Skip to main content Skip to main navigation menu Skip to site footer

Nanotechnology enabled smart biosensors in monitoring and maintaining balanced health: A Review

  • Popat Mohite
  • Abhijeet Puri
  • Shubham Munde
  • Vaishnavi Yadav
  • Nitin Ade
  • Sudarshan Singh

Abstract

The pandemic outbreaks such as severe acute respiratory syndrome, swine flu, Middle East respiratory syndrome, Ebola, zika virus outbreak, and coronavirus are influential events that were transmitted through various countries in a short period. Due to sudden outbreaks of this pandemic and unavailability of rapid diagnostic kits, strategic management, and treatment caused a high rate of mortality and mortality. Primarily diagnosis and detection of infections are performed through tedious pathological tests; however, the recent advancements in nanotechnology-based robust sensors are handy and rapid to detect such infections. Smart biosensors offer promising prospects such as portability, flexibility, multifunctional use, and efficient operation that provides fast and real-time response against tested components. The biosensors act as an interface between biological analytes and quantifiable electrical signals. Enabling this biosensor with nanotechnology has not only revolutionized the diagnosis of infection but also regular health checkups. The present review presents compressive updates on different types of sensors available to measure health conditions, with elaboration enabling sensor processing using nanotechnology. Moreover, the safety consideration and applicability of wearable sensors in day-to-day routine activity.

Section

References

  1. Abdel-Karim, R., Reda, Y., & Abdel-Fattah, A. (2020). Review—Nanostructured Materials-Based Nanosensors. Journal of The Electrochemical Society, 167(3), 037554. https://doi.org/10.1149/1945-7111/ab67aa
  2. Abu-Salah, K. M., Zourob, M. M., Mouffouk, F., Alrokayan, S. A., Alaamery, M. A., & Ansari, A. A. (2015). DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease. Sensors, 15(6), 14539-14568. https://www.mdpi.com/1424-8220/15/6/14539
  3. Alzagameem, A., Klein, S. E., Bergs, M., Do, X. T., Korte, I., Dohlen, S., Hüwe, C., Kreyenschmidt, J., Kamm, B., Larkins, M., & Schulze, M. (2019). Antimicrobial Activity of Lignin and Lignin-Derived Cellulose and Chitosan Composites against Selected Pathogenic and Spoilage Microorganisms. Polymers, 11(4), 670. https://www.mdpi.com/2073-4360/11/4/670
  4. Ambhorkar, P., Wang , Z., Ko, H., Lee, S., Koo, K.-i., Kim, K., & Cho, D.-i. (2018). Nanowire-Based Biosensors: From Growth to Applications. Micromachines, 9(12), 679. https://www.mdpi.com/2072-666X/9/12/679
  5. Andreescu, S., & Luck, L. A. (2008). Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: A glucose biosensor application. Analytical Biochemistry, 375(2), 282-290. https://doi.org/https://doi.org/10.1016/j.ab.2007.12.035
  6. Arakawa, T., Dao, D. V., & Mitsubayashi, K. (2022). Biosensors and Chemical Sensors for Healthcare Monitoring: A Review. IEEJ Transactions on Electrical and Electronic Engineering, 17(5), 626-636. https://doi.org/https://doi.org/10.1002/tee.23580
  7. Banerjee, A., Maity, S., & Mastrangelo, C. H. (2021). Nanostructures for Biosensing, with a Brief Overview on Cancer Detection, IoT, and the Role of Machine Learning in Smart Biosensors. Sensors, 21(4), 1253. https://www.mdpi.com/1424-8220/21/4/1253
  8. Barbosa, A. I., Rebelo, R., Reis, R. L., Bhattacharya, M., & Correlo, V. M. (2021). Current nanotechnology advances in diagnostic biosensors. MEDICAL DEVICES & SENSORS, 4(1), e10156. https://doi.org/https://doi.org/10.1002/mds3.10156
  9. Bollella, P., & Katz, E. (2020). Biosensors—Recent Advances and Future Challenges. Sensors, 20(22), 6645. https://www.mdpi.com/1424-8220/20/22/6645
  10. Bratov, A., Abramova, N., & Ipatov, A. (2010). Recent trends in potentiometric sensor arrays—A review. Analytica Chimica Acta, 678(2), 149-159. https://doi.org/https://doi.org/10.1016/j.aca.2010.08.035
  11. Buxi, D., Redouté, J.-M., & Yuce, M. R. (2015). A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time. Physiological Measurement, 36(3), R1. https://doi.org/10.1088/0967-3334/36/3/R1
  12. Cash, K. J., & Clark, H. A. (2010). Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends in Molecular Medicine, 16(12), 584-593. https://doi.org/10.1016/j.molmed.2010.08.002
  13. Chandrasekaran, A. R. (2017). DNA Nanobiosensors: An Outlook on Signal Readout Strategies. Journal of Nanomaterials, 2017, 2820619. https://doi.org/10.1155/2017/2820619
  14. Cho, I.-H., Kim, D. H., & Park, S. (2020). Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomaterials Research, 24(1), 6. https://doi.org/10.1186/s40824-019-0181-y
  15. Coyle, S., Curto, V. F., Benito-Lopez, F., Florea, L., & Diamond, D. (2014). Chapter 2.1 - Wearable Bio and Chemical Sensors. In E. Sazonov & M. R. Neuman (Eds.), Wearable Sensors (pp. 65-83). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-418662-0.00002-7
  16. Daurai, B., Ramchiary, S. S., & Gogoi, M. (2023). Enzymatic Biosensors for Healthcare Applications. In S. Patra, D. Kundu, & M. Gogoi (Eds.), Enzyme-based Biosensors: Recent Advances and Applications in Healthcare (pp. 1-29). Springer Nature Singapore. https://doi.org/10.1007/978-981-15-6982-1_1
  17. Dede, S., & Altay, F. (2018). Biosensors from the first generation to nano-biosensors. International Advanced Researches and Engineering Journal, 2(2), 200-207.
  18. Dowling, D., O'Neill, F., Langlais, S., & Law, V. (2011). Influence of dc Pulsed Atmospheric Pressure Plasma Jet Processing Conditions on Polymer Activation. Plasma Processes and Polymers, 8, 718-727. https://doi.org/10.1002/ppap.201000145
  19. Farré, M., & Barceló, D. (2020). Microfluidic devices: biosensors. In Chemical analysis of food (pp. 287-351). Elsevier.
  20. Farzin, M. A., & Abdoos, H. (2021). A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta, 224, 121828. https://doi.org/https://doi.org/10.1016/j.talanta.2020.121828
  21. Freckmann, G. (2020). Basics and use of continuous glucose monitoring (CGM) in diabetes therapy. Journal of Laboratory Medicine, 44(2), 71-79. https://doi.org/doi:10.1515/labmed-2019-0189
  22. Fritea, L., Banica, F., Costea, T. O., Moldovan, L., Dobjanschi, L., Muresan, M., & Cavalu, S. (2021). Metal Nanoparticles and Carbon-Based Nanomaterials for Improved Performances of Electrochemical (Bio)Sensors with Biomedical Applications. Materials, 14(21), 6319. https://www.mdpi.com/1996-1944/14/21/6319
  23. Fruncillo, S., Su, X., Liu, H., & Wong, L. S. (2021). Lithographic Processes for the Scalable Fabrication of Micro- and Nanostructures for Biochips and Biosensors. ACS Sensors, 6(6), 2002-2024. https://doi.org/10.1021/acssensors.0c02704
  24. Guk, K., Han, G., Lim, J., Jeong, K., Kang, T., Lim, E.-K., & Jung, J. (2019). Evolution of Wearable Devices with Real-Time Disease Monitoring for Personalized Healthcare. Nanomaterials, 9(6), 813. https://www.mdpi.com/2079-4991/9/6/813
  25. Hassan, R. Y. A. (2022). Advances in Electrochemical Nano-Biosensors for Biomedical and Environmental Applications: From Current Work to Future Perspectives. Sensors, 22(19).
  26. He, L., Musick, M. D., Nicewarner, S. R., Salinas, F. G., Benkovic, S. J., Natan, M. J., & Keating, C. D. (2000). Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization. Journal of the American Chemical Society, 122(38), 9071-9077. https://doi.org/10.1021/ja001215b
  27. Hirohata, A., & Takanashi, K. (2014). Future perspectives for spintronic devices. Journal of Physics D: Applied Physics, 47(19), 193001. https://doi.org/10.1088/0022-3727/47/19/193001
  28. Holzinger, M., Le Goff, A., & Cosnier, S. (2014). Nanomaterials for biosensing applications: a review [Review]. Frontiers in Chemistry, 2. https://doi.org/10.3389/fchem.2014.00063
  29. Huang, J., Xie, Z., Xie, Z., Luo, S., Xie, L., Huang, L., Fan, Q., Zhang, Y., Wang, S., & Zeng, T. (2016). Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. Analytica Chimica Acta, 913, 121-127. https://doi.org/https://doi.org/10.1016/j.aca.2016.01.050
  30. Huang, X., Zhu, Y., & Kianfar, E. (2021). Nano Biosensors: Properties, applications and electrochemical techniques. Journal of Materials Research and Technology, 12, 1649-1672. https://doi.org/https://doi.org/10.1016/j.jmrt.2021.03.048
  31. Imran, H., Vaishali, K., Antony Francy, S., Manikandan, P. N., & Dharuman, V. (2021). Platinum and zinc oxide modified carbon nitride electrode as non-enzymatic highly selective and reusable electrochemical diabetic sensor in human blood. Bioelectrochemistry, 137, 107645. https://doi.org/https://doi.org/10.1016/j.bioelechem.2020.107645
  32. Jain, P. K., Huang, X., El-Sayed, I. H., & El-Sayed, M. A. (2008). Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Accounts of Chemical Research, 41(12), 1578-1586. https://doi.org/10.1021/ar7002804
  33. Jayeoye, T. J., Eze, F. N., Olatunde, O. O., Singh, S., Zuo, J., & Olatunji, O. J. (2021). Multifarious Biological Applications and Toxic Hg2+ Sensing Potentiality of Biogenic Silver Nanoparticles Based on Securidaca inappendiculata Hassk Stem Extract. International Journal of Nanomedicine, 16(null), 7557-7574. https://doi.org/10.2147/IJN.S325996
  34. Jayeoye, T. J., Eze, F. N., Singh, S., Olatunde, O. O., Benjakul, S., & Rujiralai, T. (2021). Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications. International Journal of Biological Macromolecules, 179, 196-205. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.02.199
  35. Jayeoye, T. J., Singh, S., Eze, F. N., Olatunji, O. J., Olatunde, O. O., Omaka, O. N., Odogiyon, O. B., & Okpara, K. E. (2024). Exploration of Biocompatible Ascorbic Acid Reduced and Stabilized Gold Nanoparticles, as Sensitive and Selective Detection Nanoplatform for Silver Ion in Solution. Plasmonics. https://doi.org/10.1007/s11468-024-02413-2
  36. Johnston, L., Wang, G., Hu, K., Qian, C., & Liu, G. (2021). Advances in Biosensors for Continuous Glucose Monitoring Towards Wearables. Front Bioeng Biotechnol, 9, 733810. https://doi.org/10.3389/fbioe.2021.733810
  37. Kamaci, U. D., & Kamaci, M. (2021). Selective and Sensitive ZnO Quantum Dots Based Fluorescent Biosensor for Detection of Cysteine. Journal of Fluorescence, 31(2), 401-414. https://doi.org/10.1007/s10895-020-02671-3
  38. Kaur, B., Kumar, S., & Kaushik, B. K. (2023). Novel Wearable Optical Sensors for Vital Health Monitoring Systems—A Review. Biosensors, 13(2), 181. https://www.mdpi.com/2079-6374/13/2/181
  39. Kaya, T., Liu, G., Ho, J., Yelamarthi, K., Miller, K., Edwards, J., & Stannard, A. (2019). Wearable Sweat Sensors: Background and Current Trends. Electroanalysis, 31(3), 411-421. https://doi.org/https://doi.org/10.1002/elan.201800677
  40. Kim, E. R., Joe, C., Mitchell, R. J., & Gu, M. B. (2023). Biosensors for healthcare: current and future perspectives. Trends in Biotechnology, 41(3), 374-395. https://doi.org/10.1016/j.tibtech.2022.12.005
  41. Kim, J., Campbell, A. S., de Ávila, B. E.-F., & Wang, J. (2019). Wearable biosensors for healthcare monitoring. Nature Biotechnology, 37(4), 389-406. https://doi.org/10.1038/s41587-019-0045-y
  42. Kim, J.-e., Kang, J. H., Kwon, W. H., Lee, I., Park, S. J., Kim, C.-H., Jeong, W.-j., Choi, J. S., & Kim, K. (2023). Self-assembling biomolecules for biosensor applications. Biomaterials Research, 27(1), 127. https://doi.org/10.1186/s40824-023-00466-8
  43. Kimmel, D. W., LeBlanc, G., Meschievitz, M. E., & Cliffel, D. E. (2012). Electrochemical Sensors and Biosensors. Analytical Chemistry, 84(2), 685-707. https://doi.org/10.1021/ac202878q
  44. Kishore Kumar, D., Raghava Reddy, K., Sadhu, V., Shetti, N. P., Venkata Reddy, C., Chouhan, R. S., & Naveen, S. (2020). 4 - Metal oxide-based nanosensors for healthcare and environmental applications. In S. Kanchi & D. Sharma (Eds.), Nanomaterials in Diagnostic Tools and Devices (pp. 113-129). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-817923-9.00004-3
  45. Kulkarni, M. B., Ayachit, N. H., & Aminabhavi, T. M. (2022a). Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. Biosensors, 12(10), 892. https://www.mdpi.com/2079-6374/12/10/892
  46. Kulkarni, M. B., Ayachit, N. H., & Aminabhavi, T. M. (2022b). Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. Biosensors, 12(10).
  47. Kumar, A., Jayeoye, T. J., Mohite, P., Singh, S., Rajput, T., Munde, S., Eze, F. N., Chidrawar, V. R., Puri, A., Prajapati, B. G., & Parihar, A. (2024). Sustainable and consumer-centric nanotechnology-based materials: An update on the multifaceted applications, risks and tremendous opportunities. Nano-Structures & Nano-Objects, 38, 101148. https://doi.org/https://doi.org/10.1016/j.nanoso.2024.101148
  48. Kumar, A., Kumar, A., Sahoo, P. R., & Kumar, S. (2019). Colorimetric and Fluorescence-Based Detection of Mercuric Ion Using a Benzothiazolinic Spiropyran. Chemosensors, 7(3).
  49. Kumar, A., Kumar, A., Sahoo, P. R., & Kumar, S. (2021). A MC-spiropyran for smartphone assisted reversible, selective and nanomolar level detection of formic acid in water and gas phase. Journal of Molecular Structure, 1223, 129249. https://doi.org/https://doi.org/10.1016/j.molstruc.2020.129249
  50. Kumar, A., & Kumar, S. (2023). Light-controlled receptors for environmentally and biologically relevant anions. Chemical Engineering Journal, 474, 145493. https://doi.org/10.1016/j.cej.2023.145493
  51. Kumar, A., Shah, S. R., Jayeoye, T. J., Kumar, A., Parihar, A., Prajapati, B., Singh, S., & Kapoor, D. U. (2023). Biogenic metallic nanoparticles: biomedical, analytical, food preservation, and applications in other consumable products [Review]. Frontiers in Nanotechnology, 5. https://doi.org/10.3389/fnano.2023.1175149
  52. Kurt, H., Pishva, P., Pehlivan, Z. S., Arsoy, E. G., Saleem, Q., Bayazıt, M. K., & Yüce, M. (2021). Nanoplasmonic biosensors: Theory, structure, design, and review of recent applications. Analytica Chimica Acta, 1185, 338842. https://doi.org/https://doi.org/10.1016/j.aca.2021.338842
  53. Lee, J. (2023). Carbon Nanotube-Based Biosensors Using Fusion Technologies with Biologicals & Chemicals for Food Assessment. Biosensors, 13(2), 183. https://www.mdpi.com/2079-6374/13/2/183
  54. Li, Y., Luo, Y., Nayak, S., Liu, Z., Chichvarina, O., Zamburg, E., Zhang, X., Liu, Y., Heng, C. H., & Thean, A. V.-Y. (2019). A Stretchable-Hybrid Low-Power Monolithic ECG Patch with Microfluidic Liquid-Metal Interconnects and Stretchable Carbon-Black Nanocomposite Electrodes for Wearable Heart Monitoring. Advanced Electronic Materials, 5(2), 1800463. https://doi.org/https://doi.org/10.1002/aelm.201800463
  55. Liu, B., & Liu, J. (2019). Sensors and biosensors based on metal oxide nanomaterials. TrAC Trends in Analytical Chemistry, 121, 115690. https://doi.org/https://doi.org/10.1016/j.trac.2019.115690
  56. Liu, F., Piao, Y., Choi, J. S., & Seo, T. S. (2013). Three-dimensional graphene micropillar based electrochemical sensor for phenol detection. Biosensors and Bioelectronics, 50, 387-392. https://doi.org/https://doi.org/10.1016/j.bios.2013.06.055
  57. Liu, J., Xu, Y., Liu, S., Yu, S., Yu, Z., & Low, S. S. (2022). Application and Progress of Chemometrics in Voltammetric Biosensing. Biosensors, 12(7), 494. https://www.mdpi.com/2079-6374/12/7/494
  58. Lu, T., Ji, S., Jin, W., Yang, Q., Luo, Q., & Ren, T.-L. (2023). Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare. Sensors, 23(6), 2991. https://www.mdpi.com/1424-8220/23/6/2991
  59. Ma, W., Zhan, Y., Zhang, Y., Mao, C., Xie, X., & Lin, Y. (2021). The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduction and Targeted Therapy, 6(1), 351. https://doi.org/10.1038/s41392-021-00727-9
  60. Maduraiveeran, G., Sasidharan, M., & Ganesan, V. (2018). Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosensors and Bioelectronics, 103, 113-129. https://doi.org/https://doi.org/10.1016/j.bios.2017.12.031
  61. Mahmood, H. Z., Jilani, A., Farooq, S., Javed, Y., Jamil, Y., Iqbal, J., Ullah, S., & Wageh, S. (2021). Plasmon-Based Label-Free Biosensor Using Gold Nanosphere for Dengue Detection. Crystals, 11(11), 1340. https://www.mdpi.com/2073-4352/11/11/1340
  62. Majumder, S., Mondal, T., & Deen, M. J. (2017). Wearable Sensors for Remote Health Monitoring. Sensors, 17(1), 130. https://www.mdpi.com/1424-8220/17/1/130
  63. Malhan, A., Guleria, M., Das, U., Singh, S., Prajapati, B. G., Mohite, P., Bhattacharya, S., Chidrawar, V. R., Puri, A., & Datta, D. (2024). Navigating the future of cancer management through carbon nanodots: A review. Nano-Structures & Nano-Objects, 39, 101217. https://doi.org/https://doi.org/10.1016/j.nanoso.2024.101217
  64. Malhotra, B. D., & Ali, M. A. (2018). Chapter 1 - Nanomaterials in Biosensors: Fundamentals and Applications. In B. D. Malhotra & M. A. Ali (Eds.), Nanomaterials for Biosensors (pp. 1-74). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-0-323-44923-6.00001-7
  65. Mao, W., He, H., Sun, P., Ye, Z., & Huang, J. (2018). Three-Dimensional Porous Nickel Frameworks Anchored with Cross-Linked Ni(OH)2 Nanosheets as a Highly Sensitive Nonenzymatic Glucose Sensor. ACS Applied Materials & Interfaces, 10(17), 15088-15095. https://doi.org/10.1021/acsami.8b03433
  66. Marzocchi, U., & Revsbech, N. P. (2022). Sulfate biosensor for environmental applications. Limnology and Oceanography: Methods, 20(10), 674-681. https://doi.org/https://doi.org/10.1002/lom3.10512
  67. Mehrotra, P. (2016). Biosensors and their applications – A review. Journal of Oral Biology and Craniofacial Research, 6(2), 153-159. https://doi.org/https://doi.org/10.1016/j.jobcr.2015.12.002
  68. Modi, C., Prajapati, V., Udhwani, N., Parekh, K., & Chadha, H. (2023). Dendrimer-Based Nanomaterials for Biosensors. In Biosensors Nanotechnology (pp. 61-83). https://doi.org/https://doi.org/10.1002/9781394167135.ch3
  69. Mohankumar, P., Ajayan, J., Mohanraj, T., & Yasodharan, R. (2021). Recent developments in biosensors for healthcare and biomedical applications: A review. Measurement, 167, 108293. https://doi.org/https://doi.org/10.1016/j.measurement.2020.108293
  70. Molina, P., Zapata, F., & Caballero, A. (2017). Anion Recognition Strategies Based on Combined Noncovalent Interactions. Chemical Reviews, 117(15), 9907-9972. https://doi.org/10.1021/acs.chemrev.6b00814
  71. Nagime, P. V., Singh, S., Shaikh, N. M., Gomare, K. S., Chitme, H., Abdel-Wahab, B. A., Alqahtany, Y. S., Khateeb, M. M., Habeeb, M. S., & Bakir, M. B. (2023). Biogenic Fabrication of Silver Nanoparticles Using Calotropis procera Flower Extract with Enhanced Biomimetics Attributes. Materials, 16(11), 4058. https://www.mdpi.com/1996-1944/16/11/4058
  72. Naresh, V., & Lee, N. (2021). A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors, 21(4), 1109. https://www.mdpi.com/1424-8220/21/4/1109
  73. Navakul, K., Warakulwit, C., Yenchitsomanus, P.-t., Panya, A., Lieberzeit, P. A., & Sangma, C. (2017). A novel method for dengue virus detection and antibody screening using a graphene-polymer based electrochemical biosensor. Nanomedicine: Nanotechnology, Biology and Medicine, 13(2), 549-557. https://doi.org/https://doi.org/10.1016/j.nano.2016.08.009
  74. Nwabor, O. F., Singh, S., Paosen, S., Vongkamjan, K., & Voravuthikunchai, S. P. (2020). Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Bioscience, 36, 100609. https://doi.org/https://doi.org/10.1016/j.fbio.2020.100609
  75. Nwabor, O. F., Singh, S., Wunnoo, S., Lerwittayanon, K., & Voravuthikunchai, S. P. (2021). Facile deposition of biogenic silver nanoparticles on porous alumina discs, an efficient antimicrobial, antibiofilm, and antifouling strategy for functional contact surfaces. Biofouling, 37(5), 538-554. https://doi.org/10.1080/08927014.2021.1934457
  76. Oke, J. A., & Jen, T.-C. (2022). Atomic layer deposition and other thin film deposition techniques: from principles to film properties. Journal of Materials Research and Technology, 21, 2481-2514. https://doi.org/https://doi.org/10.1016/j.jmrt.2022.10.064
  77. Omar, N. A. S., Fen, Y. W., Abdullah, J., Chik, C. E. N. C. E., & Mahdi, M. A. (2018). Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein. Sensing and Bio-Sensing Research, 20, 16-21. https://doi.org/https://doi.org/10.1016/j.sbsr.2018.06.001
  78. Ontong, J. C., Singh, S., Nwabor, O. F., Chusri, S., & Voravuthikunchai, S. P. (2020). Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtus tomentosa leaf extract and silk sericin. Biotechnology Letters, 42(12), 2653-2664. https://doi.org/10.1007/s10529-020-02971-5
  79. Pandit, B., Goda, E. S., & Shaikh, S. F. (2023). Electrochemical Deposition Toward Thin Films. In B. R. Sankapal, A. Ennaoui, R. B. Gupta, & C. D. Lokhande (Eds.), Simple Chemical Methods for Thin Film Deposition: Synthesis and Applications (pp. 245-304). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0961-2_6
  80. Pawar, A., Lohakane, P., Pandhare, R., Mohite, P., Munde, S., Singh, S., & Chidrawar, V. (2024). Chitosan fortified repaglinide gastro-retentive mucoadhesive microsphere with improved anti-diabetic attribute. Intelligent Pharmacy, 2(3), 441-449. https://doi.org/https://doi.org/10.1016/j.ipha.2024.01.012
  81. Peeling, R. W., Artsob, H., Pelegrino, J. L., Buchy, P., Cardosa, M. J., Devi, S., Enria, D. A., Farrar, J., Gubler, D. J., Guzman, M. G., Halstead, S. B., Hunsperger, E., Kliks, S., Margolis, H. S., Nathanson, C. M., Nguyen, V. C., Rizzo, N., Vázquez, S., & Yoksan, S. (2010). Evaluation of diagnostic tests: dengue. Nature Reviews Microbiology, 8(12), S30-S37. https://doi.org/10.1038/nrmicro2459
  82. Peng, B., Zhao, F., Ping, J., & Ying, Y. (2020). Recent Advances in Nanomaterial-Enabled Wearable Sensors: Material Synthesis, Sensor Design, and Personal Health Monitoring. Small, 16(44), 2002681. https://doi.org/https://doi.org/10.1002/smll.202002681
  83. Phan, D. T., Phan, T. T. V., Huynh, T. C., Park, S., Choi, J., & Oh, J. (2022). Noninvasive, Wearable Multi Biosensors for Continuous, Long-term Monitoring of Blood Pressure via Internet of Things Applications. Computers and Electrical Engineering, 102, 108187. https://doi.org/https://doi.org/10.1016/j.compeleceng.2022.108187
  84. Pirzada, M., & Altintas, Z. (2019). Nanomaterials for Healthcare Biosensing Applications. Sensors, 19(23), 5311. https://www.mdpi.com/1424-8220/19/23/5311
  85. Pourmadadi, M., Rahmani, E., Rajabzadeh-Khosroshahi, M., Samadi, A., Behzadmehr, R., Rahdar, A., & Ferreira, L. F. R. (2023). Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. Journal of Drug Delivery Science and Technology, 80, 104156. https://doi.org/https://doi.org/10.1016/j.jddst.2023.104156
  86. Punbusayakul, N., Talapatra, S., Ajayan, P. M., & Surareungchai, W. (2013). Label-free as-grown double wall carbon nanotubes bundles for Salmonella typhimuriumimmunoassay. Chemistry Central Journal, 7(1), 102. https://doi.org/10.1186/1752-153X-7-102
  87. Puri, A., Mohite, P., Patil, S., Chidrawar, V. R., Ushir, Y. V., Dodiya, R., & Singh, S. (2023). Facile green synthesis and characterization of Terminalia arjuna bark phenolic–selenium nanogel: a biocompatible and green nano-biomaterial for multifaceted biological applications [Original Research]. Frontiers in Chemistry, 11. https://doi.org/10.3389/fchem.2023.1273360
  88. Purohit, B., Vernekar, P. R., Shetti, N. P., & Chandra, P. (2020). Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sensors International, 1, 100040. https://doi.org/https://doi.org/10.1016/j.sintl.2020.100040
  89. Qin, M., Huang, Y., Li, F., & Song, Y. (2015). Photochromic sensors: a versatile approach for recognition and discrimination [10.1039/C5TC01939G]. Journal of Materials Chemistry C, 3(36), 9265-9275. https://doi.org/10.1039/C5TC01939G
  90. Rajesh, D., Zhaoli, G., Johnson, a. t. c., Puri, N., Mulchandani, A., & Aswal, D. (2021). Scalable chemical vapor deposited graphene field-effect transistors for bio/chemical assay. Applied Physics Reviews, 8, 011311. https://doi.org/10.1063/5.0024508
  91. Rajput, T., Mohite, D. P., Ghule, S., Vinchurkar, K., & Singh, S. (2024). Nanofabrication of Losartan Potassium Sustained Release Floating Microspheres Using Different Grades of Ethyl Cellulose and Its Insight on Release Profiles. Curr Pharm Des. https://doi.org/10.2174/0113816128309675240530060752
  92. Rizwan, K., Rahdar, A., Bilal, M., & Iqbal, H. M. N. (2022). MXene-based electrochemical and biosensing platforms to detect toxic elements and pesticides pollutants from environmental matrices. Chemosphere, 291, 132820. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.132820
  93. Sadak, O. (2023). 5 - Potentiometric sensors. In A. Barhoum & Z. Altintas (Eds.), Fundamentals of Sensor Technology (pp. 99-121). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-323-88431-0.00009-0
  94. Salmani Rezaie, S., Rengarajan, U., Hoi, H., Montemagno, C., & Gupta, M. (2016). Selective plasma activation of surfaces for biosensing application. https://doi.org/10.1109/PLASMA.2016.7534241
  95. Sang, L.-J., & Wang, H.-F. (2014). Aminophenylboronic-Acid-Conjugated Polyacrylic Acid–Mn-Doped ZnS Quantum Dot for Highly Sensitive Discrimination of Glycoproteins. Analytical Chemistry, 86(12), 5706-5712. https://doi.org/10.1021/ac501020b
  96. Satija, J., Sai, V. V. R., & Mukherji, S. (2011). Dendrimers in biosensors: Concept and applications [10.1039/C1JM10527B]. Journal of Materials Chemistry, 21(38), 14367-14386. https://doi.org/10.1039/C1JM10527B
  97. Sengupta, J., & Hussain, C. M. (2021). Graphene-based field-effect transistor biosensors for the rapid detection and analysis of viruses: A perspective in view of COVID-19. Carbon Trends, 2, 100011. https://doi.org/https://doi.org/10.1016/j.cartre.2020.100011
  98. Shi, S., Wu, H., Zhang, L., Wang, S., Xiong, P., Qin, Z., Chu, M., & Liao, J. (2021). Gold nanoparticles based electrochemical sensor for sensitive detection of uranyl in natural water. Journal of Electroanalytical Chemistry, 880, 114884. https://doi.org/https://doi.org/10.1016/j.jelechem.2020.114884
  99. Shoaib, A., Darraj, A., Khan, M. E., Azmi, L., Alalwan, A., Alamri, O., Tabish, M., & Khan, A. U. (2023). A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices. Nanomaterials, 13(5), 867. https://www.mdpi.com/2079-4991/13/5/867
  100. Simon, J., Flahaut, E., & Golzio, M. (2019). Overview of Carbon Nanotubes for Biomedical Applications. Materials, 12(4), 624. https://www.mdpi.com/1996-1944/12/4/624
  101. Singh, S., Chunglok, W., Nwabor, O. F., Ushir, Y. V., Singh, S., & Panpipat, W. (2022). Hydrophilic Biopolymer Matrix Antibacterial Peel-off Facial Mask Functionalized with Biogenic Nanostructured Material for Cosmeceutical Applications. Journal of Polymers and the Environment, 30(3), 938-953. https://doi.org/10.1007/s10924-021-02249-5
  102. Singh, S., Kumar, V., Dhanjal, D. S., Datta, S., Prasad, R., & Singh, J. (2020). Biological Biosensors for Monitoring and Diagnosis. In J. Singh, A. Vyas, S. Wang, & R. Prasad (Eds.), Microbial Biotechnology: Basic Research and Applications (pp. 317-335). Springer Singapore. https://doi.org/10.1007/978-981-15-2817-0_14
  103. Singh, S., Nwabor, O. F., Sukri, D. M., Wunnoo, S., Dumjun, K., Lethongkam, S., Kusolphat, P., Hemtanon, N., Klinprathum, K., Sunghan, J., Dejyong, K., Lertwittayanon, K., Pisuchpen, S., & Voravuthikunchai, S. P. (2022). Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application. International Journal of Biological Macromolecules, 216, 235-250. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.06.172
  104. Song, Y., Mukasa, D., Zhang, H., & Gao, W. (2021). Self-Powered Wearable Biosensors. Accounts of Materials Research, 2(3), 184-197. https://doi.org/10.1021/accountsmr.1c00002
  105. Stine, K. J. (2019). Biosensor Applications of Electrodeposited Nanostructures. Applied Sciences, 9(4), 797. https://www.mdpi.com/2076-3417/9/4/797
  106. Stokes, K., Clark, K., Odetade, D., Hardy, M., & Goldberg Oppenheimer, P. (2023). Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications. Discover Nano, 18(1), 153. https://doi.org/10.1186/s11671-023-03938-x
  107. Syukri, D. M., Nwabor, O. F., Singh, S., Ontong, J. C., Wunnoo, S., Paosen, S., Munah, S., & Voravuthikunchai, S. P. (2020). Antibacterial-coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensis eradicates infections. Journal of Microbiological Methods, 174, 105955. https://doi.org/https://doi.org/10.1016/j.mimet.2020.105955
  108. Syukri, D. M., Nwabor, O. F., Singh, S., & Voravuthikunchai, S. P. (2021). Antibacterial functionalization of nylon monofilament surgical sutures through in situ deposition of biogenic silver nanoparticles. Surface and Coatings Technology, 413, 127090. https://doi.org/https://doi.org/10.1016/j.surfcoat.2021.127090
  109. Syukri, D. M., Singh, S., Nwabor, O. F., Ontong, J. C., Dejyong, K., Sunghan, J., Dejyong, K., Lethongkam, S., & Voravuthikunchai, S. P. (2024). Prevention of Post-operative Bacterial Colonization on Mice Buccal Mucosa Using Biogenic Silver Nanoparticles-Coated Nylon Sutures. Regenerative Engineering and Translational Medicine. https://doi.org/10.1007/s40883-024-00335-3
  110. Taranova, N. A., Berlina, A. N., Zherdev, A. V., & Dzantiev, B. B. (2015). ‘Traffic light’ immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosensors and Bioelectronics, 63, 255-261. https://doi.org/https://doi.org/10.1016/j.bios.2014.07.049
  111. Tu, J., Torrente-Rodríguez, R. M., Wang, M., & Gao, W. (2020). The Era of Digital Health: A Review of Portable and Wearable Affinity Biosensors. Advanced Functional Materials, 30(29), 1906713. https://doi.org/https://doi.org/10.1002/adfm.201906713
  112. Valenzuela-Amaro, H. M., Aguayo-Acosta, A., Meléndez-Sánchez, E. R., de la Rosa, O., Vázquez-Ortega, P. G., Oyervides-Muñoz, M. A., Sosa-Hernández, J. E., & Parra-Saldívar, R. (2023). Emerging Applications of Nanobiosensors in Pathogen Detection in Water and Food. Biosensors, 13(10), 922. https://www.mdpi.com/2079-6374/13/10/922
  113. Verma, D., Singh, K. R., Yadav, A. K., Nayak, V., Singh, J., Solanki, P. R., & Singh, R. P. (2022). Internet of things (IoT) in nano-integrated wearable biosensor devices for healthcare applications. Biosensors and Bioelectronics: X, 11, 100153.
  114. Wanekaya, A. K., Chen, W., Myung, N. V., & Mulchandani, A. (2006). Nanowire-Based Electrochemical Biosensors. Electroanalysis, 18(6), 533-550. https://doi.org/https://doi.org/10.1002/elan.200503449
  115. Wang, C., Li, X., Hu, H., Zhang, L., Huang, Z., Lin, M., Zhang, Z., Yin, Z., Huang, B., Gong, H., Bhaskaran, S., Gu, Y., Makihata, M., Guo, Y., Lei, Y., Chen, Y., Wang, C., Li, Y., Zhang, T., . . . Xu, S. (2018). Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nature Biomedical Engineering, 2(9), 687-695. https://doi.org/10.1038/s41551-018-0287-x
  116. Wang, W., Hao, Q., Wang, W., Bao, L., Lei, J., Wang, Q., & Ju, H. (2014). Quantum dot-functionalized porous ZnO nanosheets as a visible light induced photoelectrochemical platform for DNA detection [10.1039/C3NR04777F]. Nanoscale, 6(5), 2710-2717. https://doi.org/10.1039/C3NR04777F
  117. Wayu, M. B., Pannell, M. J., Labban, N., Case, W. S., Pollock, J. A., & Leopold, M. C. (2019). Functionalized carbon nanotube adsorption interfaces for electron transfer studies of galactose oxidase. Bioelectrochemistry, 125, 116-126. https://doi.org/https://doi.org/10.1016/j.bioelechem.2018.10.003
  118. Wei, Q., Zhang, P., Liu, T., Pu, H., & Sun, D.-W. (2021). A fluorescence biosensor based on single-stranded DNA and carbon quantum dots for acrylamide detection. Food Chemistry, 356, 129668. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.129668
  119. Xiao, M., Lai, W., Man, T., Chang, B., Li, L., Chandrasekaran, A. R., & Pei, H. (2019). Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chemical Reviews, 119(22), 11631-11717. https://doi.org/10.1021/acs.chemrev.9b00121
  120. Yang, Y., & Gao, W. (2019). Wearable and flexible electronics for continuous molecular monitoring [10.1039/C7CS00730B]. Chemical Society Reviews, 48(6), 1465-1491. https://doi.org/10.1039/C7CS00730B
  121. Yaqoob, U., & Younis, M. I. (2021). Chemical Gas Sensors: Recent Developments, Challenges, and the Potential of Machine Learning—A Review. Sensors, 21(8), 2877. https://www.mdpi.com/1424-8220/21/8/2877
  122. Yaroshenko, I., Kirsanov, D., Marjanovic, M., Lieberzeit, P. A., Korostynska, O., Mason, A., Frau, I., & Legin, A. (2020). Real-Time Water Quality Monitoring with Chemical Sensors. Sensors, 20(12).
  123. Yoon, J., Cho, H.-Y., Shin, M., Choi, H. K., Lee, T., & Choi, J.-W. (2020). Flexible electrochemical biosensors for healthcare monitoring [10.1039/D0TB01325K]. Journal of Materials Chemistry B, 8(33), 7303-7318. https://doi.org/10.1039/D0TB01325K
  124. Yuwen, L., Zhang, S., & Chao, J. (2023). Recent Advances in DNA Nanotechnology-Enabled Biosensors for Virus Detection. Biosensors, 13(8), 822. https://www.mdpi.com/2079-6374/13/8/822
  125. Zhang, J., Boghossian, A. A., Barone, P. W., Rwei, A., Kim, J.-H., Lin, D., Heller, D. A., Hilmer, A. J., Nair, N., Reuel, N. F., & Strano, M. S. (2011). Single Molecule Detection of Nitric Oxide Enabled by d(AT)15 DNA Adsorbed to Near Infrared Fluorescent Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 133(3), 567-581. https://doi.org/10.1021/ja1084942
  126. Zheng, Y. L., Yan, B. P., Zhang, Y. T., & Poon, C. C. Y. (2014). An Armband Wearable Device for Overnight and Cuff-Less Blood Pressure Measurement. IEEE Transactions on Biomedical Engineering, 61(7), 2179-2186. https://doi.org/10.1109/TBME.2014.2318779
  127. Zhu, C., Yang, G., Li, H., Du, D., & Lin, Y. (2015). Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Analytical Chemistry, 87(1), 230-249. https://doi.org/10.1021/ac5039863

How to Cite

Nanotechnology enabled smart biosensors in monitoring and maintaining balanced health: A Review. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2018

How to Cite

Nanotechnology enabled smart biosensors in monitoring and maintaining balanced health: A Review. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2018

HTML
61

Total
5

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Popat Mohite, Abhijeet Puri, Shubham Munde, Vaishnavi Yadav, Nitin Ade, Sudarshan Singh

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.