Skip to main content Skip to main navigation menu Skip to site footer

Augmenting Antioxidative Properties of Cerium Oxide Nanomaterial with Andrographis paniculata Mediated Synthesis and Investigating its Biomedical Potentials.

  • Sneha Kumari
  • Pandey, Shivam
  • Leela Manohar Aeshala
  • Anuj Kumar
  • Sushant Singh

Abstract

Extensive interest has been poured into the production of sustainable nanomaterials. We report the fabrication of cerium oxide nanomaterial (CNP)utilizing crude extracts of Andrographis paniculata. This synthesis route devises a sustainable approach with the implementation of a less energy-intensive process and avoids hazardous chemicals. The crude extracts of Andrographis paniculata (cAP) act simultaneously as a reducing and stabilizing agent and support the nucleation of CNP leading to unique physiochemical properties. The cAP-CNP conjugate is found in the size range of 150nm with signature UV peaks at 310 nm indicating Ce+4 surface oxidation state. Scanning electron microscope and X-ray diffraction analysis of cAP-CNP conjugate indicates the ultra-structure of dry powder and polycrystalline signature peaks with 111, 200, 220 and 311 crystal planes indicating pure cubic fluorite structure. Further cAP-CNP conjugate also reports high H2O2(80%)and moderate superoxide anion (40%) antioxidative scavenging. The cAP-CNPnanomaterial conjugates exhibit excellent antimicrobial behavior with a reduction of 60% E.colibacterial growth. Similarly,cAP-CNP conjugate exhibits alpha-amylase inhibition (80%) activity indicating its prospects in diabetics’management.In-vitro analysis results the biocompatibility with 85% skin keratinocyte cell growth. Anti-inflammatory assay revealed IL-6 (89%) and TNF-alpha (81%) reduced expression. Overall, cAP-CNP demonstrates a sustainable approach to prospective biomedical applications.

Section

References

  1. Aseyd Nezhad, S., Es‐haghi, A., & Tabrizi, M. H. (2020). Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities. Applied Organometallic Chemistry, 34(2), e5314.
  2. Cheung, H. Y., Cheung, C. S., & Kong, C. K. (2001). Determination of bioactive diterpenoids from Andrographis paniculata by micellar electrokinetic chromatography. Journal of Chromatography A, 930(1-2), 171-176.
  3. Chien, C. F., Wu, Y. T., Lee, W. C., Lin, L. C., & Tsai, T. H. (2010). Herb–drug interaction of Andrographis paniculata extract and andrographolide on the pharmacokinetics of theophylline in rats. Chemico-biological interactions, 184(3), 458-465.
  4. Estes, L. M., Singha, P., Singh, S., Sakthivel, T. S., Garren, M., Devine, R., ... & Handa, H. (2021). Characterization of a nitric oxide (NO) donor molecule and cerium oxide nanoparticle (CNP) interactions and their synergistic antimicrobial potential for biomedical applications. Journal of colloid and interface science, 586, 163-177.
  5. Farahmandjou, M., Zarinkamar, M., & Firoozabadi, T. P. (2016). Synthesis of Cerium Oxide (CeO2) nanoparticles using simple CO-precipitation method. Revista mexicana de física, 62(5), 496-499.
  6. Gahlaut, A., & Chhillar, A. K. (2013). Evaluation of antibacterial potential of plant extracts using resazurin based microtiter dilution assay. International Journal of Pharmacy and Pharmaceutical Sciences, 5(2), 372-376.
  7. Ghanbary, F., & Jafarnejad, E. (2017). Removal of malachite green from the aqueous solutions using polyimide nanocomposite containing cerium oxide as adsorbent. Inorganic and Nano-Metal Chemistry, 47(12), 1675-1681.
  8. Hirst, S. M., Karakoti, A. S., Tyler, R. D., Sriranganathan, N., Seal, S., & Reilly, C. M. (2009). Anti‐inflammatory properties of cerium oxide nanoparticles. Small, 5(24), 2848-2856.
  9. Ivanova, E., Atanasova-Pančevska, N., & Kungulovski, D. (2013). Antimicrobial activities of laboratory produced essential oil solutions against five selected fungal strains. Zbornik Matice srpske za prirodne nauke, (124), 171-183.
  10. Javadi, F., Yazdi, M. E. T., Baghani, M., & Es-haghi, A. (2019). Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Materials Research Express, 6(6), 065408.
  11. Kalyanaraman, V., Naveen, S. V., Mohana, N., Balaje, R. M., Navaneethakrishnan, K. R., Brabu, B., ... & Kumaravel, T. S. (2019). Biocompatibility studies on cerium oxide nanoparticles–combined study for local effects, systemic toxicity and genotoxicity via implantation route. Toxicology research, 8(1), 25-37.
  12. Karuppusamy, S., & Rajasekaran, K. M. (2009). High throughput antibacterial screening of plant extracts by resazurin redox with special reference to medicinal plants of Western Ghats. Global Journal of Pharmacology, 3(2), 63-68.
  13. Kaushik, A. (2019). Biomedical nanotechnology related grand challenges and perspectives. Frontiers in Nanotechnology, 1, 1.
  14. Khatami, M., Sarani, M., Mosazadeh, F., Rajabalipour, M., Izadi, A., Abdollahpour-Alitappeh, M., ... & Borhani, F. (2019). Nickel-doped cerium oxide nanoparticles: green synthesis using stevia and protective effect against harmful ultraviolet rays. Molecules, 24(24), 4424.
  15. Korsvik, C., Patil, S., Seal, S., & Self, W. T. (2007). Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chemical communications, (10), 1056-1058.
  16. Liu, J., Hay, J., & Faught, B. E. (2013). The association of sleep disorder, obesity status, and diabetes mellitus among US adults—The NHANES 2009-2010 survey results. International journal of endocrinology, 2013.
  17. Mechchate, H., Es-Safi, I., Haddad, H., Bekkari, H., Grafov, A., & Bousta, D. (2021). Combination of Catechin, Epicatechin, and Rutin: Optimization of a novel complete antidiabetic formulation using a mixture design approach. The Journal of Nutritional Biochemistry, 88, 108520.
  18. Mechchate, H., Es-Safi, I., Louba, A., Alqahtani, A. S., Nasr, F. A., Noman, O. M., ... & Bousta, D. (2021). In vitro alpha-amylase and alpha-glucosidase inhibitory activity and in vivo antidiabetic activity of Withania frutescens L. Foliar extract. Molecules, 26(2), 293.
  19. Mendes, R. H., Hagen, M. E. K., Barp, J., Jong, E. V. D., Moreira, J. D., Oliveira, Á. R. D., ... & Belló-Klein, A. (2014). Isolated soy protein-based diet ameliorates glycemia and antioxidants enzyme activities in streptozotocin-induced diabetes. Food and Nutrition Sciences. Irvine, CA. Vol. 5, n. 21 (Nov. 2014), p. 2089-2096.
  20. Miri, A., & Sarani, M. (2018). Biosynthesis, characterization and cytotoxic activity of CeO2 nanoparticles. Ceramics International, 44(11), 12642-12647.
  21. Pirmohamed, T., Dowding, J. M., Singh, S., Wasserman, B., Heckert, E., Karakoti, A. S., ... & Self, W. T. (2010). Nanoceria exhibit redox state-dependent catalase mimetic activity. Chemical communications, 46(16), 2736-2738.
  22. Ramos, A. P., Cruz, M. A., Tovani, C. B., & Ciancaglini, P. (2017). Biomedical applications of nanotechnology. Biophysical reviews, 9(2), 79-89.
  23. Sangeetha, S., Archit, R., & SathiaVelu, A. (2014). Phytochemical testing, antioxidant activity, HPTLC and FTIR analysis of antidiabetic plants Nigella sativa, Eugenia jambolana, Andrographis paniculata and Gymnema sylvestre. J. Biotechnol, 9, 1-9.
  24. Saxena, R. C., Singh, R., Kumar, P., Yadav, S. C., Negi, M. P. S., Saxena, V. S., ... & Amit, A. (2010). A randomized double blind placebo controlled clinical evaluation of extract of Andrographis paniculata (KalmCold™) in patients with uncomplicated upper respiratory tract infection. Phytomedicine, 17(3-4), 178-185.
  25. Singh, R., Karakoti, A. S., Self, W., Seal, S., & Singh, S. (2016). Redox-sensitive cerium oxide nanoparticles protect human keratinocytes from oxidative stress induced by glutathione depletion. Langmuir, 32(46), 12202-12211.
  26. Singh, S., Kumar, U., Gittess, D., Sakthivel, T. S., Babu, B., & Seal, S. (2021). Cerium oxide nanomaterial with dual antioxidative scavenging potential: Synthesis and characterization. Journal of Biomaterials Applications, 36(5), 834-842.
  27. Singh, S., Ly, A., Das, S., Sakthivel, T. S., Barkam, S., & Seal, S. (2018). Cerium oxide nanoparticles at the nano-bio interface: Size-dependent cellular uptake. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup3), 956-963.
  28. Singh, S., Singh, A. N., Verma, A., & Dubey, V. K. (2013). A novel superoxide dismutase from Cicer arietinum L. seedlings: isolation, purification and characterization. Protein and peptide Letters, 20(7), 741-748.
  29. Singh, S., Verma, A., & Dubey, V. K. (2012). Effectivity of anti-oxidative enzymatic system on diminishing the oxidative stress induced by aluminium in chickpea (Cicer arietinum L.) seedlings. Brazilian Journal of Plant Physiology, 24, 47-54.
  30. Smith, H. J., Milberg, S. J., & Burke, S. J. (1996). Information privacy: Measuring individuals' concerns about organizational practices. MIS quarterly, 167-196.
  31. Weydert, C. J., & Cullen, J. J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nature protocols, 5(1), 51-66.
  32. Wickramaratne, M. N., Punchihewa, J. C., & Wickramaratne, D. B. M. (2016). In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC complementary and alternative medicine, 16, 1-5.
  33. Wu, D., Cao, X., & Wu, S. (2012). Overlapping elution–extrusion counter-current chromatography: A novel method for efficient purification of natural cytotoxic andrographolides from Andrographis paniculata. Journal of Chromatography A, 1223, 53-63.
  34. Zhang, M., Zhang, C., Zhai, X., Luo, F., Du, Y., & Yan, C. (2019). Science China Materials, 62, 1727-1739.
  35. Zou, Q. Y., Li, N., Dan, C., Deng, W. L., Peng, S. L., & Ding, L. S. (2010). A new ent-labdane diterpenoid from Andrographis paniculata. Chinese Chemical Letters, 21(9), 1091-1093.

How to Cite

Augmenting Antioxidative Properties of Cerium Oxide Nanomaterial with Andrographis paniculata Mediated Synthesis and Investigating its Biomedical Potentials. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1807

How to Cite

Augmenting Antioxidative Properties of Cerium Oxide Nanomaterial with Andrographis paniculata Mediated Synthesis and Investigating its Biomedical Potentials. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1807

HTML
239

Total
161

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Sneha Kumaria, Pandey, Shivam, Leela Manohar Aeshala, Anuj Kumar, Sushant Singha

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.