Nanotechnology enabled smart biosensors in monitoring and maintaining balanced health: A Review
Abstract
The pandemic outbreaks such as severe acute respiratory syndrome, swine flu, Middle East respiratory syndrome, Ebola, zika virus outbreak, and coronavirus are influential events that were transmitted through various countries in a short period. Due to sudden outbreaks of this pandemic and unavailability of rapid diagnostic kits, strategic management, and treatment caused a high rate of mortality and mortality. Primarily diagnosis and detection of infections are performed through tedious pathological tests; however, the recent advancements in nanotechnology-based robust sensors are handy and rapid to detect such infections. Smart biosensors offer promising prospects such as portability, flexibility, multifunctional use, and efficient operation that provides fast and real-time response against tested components. The biosensors act as an interface between biological analytes and quantifiable electrical signals. Enabling this biosensor with nanotechnology has not only revolutionized the diagnosis of infection but also regular health checkups. The present review presents compressive updates on different types of sensors available to measure health conditions, with elaboration enabling sensor processing using nanotechnology. Moreover, the safety consideration and applicability of wearable sensors in day-to-day routine activity.
References
- Abdel-Karim, R., Reda, Y., & Abdel-Fattah, A. (2020). Review—Nanostructured Materials-Based Nanosensors. Journal of The Electrochemical Society, 167(3), 037554. https://doi.org/10.1149/1945-7111/ab67aa
- Abu-Salah, K. M., Zourob, M. M., Mouffouk, F., Alrokayan, S. A., Alaamery, M. A., & Ansari, A. A. (2015). DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease. Sensors, 15(6), 14539-14568. https://www.mdpi.com/1424-8220/15/6/14539
- Alzagameem, A., Klein, S. E., Bergs, M., Do, X. T., Korte, I., Dohlen, S., Hüwe, C., Kreyenschmidt, J., Kamm, B., Larkins, M., & Schulze, M. (2019). Antimicrobial Activity of Lignin and Lignin-Derived Cellulose and Chitosan Composites against Selected Pathogenic and Spoilage Microorganisms. Polymers, 11(4), 670. https://www.mdpi.com/2073-4360/11/4/670
- Ambhorkar, P., Wang , Z., Ko, H., Lee, S., Koo, K.-i., Kim, K., & Cho, D.-i. (2018). Nanowire-Based Biosensors: From Growth to Applications. Micromachines, 9(12), 679. https://www.mdpi.com/2072-666X/9/12/679
- Andreescu, S., & Luck, L. A. (2008). Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: A glucose biosensor application. Analytical Biochemistry, 375(2), 282-290. https://doi.org/https://doi.org/10.1016/j.ab.2007.12.035
- Arakawa, T., Dao, D. V., & Mitsubayashi, K. (2022). Biosensors and Chemical Sensors for Healthcare Monitoring: A Review. IEEJ Transactions on Electrical and Electronic Engineering, 17(5), 626-636. https://doi.org/https://doi.org/10.1002/tee.23580
- Banerjee, A., Maity, S., & Mastrangelo, C. H. (2021). Nanostructures for Biosensing, with a Brief Overview on Cancer Detection, IoT, and the Role of Machine Learning in Smart Biosensors. Sensors, 21(4), 1253. https://www.mdpi.com/1424-8220/21/4/1253
- Barbosa, A. I., Rebelo, R., Reis, R. L., Bhattacharya, M., & Correlo, V. M. (2021). Current nanotechnology advances in diagnostic biosensors. MEDICAL DEVICES & SENSORS, 4(1), e10156. https://doi.org/https://doi.org/10.1002/mds3.10156
- Bollella, P., & Katz, E. (2020). Biosensors—Recent Advances and Future Challenges. Sensors, 20(22), 6645. https://www.mdpi.com/1424-8220/20/22/6645
- Bratov, A., Abramova, N., & Ipatov, A. (2010). Recent trends in potentiometric sensor arrays—A review. Analytica Chimica Acta, 678(2), 149-159. https://doi.org/https://doi.org/10.1016/j.aca.2010.08.035
- Buxi, D., Redouté, J.-M., & Yuce, M. R. (2015). A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time. Physiological Measurement, 36(3), R1. https://doi.org/10.1088/0967-3334/36/3/R1
- Cash, K. J., & Clark, H. A. (2010). Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends in Molecular Medicine, 16(12), 584-593. https://doi.org/10.1016/j.molmed.2010.08.002
- Chandrasekaran, A. R. (2017). DNA Nanobiosensors: An Outlook on Signal Readout Strategies. Journal of Nanomaterials, 2017, 2820619. https://doi.org/10.1155/2017/2820619
- Cho, I.-H., Kim, D. H., & Park, S. (2020). Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomaterials Research, 24(1), 6. https://doi.org/10.1186/s40824-019-0181-y
- Coyle, S., Curto, V. F., Benito-Lopez, F., Florea, L., & Diamond, D. (2014). Chapter 2.1 - Wearable Bio and Chemical Sensors. In E. Sazonov & M. R. Neuman (Eds.), Wearable Sensors (pp. 65-83). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-418662-0.00002-7
- Daurai, B., Ramchiary, S. S., & Gogoi, M. (2023). Enzymatic Biosensors for Healthcare Applications. In S. Patra, D. Kundu, & M. Gogoi (Eds.), Enzyme-based Biosensors: Recent Advances and Applications in Healthcare (pp. 1-29). Springer Nature Singapore. https://doi.org/10.1007/978-981-15-6982-1_1
- Dede, S., & Altay, F. (2018). Biosensors from the first generation to nano-biosensors. International Advanced Researches and Engineering Journal, 2(2), 200-207.
- Dowling, D., O'Neill, F., Langlais, S., & Law, V. (2011). Influence of dc Pulsed Atmospheric Pressure Plasma Jet Processing Conditions on Polymer Activation. Plasma Processes and Polymers, 8, 718-727. https://doi.org/10.1002/ppap.201000145
- Farré, M., & Barceló, D. (2020). Microfluidic devices: biosensors. In Chemical analysis of food (pp. 287-351). Elsevier.
- Farzin, M. A., & Abdoos, H. (2021). A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta, 224, 121828. https://doi.org/https://doi.org/10.1016/j.talanta.2020.121828
- Freckmann, G. (2020). Basics and use of continuous glucose monitoring (CGM) in diabetes therapy. Journal of Laboratory Medicine, 44(2), 71-79. https://doi.org/doi:10.1515/labmed-2019-0189
- Fritea, L., Banica, F., Costea, T. O., Moldovan, L., Dobjanschi, L., Muresan, M., & Cavalu, S. (2021). Metal Nanoparticles and Carbon-Based Nanomaterials for Improved Performances of Electrochemical (Bio)Sensors with Biomedical Applications. Materials, 14(21), 6319. https://www.mdpi.com/1996-1944/14/21/6319
- Fruncillo, S., Su, X., Liu, H., & Wong, L. S. (2021). Lithographic Processes for the Scalable Fabrication of Micro- and Nanostructures for Biochips and Biosensors. ACS Sensors, 6(6), 2002-2024. https://doi.org/10.1021/acssensors.0c02704
- Guk, K., Han, G., Lim, J., Jeong, K., Kang, T., Lim, E.-K., & Jung, J. (2019). Evolution of Wearable Devices with Real-Time Disease Monitoring for Personalized Healthcare. Nanomaterials, 9(6), 813. https://www.mdpi.com/2079-4991/9/6/813
- Hassan, R. Y. A. (2022). Advances in Electrochemical Nano-Biosensors for Biomedical and Environmental Applications: From Current Work to Future Perspectives. Sensors, 22(19).
- He, L., Musick, M. D., Nicewarner, S. R., Salinas, F. G., Benkovic, S. J., Natan, M. J., & Keating, C. D. (2000). Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization. Journal of the American Chemical Society, 122(38), 9071-9077. https://doi.org/10.1021/ja001215b
- Hirohata, A., & Takanashi, K. (2014). Future perspectives for spintronic devices. Journal of Physics D: Applied Physics, 47(19), 193001. https://doi.org/10.1088/0022-3727/47/19/193001
- Holzinger, M., Le Goff, A., & Cosnier, S. (2014). Nanomaterials for biosensing applications: a review [Review]. Frontiers in Chemistry, 2. https://doi.org/10.3389/fchem.2014.00063
- Huang, J., Xie, Z., Xie, Z., Luo, S., Xie, L., Huang, L., Fan, Q., Zhang, Y., Wang, S., & Zeng, T. (2016). Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. Analytica Chimica Acta, 913, 121-127. https://doi.org/https://doi.org/10.1016/j.aca.2016.01.050
- Huang, X., Zhu, Y., & Kianfar, E. (2021). Nano Biosensors: Properties, applications and electrochemical techniques. Journal of Materials Research and Technology, 12, 1649-1672. https://doi.org/https://doi.org/10.1016/j.jmrt.2021.03.048
- Imran, H., Vaishali, K., Antony Francy, S., Manikandan, P. N., & Dharuman, V. (2021). Platinum and zinc oxide modified carbon nitride electrode as non-enzymatic highly selective and reusable electrochemical diabetic sensor in human blood. Bioelectrochemistry, 137, 107645. https://doi.org/https://doi.org/10.1016/j.bioelechem.2020.107645
- Jain, P. K., Huang, X., El-Sayed, I. H., & El-Sayed, M. A. (2008). Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Accounts of Chemical Research, 41(12), 1578-1586. https://doi.org/10.1021/ar7002804
- Jayeoye, T. J., Eze, F. N., Olatunde, O. O., Singh, S., Zuo, J., & Olatunji, O. J. (2021). Multifarious Biological Applications and Toxic Hg2+ Sensing Potentiality of Biogenic Silver Nanoparticles Based on Securidaca inappendiculata Hassk Stem Extract. International Journal of Nanomedicine, 16(null), 7557-7574. https://doi.org/10.2147/IJN.S325996
- Jayeoye, T. J., Eze, F. N., Singh, S., Olatunde, O. O., Benjakul, S., & Rujiralai, T. (2021). Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications. International Journal of Biological Macromolecules, 179, 196-205. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.02.199
- Jayeoye, T. J., Singh, S., Eze, F. N., Olatunji, O. J., Olatunde, O. O., Omaka, O. N., Odogiyon, O. B., & Okpara, K. E. (2024). Exploration of Biocompatible Ascorbic Acid Reduced and Stabilized Gold Nanoparticles, as Sensitive and Selective Detection Nanoplatform for Silver Ion in Solution. Plasmonics. https://doi.org/10.1007/s11468-024-02413-2
- Johnston, L., Wang, G., Hu, K., Qian, C., & Liu, G. (2021). Advances in Biosensors for Continuous Glucose Monitoring Towards Wearables. Front Bioeng Biotechnol, 9, 733810. https://doi.org/10.3389/fbioe.2021.733810
- Kamaci, U. D., & Kamaci, M. (2021). Selective and Sensitive ZnO Quantum Dots Based Fluorescent Biosensor for Detection of Cysteine. Journal of Fluorescence, 31(2), 401-414. https://doi.org/10.1007/s10895-020-02671-3
- Kaur, B., Kumar, S., & Kaushik, B. K. (2023). Novel Wearable Optical Sensors for Vital Health Monitoring Systems—A Review. Biosensors, 13(2), 181. https://www.mdpi.com/2079-6374/13/2/181
- Kaya, T., Liu, G., Ho, J., Yelamarthi, K., Miller, K., Edwards, J., & Stannard, A. (2019). Wearable Sweat Sensors: Background and Current Trends. Electroanalysis, 31(3), 411-421. https://doi.org/https://doi.org/10.1002/elan.201800677
- Kim, E. R., Joe, C., Mitchell, R. J., & Gu, M. B. (2023). Biosensors for healthcare: current and future perspectives. Trends in Biotechnology, 41(3), 374-395. https://doi.org/10.1016/j.tibtech.2022.12.005
- Kim, J., Campbell, A. S., de Ávila, B. E.-F., & Wang, J. (2019). Wearable biosensors for healthcare monitoring. Nature Biotechnology, 37(4), 389-406. https://doi.org/10.1038/s41587-019-0045-y
- Kim, J.-e., Kang, J. H., Kwon, W. H., Lee, I., Park, S. J., Kim, C.-H., Jeong, W.-j., Choi, J. S., & Kim, K. (2023). Self-assembling biomolecules for biosensor applications. Biomaterials Research, 27(1), 127. https://doi.org/10.1186/s40824-023-00466-8
- Kimmel, D. W., LeBlanc, G., Meschievitz, M. E., & Cliffel, D. E. (2012). Electrochemical Sensors and Biosensors. Analytical Chemistry, 84(2), 685-707. https://doi.org/10.1021/ac202878q
- Kishore Kumar, D., Raghava Reddy, K., Sadhu, V., Shetti, N. P., Venkata Reddy, C., Chouhan, R. S., & Naveen, S. (2020). 4 - Metal oxide-based nanosensors for healthcare and environmental applications. In S. Kanchi & D. Sharma (Eds.), Nanomaterials in Diagnostic Tools and Devices (pp. 113-129). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-817923-9.00004-3
- Kulkarni, M. B., Ayachit, N. H., & Aminabhavi, T. M. (2022a). Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. Biosensors, 12(10), 892. https://www.mdpi.com/2079-6374/12/10/892
- Kulkarni, M. B., Ayachit, N. H., & Aminabhavi, T. M. (2022b). Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. Biosensors, 12(10).
- Kumar, A., Jayeoye, T. J., Mohite, P., Singh, S., Rajput, T., Munde, S., Eze, F. N., Chidrawar, V. R., Puri, A., Prajapati, B. G., & Parihar, A. (2024). Sustainable and consumer-centric nanotechnology-based materials: An update on the multifaceted applications, risks and tremendous opportunities. Nano-Structures & Nano-Objects, 38, 101148. https://doi.org/https://doi.org/10.1016/j.nanoso.2024.101148
- Kumar, A., Kumar, A., Sahoo, P. R., & Kumar, S. (2019). Colorimetric and Fluorescence-Based Detection of Mercuric Ion Using a Benzothiazolinic Spiropyran. Chemosensors, 7(3).
- Kumar, A., Kumar, A., Sahoo, P. R., & Kumar, S. (2021). A MC-spiropyran for smartphone assisted reversible, selective and nanomolar level detection of formic acid in water and gas phase. Journal of Molecular Structure, 1223, 129249. https://doi.org/https://doi.org/10.1016/j.molstruc.2020.129249
- Kumar, A., & Kumar, S. (2023). Light-controlled receptors for environmentally and biologically relevant anions. Chemical Engineering Journal, 474, 145493. https://doi.org/10.1016/j.cej.2023.145493
- Kumar, A., Shah, S. R., Jayeoye, T. J., Kumar, A., Parihar, A., Prajapati, B., Singh, S., & Kapoor, D. U. (2023). Biogenic metallic nanoparticles: biomedical, analytical, food preservation, and applications in other consumable products [Review]. Frontiers in Nanotechnology, 5. https://doi.org/10.3389/fnano.2023.1175149
- Kurt, H., Pishva, P., Pehlivan, Z. S., Arsoy, E. G., Saleem, Q., Bayazıt, M. K., & Yüce, M. (2021). Nanoplasmonic biosensors: Theory, structure, design, and review of recent applications. Analytica Chimica Acta, 1185, 338842. https://doi.org/https://doi.org/10.1016/j.aca.2021.338842
- Lee, J. (2023). Carbon Nanotube-Based Biosensors Using Fusion Technologies with Biologicals & Chemicals for Food Assessment. Biosensors, 13(2), 183. https://www.mdpi.com/2079-6374/13/2/183
- Li, Y., Luo, Y., Nayak, S., Liu, Z., Chichvarina, O., Zamburg, E., Zhang, X., Liu, Y., Heng, C. H., & Thean, A. V.-Y. (2019). A Stretchable-Hybrid Low-Power Monolithic ECG Patch with Microfluidic Liquid-Metal Interconnects and Stretchable Carbon-Black Nanocomposite Electrodes for Wearable Heart Monitoring. Advanced Electronic Materials, 5(2), 1800463. https://doi.org/https://doi.org/10.1002/aelm.201800463
- Liu, B., & Liu, J. (2019). Sensors and biosensors based on metal oxide nanomaterials. TrAC Trends in Analytical Chemistry, 121, 115690. https://doi.org/https://doi.org/10.1016/j.trac.2019.115690
- Liu, F., Piao, Y., Choi, J. S., & Seo, T. S. (2013). Three-dimensional graphene micropillar based electrochemical sensor for phenol detection. Biosensors and Bioelectronics, 50, 387-392. https://doi.org/https://doi.org/10.1016/j.bios.2013.06.055
- Liu, J., Xu, Y., Liu, S., Yu, S., Yu, Z., & Low, S. S. (2022). Application and Progress of Chemometrics in Voltammetric Biosensing. Biosensors, 12(7), 494. https://www.mdpi.com/2079-6374/12/7/494
- Lu, T., Ji, S., Jin, W., Yang, Q., Luo, Q., & Ren, T.-L. (2023). Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare. Sensors, 23(6), 2991. https://www.mdpi.com/1424-8220/23/6/2991
- Ma, W., Zhan, Y., Zhang, Y., Mao, C., Xie, X., & Lin, Y. (2021). The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduction and Targeted Therapy, 6(1), 351. https://doi.org/10.1038/s41392-021-00727-9
- Maduraiveeran, G., Sasidharan, M., & Ganesan, V. (2018). Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosensors and Bioelectronics, 103, 113-129. https://doi.org/https://doi.org/10.1016/j.bios.2017.12.031
- Mahmood, H. Z., Jilani, A., Farooq, S., Javed, Y., Jamil, Y., Iqbal, J., Ullah, S., & Wageh, S. (2021). Plasmon-Based Label-Free Biosensor Using Gold Nanosphere for Dengue Detection. Crystals, 11(11), 1340. https://www.mdpi.com/2073-4352/11/11/1340
- Majumder, S., Mondal, T., & Deen, M. J. (2017). Wearable Sensors for Remote Health Monitoring. Sensors, 17(1), 130. https://www.mdpi.com/1424-8220/17/1/130
- Malhan, A., Guleria, M., Das, U., Singh, S., Prajapati, B. G., Mohite, P., Bhattacharya, S., Chidrawar, V. R., Puri, A., & Datta, D. (2024). Navigating the future of cancer management through carbon nanodots: A review. Nano-Structures & Nano-Objects, 39, 101217. https://doi.org/https://doi.org/10.1016/j.nanoso.2024.101217
- Malhotra, B. D., & Ali, M. A. (2018). Chapter 1 - Nanomaterials in Biosensors: Fundamentals and Applications. In B. D. Malhotra & M. A. Ali (Eds.), Nanomaterials for Biosensors (pp. 1-74). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-0-323-44923-6.00001-7
- Mao, W., He, H., Sun, P., Ye, Z., & Huang, J. (2018). Three-Dimensional Porous Nickel Frameworks Anchored with Cross-Linked Ni(OH)2 Nanosheets as a Highly Sensitive Nonenzymatic Glucose Sensor. ACS Applied Materials & Interfaces, 10(17), 15088-15095. https://doi.org/10.1021/acsami.8b03433
- Marzocchi, U., & Revsbech, N. P. (2022). Sulfate biosensor for environmental applications. Limnology and Oceanography: Methods, 20(10), 674-681. https://doi.org/https://doi.org/10.1002/lom3.10512
- Mehrotra, P. (2016). Biosensors and their applications – A review. Journal of Oral Biology and Craniofacial Research, 6(2), 153-159. https://doi.org/https://doi.org/10.1016/j.jobcr.2015.12.002
- Modi, C., Prajapati, V., Udhwani, N., Parekh, K., & Chadha, H. (2023). Dendrimer-Based Nanomaterials for Biosensors. In Biosensors Nanotechnology (pp. 61-83). https://doi.org/https://doi.org/10.1002/9781394167135.ch3
- Mohankumar, P., Ajayan, J., Mohanraj, T., & Yasodharan, R. (2021). Recent developments in biosensors for healthcare and biomedical applications: A review. Measurement, 167, 108293. https://doi.org/https://doi.org/10.1016/j.measurement.2020.108293
- Molina, P., Zapata, F., & Caballero, A. (2017). Anion Recognition Strategies Based on Combined Noncovalent Interactions. Chemical Reviews, 117(15), 9907-9972. https://doi.org/10.1021/acs.chemrev.6b00814
- Nagime, P. V., Singh, S., Shaikh, N. M., Gomare, K. S., Chitme, H., Abdel-Wahab, B. A., Alqahtany, Y. S., Khateeb, M. M., Habeeb, M. S., & Bakir, M. B. (2023). Biogenic Fabrication of Silver Nanoparticles Using Calotropis procera Flower Extract with Enhanced Biomimetics Attributes. Materials, 16(11), 4058. https://www.mdpi.com/1996-1944/16/11/4058
- Naresh, V., & Lee, N. (2021). A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors, 21(4), 1109. https://www.mdpi.com/1424-8220/21/4/1109
- Navakul, K., Warakulwit, C., Yenchitsomanus, P.-t., Panya, A., Lieberzeit, P. A., & Sangma, C. (2017). A novel method for dengue virus detection and antibody screening using a graphene-polymer based electrochemical biosensor. Nanomedicine: Nanotechnology, Biology and Medicine, 13(2), 549-557. https://doi.org/https://doi.org/10.1016/j.nano.2016.08.009
- Nwabor, O. F., Singh, S., Paosen, S., Vongkamjan, K., & Voravuthikunchai, S. P. (2020). Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Bioscience, 36, 100609. https://doi.org/https://doi.org/10.1016/j.fbio.2020.100609
- Nwabor, O. F., Singh, S., Wunnoo, S., Lerwittayanon, K., & Voravuthikunchai, S. P. (2021). Facile deposition of biogenic silver nanoparticles on porous alumina discs, an efficient antimicrobial, antibiofilm, and antifouling strategy for functional contact surfaces. Biofouling, 37(5), 538-554. https://doi.org/10.1080/08927014.2021.1934457
- Oke, J. A., & Jen, T.-C. (2022). Atomic layer deposition and other thin film deposition techniques: from principles to film properties. Journal of Materials Research and Technology, 21, 2481-2514. https://doi.org/https://doi.org/10.1016/j.jmrt.2022.10.064
- Omar, N. A. S., Fen, Y. W., Abdullah, J., Chik, C. E. N. C. E., & Mahdi, M. A. (2018). Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein. Sensing and Bio-Sensing Research, 20, 16-21. https://doi.org/https://doi.org/10.1016/j.sbsr.2018.06.001
- Ontong, J. C., Singh, S., Nwabor, O. F., Chusri, S., & Voravuthikunchai, S. P. (2020). Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtus tomentosa leaf extract and silk sericin. Biotechnology Letters, 42(12), 2653-2664. https://doi.org/10.1007/s10529-020-02971-5
- Pandit, B., Goda, E. S., & Shaikh, S. F. (2023). Electrochemical Deposition Toward Thin Films. In B. R. Sankapal, A. Ennaoui, R. B. Gupta, & C. D. Lokhande (Eds.), Simple Chemical Methods for Thin Film Deposition: Synthesis and Applications (pp. 245-304). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0961-2_6
- Pawar, A., Lohakane, P., Pandhare, R., Mohite, P., Munde, S., Singh, S., & Chidrawar, V. (2024). Chitosan fortified repaglinide gastro-retentive mucoadhesive microsphere with improved anti-diabetic attribute. Intelligent Pharmacy, 2(3), 441-449. https://doi.org/https://doi.org/10.1016/j.ipha.2024.01.012
- Peeling, R. W., Artsob, H., Pelegrino, J. L., Buchy, P., Cardosa, M. J., Devi, S., Enria, D. A., Farrar, J., Gubler, D. J., Guzman, M. G., Halstead, S. B., Hunsperger, E., Kliks, S., Margolis, H. S., Nathanson, C. M., Nguyen, V. C., Rizzo, N., Vázquez, S., & Yoksan, S. (2010). Evaluation of diagnostic tests: dengue. Nature Reviews Microbiology, 8(12), S30-S37. https://doi.org/10.1038/nrmicro2459
- Peng, B., Zhao, F., Ping, J., & Ying, Y. (2020). Recent Advances in Nanomaterial-Enabled Wearable Sensors: Material Synthesis, Sensor Design, and Personal Health Monitoring. Small, 16(44), 2002681. https://doi.org/https://doi.org/10.1002/smll.202002681
- Phan, D. T., Phan, T. T. V., Huynh, T. C., Park, S., Choi, J., & Oh, J. (2022). Noninvasive, Wearable Multi Biosensors for Continuous, Long-term Monitoring of Blood Pressure via Internet of Things Applications. Computers and Electrical Engineering, 102, 108187. https://doi.org/https://doi.org/10.1016/j.compeleceng.2022.108187
- Pirzada, M., & Altintas, Z. (2019). Nanomaterials for Healthcare Biosensing Applications. Sensors, 19(23), 5311. https://www.mdpi.com/1424-8220/19/23/5311
- Pourmadadi, M., Rahmani, E., Rajabzadeh-Khosroshahi, M., Samadi, A., Behzadmehr, R., Rahdar, A., & Ferreira, L. F. R. (2023). Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. Journal of Drug Delivery Science and Technology, 80, 104156. https://doi.org/https://doi.org/10.1016/j.jddst.2023.104156
- Punbusayakul, N., Talapatra, S., Ajayan, P. M., & Surareungchai, W. (2013). Label-free as-grown double wall carbon nanotubes bundles for Salmonella typhimuriumimmunoassay. Chemistry Central Journal, 7(1), 102. https://doi.org/10.1186/1752-153X-7-102
- Puri, A., Mohite, P., Patil, S., Chidrawar, V. R., Ushir, Y. V., Dodiya, R., & Singh, S. (2023). Facile green synthesis and characterization of Terminalia arjuna bark phenolic–selenium nanogel: a biocompatible and green nano-biomaterial for multifaceted biological applications [Original Research]. Frontiers in Chemistry, 11. https://doi.org/10.3389/fchem.2023.1273360
- Purohit, B., Vernekar, P. R., Shetti, N. P., & Chandra, P. (2020). Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sensors International, 1, 100040. https://doi.org/https://doi.org/10.1016/j.sintl.2020.100040
- Qin, M., Huang, Y., Li, F., & Song, Y. (2015). Photochromic sensors: a versatile approach for recognition and discrimination [10.1039/C5TC01939G]. Journal of Materials Chemistry C, 3(36), 9265-9275. https://doi.org/10.1039/C5TC01939G
- Rajesh, D., Zhaoli, G., Johnson, a. t. c., Puri, N., Mulchandani, A., & Aswal, D. (2021). Scalable chemical vapor deposited graphene field-effect transistors for bio/chemical assay. Applied Physics Reviews, 8, 011311. https://doi.org/10.1063/5.0024508
- Rajput, T., Mohite, D. P., Ghule, S., Vinchurkar, K., & Singh, S. (2024). Nanofabrication of Losartan Potassium Sustained Release Floating Microspheres Using Different Grades of Ethyl Cellulose and Its Insight on Release Profiles. Curr Pharm Des. https://doi.org/10.2174/0113816128309675240530060752
- Rizwan, K., Rahdar, A., Bilal, M., & Iqbal, H. M. N. (2022). MXene-based electrochemical and biosensing platforms to detect toxic elements and pesticides pollutants from environmental matrices. Chemosphere, 291, 132820. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.132820
- Sadak, O. (2023). 5 - Potentiometric sensors. In A. Barhoum & Z. Altintas (Eds.), Fundamentals of Sensor Technology (pp. 99-121). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-323-88431-0.00009-0
- Salmani Rezaie, S., Rengarajan, U., Hoi, H., Montemagno, C., & Gupta, M. (2016). Selective plasma activation of surfaces for biosensing application. https://doi.org/10.1109/PLASMA.2016.7534241
- Sang, L.-J., & Wang, H.-F. (2014). Aminophenylboronic-Acid-Conjugated Polyacrylic Acid–Mn-Doped ZnS Quantum Dot for Highly Sensitive Discrimination of Glycoproteins. Analytical Chemistry, 86(12), 5706-5712. https://doi.org/10.1021/ac501020b
- Satija, J., Sai, V. V. R., & Mukherji, S. (2011). Dendrimers in biosensors: Concept and applications [10.1039/C1JM10527B]. Journal of Materials Chemistry, 21(38), 14367-14386. https://doi.org/10.1039/C1JM10527B
- Sengupta, J., & Hussain, C. M. (2021). Graphene-based field-effect transistor biosensors for the rapid detection and analysis of viruses: A perspective in view of COVID-19. Carbon Trends, 2, 100011. https://doi.org/https://doi.org/10.1016/j.cartre.2020.100011
- Shi, S., Wu, H., Zhang, L., Wang, S., Xiong, P., Qin, Z., Chu, M., & Liao, J. (2021). Gold nanoparticles based electrochemical sensor for sensitive detection of uranyl in natural water. Journal of Electroanalytical Chemistry, 880, 114884. https://doi.org/https://doi.org/10.1016/j.jelechem.2020.114884
- Shoaib, A., Darraj, A., Khan, M. E., Azmi, L., Alalwan, A., Alamri, O., Tabish, M., & Khan, A. U. (2023). A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices. Nanomaterials, 13(5), 867. https://www.mdpi.com/2079-4991/13/5/867
- Simon, J., Flahaut, E., & Golzio, M. (2019). Overview of Carbon Nanotubes for Biomedical Applications. Materials, 12(4), 624. https://www.mdpi.com/1996-1944/12/4/624
- Singh, S., Chunglok, W., Nwabor, O. F., Ushir, Y. V., Singh, S., & Panpipat, W. (2022). Hydrophilic Biopolymer Matrix Antibacterial Peel-off Facial Mask Functionalized with Biogenic Nanostructured Material for Cosmeceutical Applications. Journal of Polymers and the Environment, 30(3), 938-953. https://doi.org/10.1007/s10924-021-02249-5
- Singh, S., Kumar, V., Dhanjal, D. S., Datta, S., Prasad, R., & Singh, J. (2020). Biological Biosensors for Monitoring and Diagnosis. In J. Singh, A. Vyas, S. Wang, & R. Prasad (Eds.), Microbial Biotechnology: Basic Research and Applications (pp. 317-335). Springer Singapore. https://doi.org/10.1007/978-981-15-2817-0_14
- Singh, S., Nwabor, O. F., Sukri, D. M., Wunnoo, S., Dumjun, K., Lethongkam, S., Kusolphat, P., Hemtanon, N., Klinprathum, K., Sunghan, J., Dejyong, K., Lertwittayanon, K., Pisuchpen, S., & Voravuthikunchai, S. P. (2022). Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application. International Journal of Biological Macromolecules, 216, 235-250. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.06.172
- Song, Y., Mukasa, D., Zhang, H., & Gao, W. (2021). Self-Powered Wearable Biosensors. Accounts of Materials Research, 2(3), 184-197. https://doi.org/10.1021/accountsmr.1c00002
- Stine, K. J. (2019). Biosensor Applications of Electrodeposited Nanostructures. Applied Sciences, 9(4), 797. https://www.mdpi.com/2076-3417/9/4/797
- Stokes, K., Clark, K., Odetade, D., Hardy, M., & Goldberg Oppenheimer, P. (2023). Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications. Discover Nano, 18(1), 153. https://doi.org/10.1186/s11671-023-03938-x
- Syukri, D. M., Nwabor, O. F., Singh, S., Ontong, J. C., Wunnoo, S., Paosen, S., Munah, S., & Voravuthikunchai, S. P. (2020). Antibacterial-coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensis eradicates infections. Journal of Microbiological Methods, 174, 105955. https://doi.org/https://doi.org/10.1016/j.mimet.2020.105955
- Syukri, D. M., Nwabor, O. F., Singh, S., & Voravuthikunchai, S. P. (2021). Antibacterial functionalization of nylon monofilament surgical sutures through in situ deposition of biogenic silver nanoparticles. Surface and Coatings Technology, 413, 127090. https://doi.org/https://doi.org/10.1016/j.surfcoat.2021.127090
- Syukri, D. M., Singh, S., Nwabor, O. F., Ontong, J. C., Dejyong, K., Sunghan, J., Dejyong, K., Lethongkam, S., & Voravuthikunchai, S. P. (2024). Prevention of Post-operative Bacterial Colonization on Mice Buccal Mucosa Using Biogenic Silver Nanoparticles-Coated Nylon Sutures. Regenerative Engineering and Translational Medicine. https://doi.org/10.1007/s40883-024-00335-3
- Taranova, N. A., Berlina, A. N., Zherdev, A. V., & Dzantiev, B. B. (2015). ‘Traffic light’ immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosensors and Bioelectronics, 63, 255-261. https://doi.org/https://doi.org/10.1016/j.bios.2014.07.049
- Tu, J., Torrente-Rodríguez, R. M., Wang, M., & Gao, W. (2020). The Era of Digital Health: A Review of Portable and Wearable Affinity Biosensors. Advanced Functional Materials, 30(29), 1906713. https://doi.org/https://doi.org/10.1002/adfm.201906713
- Valenzuela-Amaro, H. M., Aguayo-Acosta, A., Meléndez-Sánchez, E. R., de la Rosa, O., Vázquez-Ortega, P. G., Oyervides-Muñoz, M. A., Sosa-Hernández, J. E., & Parra-Saldívar, R. (2023). Emerging Applications of Nanobiosensors in Pathogen Detection in Water and Food. Biosensors, 13(10), 922. https://www.mdpi.com/2079-6374/13/10/922
- Verma, D., Singh, K. R., Yadav, A. K., Nayak, V., Singh, J., Solanki, P. R., & Singh, R. P. (2022). Internet of things (IoT) in nano-integrated wearable biosensor devices for healthcare applications. Biosensors and Bioelectronics: X, 11, 100153.
- Wanekaya, A. K., Chen, W., Myung, N. V., & Mulchandani, A. (2006). Nanowire-Based Electrochemical Biosensors. Electroanalysis, 18(6), 533-550. https://doi.org/https://doi.org/10.1002/elan.200503449
- Wang, C., Li, X., Hu, H., Zhang, L., Huang, Z., Lin, M., Zhang, Z., Yin, Z., Huang, B., Gong, H., Bhaskaran, S., Gu, Y., Makihata, M., Guo, Y., Lei, Y., Chen, Y., Wang, C., Li, Y., Zhang, T., . . . Xu, S. (2018). Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nature Biomedical Engineering, 2(9), 687-695. https://doi.org/10.1038/s41551-018-0287-x
- Wang, W., Hao, Q., Wang, W., Bao, L., Lei, J., Wang, Q., & Ju, H. (2014). Quantum dot-functionalized porous ZnO nanosheets as a visible light induced photoelectrochemical platform for DNA detection [10.1039/C3NR04777F]. Nanoscale, 6(5), 2710-2717. https://doi.org/10.1039/C3NR04777F
- Wayu, M. B., Pannell, M. J., Labban, N., Case, W. S., Pollock, J. A., & Leopold, M. C. (2019). Functionalized carbon nanotube adsorption interfaces for electron transfer studies of galactose oxidase. Bioelectrochemistry, 125, 116-126. https://doi.org/https://doi.org/10.1016/j.bioelechem.2018.10.003
- Wei, Q., Zhang, P., Liu, T., Pu, H., & Sun, D.-W. (2021). A fluorescence biosensor based on single-stranded DNA and carbon quantum dots for acrylamide detection. Food Chemistry, 356, 129668. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.129668
- Xiao, M., Lai, W., Man, T., Chang, B., Li, L., Chandrasekaran, A. R., & Pei, H. (2019). Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chemical Reviews, 119(22), 11631-11717. https://doi.org/10.1021/acs.chemrev.9b00121
- Yang, Y., & Gao, W. (2019). Wearable and flexible electronics for continuous molecular monitoring [10.1039/C7CS00730B]. Chemical Society Reviews, 48(6), 1465-1491. https://doi.org/10.1039/C7CS00730B
- Yaqoob, U., & Younis, M. I. (2021). Chemical Gas Sensors: Recent Developments, Challenges, and the Potential of Machine Learning—A Review. Sensors, 21(8), 2877. https://www.mdpi.com/1424-8220/21/8/2877
- Yaroshenko, I., Kirsanov, D., Marjanovic, M., Lieberzeit, P. A., Korostynska, O., Mason, A., Frau, I., & Legin, A. (2020). Real-Time Water Quality Monitoring with Chemical Sensors. Sensors, 20(12).
- Yoon, J., Cho, H.-Y., Shin, M., Choi, H. K., Lee, T., & Choi, J.-W. (2020). Flexible electrochemical biosensors for healthcare monitoring [10.1039/D0TB01325K]. Journal of Materials Chemistry B, 8(33), 7303-7318. https://doi.org/10.1039/D0TB01325K
- Yuwen, L., Zhang, S., & Chao, J. (2023). Recent Advances in DNA Nanotechnology-Enabled Biosensors for Virus Detection. Biosensors, 13(8), 822. https://www.mdpi.com/2079-6374/13/8/822
- Zhang, J., Boghossian, A. A., Barone, P. W., Rwei, A., Kim, J.-H., Lin, D., Heller, D. A., Hilmer, A. J., Nair, N., Reuel, N. F., & Strano, M. S. (2011). Single Molecule Detection of Nitric Oxide Enabled by d(AT)15 DNA Adsorbed to Near Infrared Fluorescent Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 133(3), 567-581. https://doi.org/10.1021/ja1084942
- Zheng, Y. L., Yan, B. P., Zhang, Y. T., & Poon, C. C. Y. (2014). An Armband Wearable Device for Overnight and Cuff-Less Blood Pressure Measurement. IEEE Transactions on Biomedical Engineering, 61(7), 2179-2186. https://doi.org/10.1109/TBME.2014.2318779
- Zhu, C., Yang, G., Li, H., Du, D., & Lin, Y. (2015). Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Analytical Chemistry, 87(1), 230-249. https://doi.org/10.1021/ac5039863
How to Cite
How to Cite
Downloads
Article Details
Most Read This Month
License
Copyright (c) 2024 Popat Mohite, Abhijeet Puri, Shubham Munde, Vaishnavi Yadav, Nitin Ade, Sudarshan Singh
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.