. R., Donnelly, R. F., & Anissimov, Y. G. (2018). Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. Journal of Controlled Release, 270, 184-202.
  90. Samant, P. P., Niedzwiecki, M. M., Raviele, N., Tran, V., Mena-Lapaix, J., Walker, D. I., Felner, E. I., Jones, D. P., Miller, G. W., & Prausnitz, M. R. (2020). Sampling interstitial fluid from human skin using a microneedle patch. Science translational medicine, 12(571), eaaw0285.
  91. Samant, P. P., & Prausnitz, M. R. (2018). Mechanisms of sampling interstitial fluid from skin using a microneedle patch. Proceedings of the National Academy of Sciences, 115(18), 4583-4588.
  92. Schipper, P., van der Maaden, K., Groeneveld, V., Ruigrok, M., Romeijn, S., Uleman, S., Oomens, C., Kersten, G., Jiskoot, W., & Bouwstra, J. (2017). Diphtheria toxoid and N-trimethyl chitosan layer-by-layer coated pH-sensitive microneedles induce potent immune responses upon dermal vaccination in mice. Journal of Controlled Release, 262, 28-36.
  93. Schroeder, A., Turjeman, K., Schroeder, J. E., Leibergall, M., & Barenholz, Y. (2010). Using liposomes to target infection and inflammation induced by foreign body injuries or medical implants. Expert opinion on drug delivery, 7(10), 1175-1189.
  94. Shakya, A. K., Lee, C. H., & Gill, H. S. (2017). Cutaneous vaccination with coated microneedles prevents development of airway allergy. Journal of Controlled Release, 265, 75-82.
  95. Shu, W., Heimark, H., Bertollo, N., Tobin, D. J., O'Cearbhaill, E. D., & Annaidh, A. N. (2021). Insights into the mechanics of solid conical microneedle array insertion into skin using the finite element method. Acta Biomaterialia, 135, 403-413.
  96. Singh Malik, D., Mital, N., & Kaur, G. (2016). Topical drug delivery systems: a patent review. Expert Opinion on Therapeutic Patents, 26(2), 213-228.
  97. Sirbubalo, M., Tucak, A., Muhamedagic, K., Hindija, L., Rahić, O., Hadžiabdić, J., Cekic, A., Begic-Hajdarevic, D., Cohodar Husic, M., Dervišević, A., & Vranić, E. (2021). 3D Printing—A “Touch-Button” Approach to Manufacture Microneedles for Transdermal Drug Delivery. Pharmaceutics, 13(7).
  98. Strambini, L. M., Longo, A., Scarano, S., Prescimone, T., Palchetti, I., Minunni, M., Giannessi, D., & Barillaro, G. (2015). Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid. Biosensors and Bioelectronics, 66, 162-168.
  99. Sun, L., Fan, L., Bian, F., Chen, G., Wang, Y., & Zhao, Y. (2021). MXene-integrated microneedle patches with innate molecule encapsulation for wound healing. Research.
  100. Svensson, C. K. (2009). Biotransformation of drugs in human skin. Drug Metabolism and Disposition, 37(2), 247-253.
  101. Swain, S., Beg, S., Singh, A., Patro, N., & E Bhanoji Rao, M. (2011). Advanced techniques for penetration enhancement in transdermal drug delivery system. Current Drug Delivery, 8(4), 456-473.
  102. Tao, S. L., & Desai, T. A. (2003). Microfabricated drug delivery systems: from particles to pores. Advanced drug delivery reviews, 55(3), 315-328. https://doi.org/https://doi.org/10.1016/S0169-409X(02)00227-2
  103. Tareen, S. H. K., Kutmon, M., Adriaens, M. E., Mariman, E., de Kok, T. M., Arts, I. C. W., & Evelo, C. T. (2018). Exploring the cellular network of metabolic flexibility in the adipose tissue. Genes & nutrition, 13(1), 1-8.
  104. Tehrani, F., Teymourian, H., Wuerstle, B., Kavner, J., Patel, R., Furmidge, A., Aghavali, R., Hosseini-Toudeshki, H., Brown, C., & Zhang, F. (2022). An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nature Biomedical Engineering, 1-11.
  105. Thakur Singh, R. R., Tekko, I., McAvoy, K., McMillan, H., Jones, D., & Donnelly, R. F. (2017). Minimally invasive microneedles for ocular drug delivery. Expert opinion on drug delivery, 14(4), 525-537.
  106. Tran, B. Q., Miller, P. R., Taylor, R. M., Boyd, G., Mach, P. M., Rosenzweig, C. N., Baca, J. T., Polsky, R., & Glaros, T. (2018). Proteomic characterization of dermal interstitial fluid extracted using a novel microneedle-assisted technique. Journal of proteome research, 17(1), 479-485.
  107. Tuan-Mahmood, T.-M., McCrudden, M. T. C., Torrisi, B. M., McAlister, E., Garland, M. J., Singh, T. R. R., & Donnelly, R. F. (2013). Microneedles for intradermal and transdermal drug delivery. European journal of pharmaceutical sciences, 50(5), 623-637.
  108. Van Der Maaden, K., Jiskoot, W., & Bouwstra, J. (2012). Microneedle technologies for (trans) dermal drug and vaccine delivery. Journal of Controlled Release, 161(2), 645-655.
  109. Ventola, C. L. (2015). The antibiotic resistance crisis: part 2: management strategies and new agents. Pharmacy and Therapeutics, 40(5), 344.
  110. Vora, L. K., Donnelly, R. F., Larrañeta, E., González-Vázquez, P., Thakur, R. R. S., & Vavia, P. R. (2017). Novel bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted intradermal delivery: Proof of concept. Journal of Controlled Release, 265, 93-101.
  111. Waghule, T., Singhvi, G., Dubey, S. K., Pandey, M. M., Gupta, G., Singh, M., & Dua, K. (2019). Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomedicine & Pharmacotherapy, 109, 1249-1258. https://doi.org/https://doi.org/10.1016/j.biopha.2018.10.078
  112. Wang, F., Zhang, X., Chen, G., & Zhao, Y. (2020). Living bacterial microneedles for fungal infection treatment. Research.
  113. Wang, P. M., Cornwell, M., & Prausnitz, M. R. (2005). Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes technology & therapeutics, 7(1), 131-141.
  114. Wermeling, D. P., Banks, S. L., Hudson, D. A., Gill, H. S., Gupta, J., Prausnitz, M. R., & Stinchcomb, A. L. (2008). Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proceedings of the National Academy of Sciences, 105(6), 2058-2063.
  115. Xu, J., Danehy, R., Cai, H., Ao, Z., Pu, M., Nusawardhana, A., Rowe-Magnus, D., & Guo, F. (2019). Microneedle patch-mediated treatment of bacterial biofilms. ACS Applied Materials & Interfaces, 11(16), 14640-14646.
  116. Xu, J., Xu, D., Xuan, X., & He, H. (2021). Advances of Microneedles in Biomedical Applications. Molecules, 26(19). https://doi.org/10.3390/molecules26195912
  117. Yang, Q., Zhong, W., Xu, L., Li, H., Yan, Q., She, Y., & Yang, G. (2021). Recent progress of 3D-printed microneedles for transdermal drug delivery. International journal of pharmaceutics, 593, 120106. https://doi.org/https://doi.org/10.1016/j.ijpharm.2020.120106
  118. Zhang, J., Hu, Q., Wang, S., Tao, J., & Gou, M. (2020). Digital light processing based three-dimensional printing for medical applications. International journal of bioprinting, 6(1).
  119. Zhang, X., Chen, G., Liu, Y., Sun, L., Sun, L., & Zhao, Y. (2020). Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing. ACS Nano, 14(5), 5901-5908.
  120. Zhang, Y., Feng, P., Yu, J., Yang, J., Zhao, J., Wang, J., Shen, Q., & Gu, Z. (2018). ROS‐responsive microneedle patch for acne vulgaris treatment. Advanced Therapeutics, 1(3), 1800035.
  121. Zhang, Y. H., Kristen J.;Determan, Amy S. (2012.03.06). Microneedle devices and methods (Australia Patent No. A. P. OFFICE.
  122. Zhao, M., Zhou, M., Gao, P., Zheng, X., Yu, W., Wang, Z., Li, J., & Zhang, J. (2022). AgNPs/nGOx/Apra nanocomposites for synergistic antimicrobial therapy and scarless skin recovery. Journal of Materials Chemistry B, 10(9), 1393-1402.
  123. Zhao, Z., Tian, X., & Song, X. (2020). Engineering materials with light: recent progress in digital light processing based 3D printing [10.1039/D0TC03548C]. Journal of Materials Chemistry C, 8(40), 13896-13917. https://doi.org/10.1039/D0TC03548C
  124. Zheng, M., Wang, Z., Chang, H., Wang, L., Chew, S. W. T., Lio, D. C. S., Cui, M., Liu, L., Tee, B. C. K., & Xu, C. (2020). Osmosis‐powered hydrogel microneedles for microliters of skin interstitial fluid extraction within minutes. Advanced Healthcare Materials, 9(10), 1901683.
  125. Zhu, D. D., Wang, Q. L., Liu, X. B., & Guo, X. D. (2016). Rapidly separating microneedles for transdermal drug delivery. Acta Biomaterialia, 41, 312-319. https://doi.org/https://doi.org/10.1016/j.actbio.2016.06.005
  126. Ziesmer, J., Larsson, J. V., & Sotiriou, G. A. (2023). Hybrid microneedle arrays for antibiotic and near-IR photothermal synergistic antimicrobial effect against Methicillin-Resistant Staphylococcus aureus. Chemical Engineering Journal, 462, 142127.
  127. Zvezdin, V., Kasatkina, T., Kasatkin, I., Gavrilova, M., & Kazakova, O. (2020). Microneedle patch based on dissolving, detachable microneedle technology for improved skin quality of the periorbital region. Part 2: Clinical Evaluation. International Journal of Cosmetic Science, 42(5), 429-435.
  128. Zvezdin, V., Peno‐Mazzarino, L., Radionov, N., Kasatkina, T., & Kasatkin, I. (2020). Microneedle patch based on dissolving, detachable microneedle technology for improved skin quality–part 1: ex vivo safety evaluation. International Journal of Cosmetic Science, 42(4), 369-376.

How to Cite

Revisiting the advancement with painless microneedles for the diagnosis and treatment of dermal infections: A review. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.332

How to Cite

Revisiting the advancement with painless microneedles for the diagnosis and treatment of dermal infections: A review. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.332

HTML
379

Total
476

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Popat Mohite, Meenakshi Patel, Abhijeet Puri, Anil Pawar, Sudarshan Singh, Bhupendra Prajapati

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.