Skip to main content Skip to main navigation menu Skip to site footer

Examining the Synergism of Cerium Oxide Nanoparticle – Andrographolide Conjugate and Studying its Potential Role Towards Antioxidative Therapeutics

  • Sneha Kumari
  • Shivam Pandey
  • Leela Manohar Aeshala
  • Anuj Kumar
  • Sushant Singh

Abstract

Increased oxidative stress in metabolic disorders has revealed promising alternatives for antioxidative therapeutics. Herein, we present synthesis and evaluations of Cerium oxide nanoparticles (CNPs) conjugated with Andrographolide (Ad-CNP). Characterization revealed a uniform particle size of 106 nm for bare CNP and 120 nm for Ad-CNP conjugates. UV-visible spectroscopy showed an absorbance peak at 230nm, indicating a high Ce³⁺/Ce⁴⁺ oxidation state. X-ray diffraction confirmed a pure cubic fluorite structure with a polycrystalline nature with peaks at 111, 200, 220, and 311. In terms of reactive oxygen species scavenging, bare CNPs demonstrated Catalase mimetic activity of 41.5%, whereas the Ad-CNP conjugates showed 47% scavenging activity. The Superoxide Dismutase mimetic activity was significantly increased due to synergy up to 77% of Ad-CNP whereas bare CNPs showed 57% activity.  The CNPs exhibited notable antibacterial efficacy, diminishing microbial proliferation by 69% for bare CNPs and 82% for Ad-CNP. Biocompatibility testing with human skin keratinocytes validated the safety of the nanoparticles, and anti-inflammatory assays indicated decreased expression of pro-inflammatory cytokines IL-6 and TNF-α. The synergistic combination of CNPs with Andrographolide demonstrated significant potential as a potent antioxidant, antibacterial, and anti-inflammatory agent, making it a prospective candidate for antioxidative therapeutic research aimed at diminishing oxidative stress.

Section

References

  1. Amaning Danquah, C., Ofori, M., Gibbons, S., Bhakta, S., & Doe, P. (2022). Antibacterial and Antifungal Activities of Andrographolide in Combination with Antimicrobial Drugs. Research Journal of Pharmacognosy, 9(4), 21-27.
  2. Campbell, C. T., & Peden, C. H. (2005). Oxygen vacancies and catalysis on ceria surfaces. Science, 309(5735), 713-714.
  3. Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011;3(4):1411-20.
  4. Chen, D., Zhang, G., Li, R., Guan, M., Wang, X., Zou, T., ... & Wan, L. J. (2018). Biodegradable, hydrogen peroxide, and glutathione dual responsive nanoparticles for potential programmable paclitaxel release. Journal of the American Chemical Society, 140(24), 7373-7376
  5. Chen, Z. J., Huang, Z., Huang, S., Zhao, J. L., Sun, Y., Xu, Z. L., & Liu, J. (2021). Effect of proteins on the oxidase-like activity of CeO 2 nanozymes for immunoassays. Analyst, 146(3), 864-873
  6. Darroudi, M., Sarani, M., Oskuee, R. K., Zak, A. K., & Amiri, M. S. (2014). Nanoceria: gum mediated synthesis and in vitro viability assay. Ceramics International, 40(2), 2863-2868.
  7. Davies, J., & Wright, G. D. (1997). Bacterial resistance to aminoglycoside antibiotics. Trends in microbiology, 5(6), 234-240.
  8. Dhall, A., & Self, W. (2018). Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants, 7(8), 97.
  9. Do Dat, T., Cong, C. Q., Nhi, T. L. H., Khang, P. T., Nam, N. T. H., Tinh, N. T., & Hieu, N. H. (2023). Green synthesis of gold nanoparticles using Andrographis paniculata leave extract for lead ion detection, degradation of dyes, and bioactivities. Biochemical Engineering Journal, 200, 109103.
  10. Dowding, J. M., Song, W., Bossy, K., Karakoti, A., Kumar, A., Kim, A., ... & Bossy-Wetzel, E. (2014). Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death. Cell Death & Differentiation, 21(10), 1622-1632
  11. Dowding, J. M., Dosani, T., Kumar, A., Seal, S., & Self, W. T. (2012). Cerium oxide nanoparticles scavenge nitric oxide radical (˙ NO). Chemical communications, 48(40), 4896-4898.
  12. Dziubla, T. D., Shuvaev, V. V., Hong, N. K., Hawkins, B. J., Madesh, M., Takano, H., ... & Muzykantov, V. R. (2008). Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies. Biomaterials, 29(2), 215-227.
  13. Fard, J. K., Jafari, S., & Eghbal, M. A. (2015). A review of molecular mechanisms involved in toxicity of nanoparticles. Advanced pharmaceutical bulletin, 5(4), 447
  14. Griendling, K. K., Touyz, R. M., Zweier, J. L., Dikalov, S., Chilian, W., Chen, Y. R., ... & Bhatnagar, A. (2016). Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system: a scientific statement from the American Heart Association. Circulation research, 119(5), e39-e75.
  15. Heckert, E. G., Karakoti, A. S., Seal, S., & Self, W. T. (2008). The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 29(18), 2705-2709
  16. Hossain, S., Urbi, Z., Karuniawati, H., Mohiuddin, R. B., Moh Qrimida, A., Allzrag, A. M. M., ... & Capasso, R. (2021). Andrographis paniculata (burm. F.) wall. Ex nees: an updated review of phytochemistry, antimicrobial pharmacology, and clinical safety and efficacy. Life, 11(4), 348.
  17. Ivanov, V. K., Shcherbakov, A. B., & Usatenko, A. V. (2009). Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russian chemical reviews, 78(9), 855.
  18. Karakoti, A. S., Tsigkou, O., Yue, S., Lee, P. D., Stevens, M. M., Jones, J. R., & Seal, S. (2010). Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. Journal of Materials Chemistry, 20(40), 8912-8919.
  19. Karakoti A, Singh S, Dowding JM, Seal S, Self WT. Redox-active radical scavenging nanomaterials. Chemical Society Reviews. 2010;39(11):4422-32.Kartha, B., Thanikachalam, K., Vijayakumar, N., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., ... & Govindarajan, M. (2022). Synthesis and characterization of Ce-doped TiO2 nanoparticles and their enhanced anticancer activity in Y79 retinoblastoma cancer cells. Green Processing and Synthesis, 11(1), 143-149.
  20. Keyvan Rad, J., Mahdavian, A. R., Khoei, S., & Shirvalilou, S. (2018). Enhanced photogeneration of reactive oxygen species and targeted photothermal therapy of C6 glioma brain cancer cells by folate-conjugated gold–photoactive polymer nanoparticles. ACS applied materials & interfaces, 10(23), 19483-19493
  21. Miri, A., & Sarani, M. (2018). Biosynthesis, characterization and cytotoxic activity of CeO2 nanoparticles. Ceramics International, 44(11), 12642-12647
  22. Montini, T., Melchionna, M., Monai, M., & Fornasiero, P. (2016). Fundamentals and catalytic applications of CeO2-based materials. Chemical reviews, 116(10), 5987-6041.
  23. Mustafa, F., Othman, A., & Andreescu, S. (2021). Cerium oxide-based hypoxanthine biosensor for Fish spoilage monitoring. Sensors and Actuators B: Chemical, 332, 129435.
  24. Nelson, B. C., Johnson, M. E., Walker, M. L., Riley, K. R., & Sims, C. M. (2016). Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants, 5(2), 15
  25. Poole, K. M., Nelson, C. E., Joshi, R. V., Martin, J. R., Gupta, M. K., Haws, S. C., ... & Duvall, C. L. (2015). ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease. Biomaterials, 41, 166-175.
  26. Ray, P. D., Huang, B. W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular signalling, 24(5), 981-990.
  27. Shuvaev, V. V., Tliba, S., Nakada, M., Albelda, S. M., & Muzykantov, V. R. (2007). Platelet-endothelial cell adhesion molecule-1-directed endothelial targeting of superoxide dismutase alleviates oxidative stress caused by either extracellular or intracellular superoxide. Journal of Pharmacology and Experimental Therapeutics, 323(2), 450-457
  28. Shuvaev, V. V., Han, J., Tliba, S., Arguiri, E., Christofidou-Solomidou, M., Ramirez, S. H., ... & Muzykantov, V. R. (2013). Anti-inflammatory effect of targeted delivery of SOD to endothelium: mechanism, synergism with NO donors and protective effects in vitro and in vivo. PLoS One, 8(10), e77002
  29. Singh, K. R., Nayak, V., Sarkar, T., & Singh, R. P. (2020). Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. RSC advances, 10(45), 27194-27214
  30. Singh, S., Kumar, U., Gittess, D., Sakthivel, T. S., Babu, B., & Seal, S. (2021). Cerium oxide nanomaterial with dual antioxidative scavenging potential: Synthesis and characterization. Journal of Biomaterials Applications, 36(5), 834-842.
  31. Sisubalan, N., Ramkumar, V. S., Pugazhendhi, A., Karthikeyan, C., Indira, K., Gopinath, K., ... & Basha, M. H. G. (2018). ROS-mediated cytotoxic activity of ZnO and CeO 2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines. Environmental Science and Pollution Research, 25, 10482-10492.
  32. Thammawithan, S., Talodthaisong, C., Srichaiyapol, O., Patramanon, R., Hutchison, J. A., & Kulchat, S. (2022). Andrographolide stabilized-silver nanoparticles overcome ceftazidime-resistant Burkholderia pseudomallei: study of antimicrobial activity and mode of action. Scientific Reports, 12(1), 10701.
  33. Tian, Z., Liu, H., Guo, Z., Gou, W., Liang, Z., Qu, Y., ... & Liu, L. (2020). A pH‐responsive polymer‐ceO2 hybrid to catalytically generate oxidative stress for tumor therapy. Small, 16(47), 2004654.
  34. Xia, T., Kovochich, M., Liong, M., Madler, L., Gilbert, B., Shi, H., ... & Nel, A. E. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS nano, 2(10), 2121-2134.
  35. Xu, C., & Qu, X. (2014). Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia materials, 6(3), e90-e90.
  36. Xu, C., Lin, Y., Wang, J., Wu, L., Wei, W., Ren, J., & Qu, X. (2013). Nanoceria‐triggered synergetic drug release based on CeO2‐capped mesoporous silica host–guest interactions and switchable enzymatic activity and cellular effects of CeO2. Advanced healthcare materials, 2(12), 1591-1599.
  37. Yadav, S., Sharma, S., Ahmad, F., & Rathaur, S. (2020). Antifilarial efficacy of green silver nanoparticles synthesized using Andrographis paniculata. Journal of Drug Delivery Science and Technology, 56, 101557.
  38. Yeh, H. P., Del Valle, A. C., Syu, M. C., Qian, Y., Chang, Y. C., & Huang, Y. F. (2018). A new photosensitized oxidation-responsive nanoplatform for controlled drug release and photodynamic cancer therapy. ACS applied materials & interfaces, 10(25), 21160-21172.
  39. Yokel, R. A., Hussain, S., Garantziotis, S., Demokritou, P., Castranova, V., & Cassee, F. R. (2014). The yin: an adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity. Environmental Science: Nano, 1(5), 406-428.
  40. Zhao, Y., Li, H., Lopez, A., Su, H., & Liu, J. (2020). Promotion and Inhibition of the Oxidase‐Mimicking Activity of Nanoceria by Phosphate, Polyphosphate, and DNA. ChemBioChem, 21(15), 2178-2186.

How to Cite

Examining the Synergism of Cerium Oxide Nanoparticle – Andrographolide Conjugate and Studying its Potential Role Towards Antioxidative Therapeutics. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2031

How to Cite

Examining the Synergism of Cerium Oxide Nanoparticle – Andrographolide Conjugate and Studying its Potential Role Towards Antioxidative Therapeutics. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2031

HTML
60

Total
24

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Sneha Kumari, Shivam Pandey, Leela Manohar Aeshala, Anuj Kumar, Sushant Singh

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.