Skip to main content Skip to main navigation menu Skip to site footer

Unleashing the potential of cyclodextrin-based nanosponges in management of colon cancer: A review

  • Popat Mohite
  • Shubham Munde
  • Anil Pawar
  • Sudarshan Singh

Abstract

Colon cancer ranked second in terms of incidence in the world, yearly it shows an increase in the tendency of mortality. It is estimated that by the year 2035 total number of deaths will increase by 75 %. The treatment of cancer includes surgery, radiation therapy, and chemotherapy, however, they are limited due to their targeted therapeutic potential and side effects. In the case of a conventional drug delivery system, it is desired that the drug delivery system should be able to protect the therapeutic from degradation and safety target to the desired site. Cyclodextrin-based nanosponges (NS) are a versatile platform for colon cancer treatment, surpassing the limitations of conventional drug delivery systems. Nanosponge offers several advantages such as improved drug solubility, enhanced stability, targeted delivery, and potential for combination therapy due to its highly cross-linked structure. The fabrication of NS includes the use of biopolymers for the controlled release of drugs from pores through diffusion. These pores can efficiently encapsulate a wide range of therapeutic agents, enabling regulated release, and addressing challenges associated with poor solubility and limited stability of drugs used in the management of colon cancer. Additionally, their functionalization enables targeted drug delivery to colon cancer cells, minimizing off-target effects. Though several benefits are associated with NS, further research is needed to address regulatory considerations and scale up NS for translation into clinical practice. Overall, cyclodextrin-based NS holds promise in revolutionizing colon cancer treatment and improving patient outcomes.

Section

References

  1. Abou Taleb, S., Moatasim, Y., GabAllah, M., & Asfour, M. H. (2022). Quercitrin loaded cyclodextrin based nanosponge as a promising approach for management of lung cancer and COVID-19. Journal of Drug Delivery Science and Technology, 77, 103921. https://doi.org/https://doi.org/10.1016/j.jddst.2022.103921
  2. Ahmed, R. Z., Patil, G., & Zaheer, Z. (2013a). Nanosponges – a completely new nano-horizon: pharmaceutical applications and recent advances. Drug development and industrial pharmacy, 39(9), 1263-1272. https://doi.org/10.3109/03639045.2012.694610
  3. Ahmed, R. Z., Patil, G., & Zaheer, Z. (2013b). Nanosponges–a completely new nano-horizon: pharmaceutical applications and recent advances. Drug development and industrial pharmacy, 39(9), 1263-1272.
  4. Ahsan, F., Arnold, J. J., Meezan, E., & Pillion, D. J. (2001). Mutual inhibition of the insulin absorption-enhancing properties of dodecylmaltoside and dimethyl-β-cyclodextrin following nasal administration. Pharmaceutical research, 18, 608-614.
  5. Allahyari, S., Esmailnezhad, N., Valizadeh, H., Ghorbani, M., Jelvehgari, M., Ghazi, F., & Zakeri-Milani, P. (2021). In-vitro characterization and cytotoxicity study of flutamide loaded cyclodextrin nanosponges. Journal of Drug Delivery Science and Technology, 61, 102275. https://doi.org/https://doi.org/10.1016/j.jddst.2020.102275
  6. Anjum, S., Ishaque, S., Fatima, H., Farooq, W., Hano, C., Abbasi, B. H., & Anjum, I. (2021). Emerging Applications of Nanotechnology in Healthcare Systems: Grand Challenges and Perspectives. Pharmaceuticals (Basel), 14(8). https://doi.org/10.3390/ph14080707
  7. Anwer, M. K., Fatima, F., Ahmed, M. M., Aldawsari, M. F., Alali, A. S., Kalam, M. A., Alshamsan, A., Alkholief, M., Malik, A., Az, A., & Al-shdefat, R. (2022). Abemaciclib-loaded ethylcellulose based nanosponges for sustained cytotoxicity against MCF-7 and MDA-MB-231 human breast cancer cells lines. Saudi Pharmaceutical Journal, 30(6), 726-734. https://doi.org/https://doi.org/10.1016/j.jsps.2022.03.019
  8. Archontaki, H. A., Vertzoni, M. V., & Athanassiou-Malaki, M. H. (2002). Study on the inclusion complexes of bromazepam with β-and β-hydroxypropyl-cyclodextrins. Journal of pharmaceutical and biomedical analysis, 28(3-4), 761-769.
  9. Arias, M. J., Arias-Blanco, M. J., Moyano, J. R., Muñoz, P., Gines, J. M., Justo, A., & Giordano, F. (2000). Study of omeprazole-γ-cyclodextrin complexation in the solid state. Drug development and industrial pharmacy, 26(3), 253-259.
  10. Arima, H., Miyaji, T., Irie, T., Hirayama, F., & Uekama, K. (1998). Enhancing effect of hydroxypropyl-β-cyclodextrin on cutaneous penetration and activation of ethyl 4-biphenylyl acetate in hairless mouse skin. European journal of pharmaceutical sciences, 6(1), 53-59.
  11. Basu, B., Garala, K., Dutta, A., Joshi, R., Prajapati, B. G., Mukherjee, S., Karati, D., Singh, S., & Paliwal, H. (2024). Micro and nanoemulsions in colorectal cancer. In Colorectal Cancer (pp. 259-286). Elsevier.
  12. Bhattacharya, S., Prajapati, B. G., & Singh, S. (2023). A critical review on the dissemination of PH and stimuli-responsive polymeric nanoparticular systems to improve drug delivery in cancer therapy. Critical Reviews in Oncology/Hematology, 103961.
  13. Bhattacharya, S., Prajapati, B. G., & Singh, S. (2024). Polymeric nanoparticles in colorectal cancer. In Colorectal Cancer (pp. 203-231). Elsevier.
  14. Cavalli, R., Akhter, A. K., Bisazza, A., Giustetto, P., Trotta, F., & Vavia, P. (2010). Nanosponge formulations as oxygen delivery systems. International journal of pharmaceutics, 402(1-2), 254-257.
  15. Diego Marestoni, L., Barud, H., Gomes, R., Catarino, R., Yassunaka Hata, N., Ressutte, J., & Spinosa, W. (2020). Commercial and potential applications of bacterial cellulose in Brazil: Ten years review. Polímeros, 30. https://doi.org/10.1590/0104-1428.09420
  16. Farsana, P., Sivakumar, R., & Haribabu, Y. (2021). Hydrogel based nanosponges drug delivery for topical applications-A updated review. Research Journal of Pharmacy and Technology, 14(1), 527-530.
  17. Gadade, D. D., & Pekamwar, S. S. (2020). Cyclodextrin Based Nanoparticles for Drug Delivery and Theranostics. Adv Pharm Bull, 10(2), 166-183. https://doi.org/10.34172/apb.2020.022
  18. Hoti, G., Caldera, F., Cecone, C., Rubin Pedrazzo, A., Anceschi, A., Appleton, S. L., Khazaei Monfared, Y., & Trotta, F. (2021). Effect of the cross-linking density on the swelling and rheological behavior of ester-bridged β-cyclodextrin nanosponges. Materials, 14(3), 478.
  19. Jagtap, S. R., Bhusnure, O. G., Mujewar, I. N., Gholve, S. B., & Panchabai, V. B. (2019). Nanosponges: a novel trend for targeted drug delivery. Journal of Drug Delivery and Therapeutics, 9(3-s), 931-938.
  20. Jilsha, G., & Viswanad, V. (2013). Nanosponges: A novel approach of drug delivery system. Int J Pharm Sci Rev Res, 19(2), 119-123.
  21. Kalaydina, R.-V., Bajwa, K., Qorri, B., Decarlo, A., & Szewczuk, M. R. (2018). Recent advances in “smart” delivery systems for extended drug release in cancer therapy. International Journal of Nanomedicine, 4727-4745.
  22. Kawano, S., Kida, T., Miyawaki, K., Fukuda, Y., Kato, E., Nakano, T., & Akashi, M. (2015). Adsorption capability of urethane-crosslinked heptakis (2, 6-di-O-methyl)-β-cyclodextrin polymers toward polychlorobiphenyls in nonpolar organic media. Polymer journal, 47(6), 443-448.
  23. Khazaei Monfared, Y., Mahmoudian, M., Cecone, C., Caldera, F., Zakeri-Milani, P., Matencio, A., & Trotta, F. (2022). Stabilization and anticancer enhancing activity of the peptide nisin by cyclodextrin-based nanosponges against colon and breast cancer cells. Polymers, 14(3), 594.
  24. Kumar, A., & Rao, R. (2021). Enhancing efficacy and safety of azelaic acid via encapsulation in cyclodextrin nanosponges: Development, characterization and evaluation. Polymer Bulletin, 78, 5275-5302.
  25. Kumar, A., & Rao, R. (2022). Formulation and modification of physicochemical parameters of p-Coumaric acid by cyclodextrin nanosponges. Journal of inclusion phenomena and macrocyclic chemistry, 102(3), 313-326. https://doi.org/10.1007/s10847-021-01121-2
  26. Kumar, S., Dalal, P., & Rao, R. (2020). Cyclodextrin nanosponges: a promising approach for modulating drug delivery. Colloid Science in Pharmaceutical Nanotechnology, 79.
  27. Kumar, S., Pooja, Trotta, F., & Rao, R. (2018). Encapsulation of Babchi Oil in Cyclodextrin-Based Nanosponges: Physicochemical Characterization, Photodegradation, and In Vitro Cytotoxicity Studies. Pharmaceutics, 10(4).
  28. Laouini, S., Bouafia, A., & Tedjani, M. (2021). Catalytic activity for dye degradation and characterization of silver/silver oxide nanoparticles green synthesized by aqueous leaves extract of Phoenix dactylifera L.
  29. Lembo, D., Trotta, F., & Cavalli, R. (2018). Cyclodextrin-based nanosponges as vehicles for antiviral drugs: challenges and perspectives. Nanomedicine, 13(5), 477-480.
  30. Liu, X., Li, W., & Xuan, G. (2020). Preparation and characterization of β-cyclodextrin nanosponges and study on enhancing the solubility of insoluble nicosulfuron.
  31. Liu, Y., Chen, Y., Gao, X., Fu, J., & Hu, L. (2022). Application of cyclodextrin in food industry. Critical Reviews in Food Science and Nutrition, 62(10), 2627-2640.
  32. Mashaqbeh, H., Obaidat, R., & Al-Shar’i, N. (2021). Evaluation and Characterization of Curcumin-β-Cyclodextrin and Cyclodextrin-Based Nanosponge Inclusion Complexation. Polymers, 13(23).
  33. Mele, A., Castiglione, F., Malpezzi, L., Ganazzoli, F., Raffaini, G., Trotta, F., Rossi, B., Fontana, A., & Giunchi, G. (2011). HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in βCD nanosponges. Journal of inclusion phenomena and macrocyclic chemistry, 69, 403-409.
  34. Mognetti, B., Barberis, A., Marino, S., Berta, G., De Francia, S., Trotta, F., & Cavalli, R. (2012). In vitro enhancement of anticancer activity of paclitaxel by a Cremophor free cyclodextrin-based nanosponge formulation. Journal of inclusion phenomena and macrocyclic chemistry, 74(1), 201-210. https://doi.org/10.1007/s10847-011-0101-9
  35. Mohite, P., Puri, A., Pandhare, R., Singh, S., & Prajapati, B. (2024). Current Trends in the Biomarker'sDiscovery for the Treatment and Management of Colorectal Cancer: A ComprehensiveReview. Current Medicinal Chemistry.
  36. Mura, P. (2020). Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review. Int J Pharm, 579, 119181. https://doi.org/10.1016/j.ijpharm.2020.119181
  37. Osmani, R. A., Kulkarni, P., Manjunatha, S., Gowda, V., Hani, U., Vaghela, R., & Bhosale, R. (2018a). Cyclodextrin Nanosponges in Drug Delivery and Nanotherapeutics. In N. Dasgupta, S. Ranjan, & E. Lichtfouse (Eds.), Environmental Nanotechnology: Volume 1 (pp. 279-342). Springer International Publishing. https://doi.org/10.1007/978-3-319-76090-2_9
  38. Osmani, R. A., Kulkarni, P., Manjunatha, S., Gowda, V., Hani, U., Vaghela, R., & Bhosale, R. (2018b). Cyclodextrin nanosponges in drug delivery and nanotherapeutics. Environmental Nanotechnology: Volume 1, 279-342.
  39. Parihar, A., Chidrawar, V. R., Singh, S., Basu, B., Pal, S., Pingale, P. L., Paliwal, H., & Prajapati, B. G. (2024). Novel targeting formulations in colorectal cancer. In Colorectal Cancer (pp. 175-201). Elsevier.
  40. Pawar, S., Shende, P., & Trotta, F. (2019). Diversity of β-cyclodextrin-based nanosponges for transformation of actives. International journal of pharmaceutics, 565, 333-350. https://doi.org/https://doi.org/10.1016/j.ijpharm.2019.05.015
  41. Peimanfard, S., Zarrabi, A., Trotta, F., Matencio, A., Cecone, C., & Caldera, F. (2022). Developing Novel Hydroxypropyl-β-Cyclodextrin-Based Nanosponges as Carriers for Anticancer Hydrophobic Agents: Overcoming Limitations of Host–Guest Complexes in a Comparative Evaluation. Pharmaceutics, 14(5).
  42. Pothuraju, R., Krishn, S. R., Gautam, S. K., Pai, P., Ganguly, K., Chaudhary, S., Rachagani, S., Kaur, S., & Batra, S. K. (2020). Mechanistic and Functional Shades of Mucins and Associated Glycans in Colon Cancer. Cancers, 12(3).
  43. Prabhu, P. P., Mehta, C. H., & Nayak, U. Y. (2020). Nanosponges-revolutionary approach: A review. Research Journal of Pharmacy and Technology, 13(7), 3536-3544.
  44. Puskás, I., & Malanga, M. (2017). Benefits and Limitations of Using Cyclodextrins in Drug Formulations. https://doi.org/10.13140/RG.2.2.30752.07688
  45. Rapp, C., Nidetzky, B., & Kratzer, R. (2021). Pushing the limits: Cyclodextrin-based intensification of bioreductions. Journal of Biotechnology, 325, 57-64. https://doi.org/https://doi.org/10.1016/j.jbiotec.2020.11.017
  46. Rezaei, A., Varshosaz, J., Fesharaki, M., Farhang, A., & Jafari, S. M. (2019). Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges. International Journal of Nanomedicine, 4589-4599.
  47. Sahu, R., Shah, K., Malviya, R., Paliwal, D., Sagar, S., Singh, S., & Prajapati, B. G. (2024). Recent advancement in pyrrolidine moiety for the management of cancer: A review. Results in Chemistry, 101301.
  48. Sawatdee, S., Choochuay, K., Chanthorn, W., & Srichana, T. (2016). Evaluation of the topical spray containing Centella asiatica extract and efficacy on excision wounds in rats. Acta pharmaceutica, 66(2), 233-244.
  49. Semalty, A. (2014). Cyclodextrin and phospholipid complexation in solubility and dissolution enhancement: a critical and meta-analysis. Expert opinion on drug delivery, 11(8), 1255-1272.
  50. Shah, H. S., Zaib, S., Khan, I., Sliem, M. A., Alharbi, O., Al-Ghorbani, M., Jawad, Z., Shahzadi, K., & Awan, S. (2023). Preparation and investigation of a novel combination of Solanum nigrum-loaded, arabinoxylan-cross-linked β-cyclodextrin nanosponges for the treatment of cancer: in vitro, in vivo, and in silico evaluation [Original Research]. Frontiers in pharmacology, 14. https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1325498
  51. Sharma, N., & Baldi, A. (2016). Exploring versatile applications of cyclodextrins: an overview. Drug delivery, 23(3), 729-747.
  52. Sherje, A. P., Dravyakar, B. R., Kadam, D., & Jadhav, M. (2017). Cyclodextrin-based nanosponges: A critical review. Carbohydrate Polymers, 173, 37-49. https://doi.org/https://doi.org/10.1016/j.carbpol.2017.05.086
  53. Shringirishi, M., Prajapati, S. K., Mahor, A., Alok, S., Yadav, P., & Verma, A. (2014). Nanosponges: a potential nanocarrier for novel drug delivery-a review. Asian pacific journal of tropical disease, 4, S519-S526.
  54. Sindhwani, S., & Chan, W. C. W. (2021). Nanotechnology for modern medicine: next step towards clinical translation. Journal of Internal Medicine, 290(3), 486-498.
  55. Singireddy, A., Rani Pedireddi, S., Nimmagadda, S., & Subramanian, S. (2016). Beneficial effects of microwave assisted heating versus conventional heating in synthesis of cyclodextrin based nanosponges. Materials Today: Proceedings, 3(10, Part B), 3951-3959. https://doi.org/https://doi.org/10.1016/j.matpr.2016.11.055
  56. Srivastava, S., Mahor, A., Singh, G., Bansal, K., Singh, P. P., Gupta, R., Dutt, R., Alanazi, A. M., Khan, A. A., & Kesharwani, P. (2021). Formulation development, in vitro and in vivo evaluation of topical hydrogel formulation of econazole nitrate-loaded β-cyclodextrin nanosponges. Journal of pharmaceutical sciences, 110(11), 3702-3714.
  57. Swaminathan, S., Pastero, L., Serpe, L., Trotta, F., Vavia, P., Aquilano, D., Trotta, M., Zara, G., & Cavalli, R. (2010). Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. European journal of pharmaceutics and biopharmaceutics, 74(2), 193-201.
  58. Swaminathan, S., Vavia, P. R., Trotta, F., & Torne, S. (2007). Formulation of betacyclodextrin based nanosponges of itraconazole. Journal of inclusion phenomena and macrocyclic chemistry, 57, 89-94.
  59. Tiwari, G., Tiwari, R., & Rai, A. K. (2010). Cyclodextrins in delivery systems: Applications. J Pharm Bioallied Sci, 2(2), 72-79. https://doi.org/10.4103/0975-7406.67003
  60. Tiwari, K., & Bhattacharya, S. (2022). The ascension of nanosponges as a drug delivery carrier: preparation, characterization, and applications. J Mater Sci Mater Med, 33(3), 28. https://doi.org/10.1007/s10856-022-06652-9
  61. Tiwari, K., & Bhattacharya, S. (2022). The ascension of nanosponges as a drug delivery carrier: preparation, characterization, and applications. Journal of Materials Science: Materials in Medicine, 33(3), 28. https://doi.org/10.1007/s10856-022-06652-9
  62. Uberti, F., Trotta, F., Pagliaro, P., Bisericaru, D. M., Cavalli, R., Ferrari, S., Penna, C., & Matencio, A. (2023a). Developing New Cyclodextrin-Based Nanosponges Complexes to Improve Vitamin D Absorption in an In Vitro Study. International Journal of Molecular Sciences, 24(6), 5322.
  63. Uberti, F., Trotta, F., Pagliaro, P., Bisericaru, D. M., Cavalli, R., Ferrari, S., Penna, C., & Matencio, A. (2023b). Developing New Cyclodextrin-Based Nanosponges Complexes to Improve Vitamin D Absorption in an In Vitro Study. International Journal of Molecular Sciences, 24(6).
  64. Varan, C., Anceschi, A., Sevli, S., Bruni, N., Giraudo, L., Bilgiç, E., Korkusuz, P., İskit, A. B., Trotta, F., & Bilensoy, E. (2020). Preparation and characterization of cyclodextrin nanosponges for organic toxic molecule removal. International journal of pharmaceutics, 585, 119485. https://doi.org/https://doi.org/10.1016/j.ijpharm.2020.119485
  65. Venkateswarlu, B. S., Chandira, R. M., Pethappachetty, P., & Tamilselvi, T. V. G. (2022). A Novel Approach of Nanosponges Capsules of an Antiemetic Drug. Asian Journal of Biological and Life Sciences, 11(2), 417.
  66. Zeng, Z., Yang, H., & Xiao, S. (2018). ACTL6A expression promotes invasion, metastasis and epithelial mesenchymal transition of colon cancer. BMC cancer, 18(1), 1020. https://doi.org/10.1186/s12885-018-4931-3

How to Cite

Mohite, P., Munde, S., Pawar, A., & Singh, S. (2024). Unleashing the potential of cyclodextrin-based nanosponges in management of colon cancer: A review. Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1823

HTML
113

Total
89

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Popat Mohite, Shubham Munde, Anil Pawar, Sudarshan Singh

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Most read articles by the same author(s)