Skip to main content Skip to main navigation menu Skip to site footer

Optical design and fabrication of zinc selenide microlens array with extended depth of focus for biomedical imaging

  • Neha Khatri
  • Sonam Berwal
  • K Manjunath
  • Bharpoor Singh

Abstract

Optical coherence tomography is a well-known technique for the optical imaging biological tissues. However, the depth scanning range of high-resolution optical coherence tomography is restricted by its depth of focus. In this study, a Zinc Selenide (ZnSe) Microlens Array (MLA) is employed to overcome the depth-of-focus limitation of optical coherence tomography. The ZnSe material with a low Abbe number and high chromatic dispersion extends the depth of focus with transverse resolution. The ZnSe MLA focused the incident light (from visible to near-infrared (NIR) region) on multiple focal planes with the uniform distribution of light over a biological tissue. The MLA is designed using Zemax OpticStudio software and fabricated via a single-point diamond-turning based on Slow Tool Servo (STS) configuration. STS machining has the unique advantage of offering larger degrees of freedom with no additional baggage, thereby reducing the setup time. The experimental results show the effectiveness of the STS machining process in fabricating ZnSe MLA with desired accuracies. The characterization of fabricated MLA using Coherence Correlation Interferometry (CCI) depicts uniform lenslets with no structural and positional distortion, with a total error of 32 nm within the tolerance limit.

Section

References

  1. Berwal, S., Khatri, N., & Kim, D. 2022. "A review on design modalities of solar-pumped solid-state laser". Applied Surface Science Advances, 12, 100348.
  2. Bo, E., Luo, Y., Chen, S., Liu, X., Wang, N., Ge, X., . . . Li, J. 2017. "Depth-of-focus extension in optical coherence tomography via multiple aperture synthesis". Optica, 4(7), 701-706.
  3. Chen, C.-C., Huang, C.-Y., Peng, W.-J., Cheng, Y.-C., Yu, Z.-R., & Hsu, W.-Y. 2013. "Freeform surface machining error compensation method for ultra-precision slow tool servo diamond turning". Paper presented at the Optical Manufacturing and Testing X.
  4. Ding, Z., Ren, H., Zhao, Y., Nelson, J. S., & Chen, Z. 2002. "High-resolution optical coherence tomography over a large depth range with an axicon lens". Optics letters, 27(4), 243-245.
  5. Dong, J., Grant, C., Vuong, B., Nishioka, N., Gao, A. H., Beatty, M., . . . Grahmann, P. 2022. "Feasibility and safety of tethered capsule endomicroscopy in patients with Barrett’s esophagus in a multi-center study". Clinical Gastroenterology and Hepatology, 20(4), 756-765. e753.
  6. Geng, R., Yang, X., Xie, Q., Zhang, W., Kang, J., Liang, Y., & Li, R. 2021. "Ultra-precision diamond turning of ZnSe ceramics: Surface integrity and ductile regime machining mechanism". Infrared Physics & Technology, 115, 103706.
  7. Ghosh, G., Sidpara, A., & Bandyopadhyay, P. 2018. "Review of several precision finishing processes for optics manufacturing". Journal of Micromanufacturing, 1(2), 170-188.
  8. Giattina, S. D., Courtney, B. K., Herz, P. R., Harman, M., Shortkroff, S., Stamper, D. L., . . . Brezinski, M. E. 2006. "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)". International journal of cardiology, 107(3), 400-409.
  9. Guo, P., Li, Z., Xiong, Z., & Zhang, S. 2022. "A theoretical and experimental investigation into tool setting induced form error in diamond turning of micro-lens array". The International Journal of Advanced Manufacturing Technology, 1-11.
  10. Kang, W., Seigo, M., Xiao, H., Wang, D., & Liang, R. 2022. "Experimental Studies on Fabricating Lenslet Array with Slow Tool Servo". Micromachines, 13(10), 1564.
  11. Khatri, N., Sharma, R., Mishra, V., Kumar, M., Karar, V., & Sarepaka, R. V. 2015. "An experimental investigation on the influence of machining parameters on surface finish in diamond turning of silicon optics". Paper presented at the International Conference on Optics and Photonics 2015.
  12. Klocke, F., Brecher, C., Brinksmeier, E., Behrens, B., Dambon, O., Riemer, O., . . . Wenzel, C. (2013). Deterministic polishing of smooth and structured molds. In Fabrication of complex optical components (pp. 99-117): Springer.
  13. Lee, M.-K., & Kuo, K.-K. 2007. "Single-step fabrication of Fresnel microlens array on sapphire substrate of flip-chip gallium nitride light emitting diode by focused ion beam". Applied Physics Letters, 91(5), 051111.
  14. Li, D., Qiao, Z., Walton, K., Liu, Y., Xue, J., Wang, B., & Jiang, X. 2018. "Theoretical and experimental investigation of surface topography generation in slow tool servo ultra-precision machining of freeform surfaces". Materials, 11(12), 2566.
  15. Li, D., Wang, B., Qiao, Z., & Jiang, X. 2019. "Ultraprecision machining of microlens arrays with integrated on-machine surface metrology". Optics express, 27(1), 212-224.
  16. Li, L., & Allen, Y. Y. 2012. "Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera". Applied optics, 51(12), 1843-1852.
  17. Lim, C., Hong, M., Kumar, A. S., Rahman, M., & Liu, X. 2006. "Fabrication of concave micro lens array using laser patterning and isotropic etching". International Journal of Machine Tools and Manufacture, 46(5), 552-558.
  18. Lim, C., Hong, M., Lin, Y., Xie, Q., Luk’Yanchuk, B., Senthil Kumar, A., & Rahman, M. 2006. "Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning". Applied Physics Letters, 89(19), 191125.
  19. Liu, L., Liu, C., Howe, W. C., Sheppard, C., & Chen, N. 2007. "Binary-phase spatial filter for real-time swept-source optical coherence microscopy". Optics letters, 32(16), 2375-2377.
  20. Moore, S., Gomez, J., Lek, D., You, B. H., Kim, N., & Song, I.-H. 2016. "Experimental study of polymer microlens fabrication using partial-filling hot embossing technique". Microelectronic Engineering, 162, 57-62.
  21. Mukaida, M., & Yan, J. 2017. "Fabrication of hexagonal microlens arrays on single-crystal silicon using the tool-servo driven segment turning method". Micromachines, 8(11), 323.
  22. Nagayama, K., & Yan, J. 2021. "Deterministic error compensation for slow tool servo-driven diamond turning of freeform surface with nanometric form accuracy". Journal of Manufacturing Processes, 64, 45-57.
  23. Nussbaum, P., Voelkel, R., Herzig, H. P., Eisner, M., & Haselbeck, S. 1997. "Design, fabrication and testing of microlens arrays for sensors and microsystems". Pure and applied optics: Journal of the European optical society part A, 6(6), 617.
  24. Ortega, A., Strojnik, M., & Paez, G. 2007. "Wide-field OCT using micro lens arrays". Paper presented at the Infrared Spaceborne Remote Sensing and Instrumentation XV.
  25. Podoleanu, A. G. 2012. "Optical coherence tomography". Journal of microscopy, 247(3), 209-219.
  26. Romodina, M. N., & Singh, K. 2022. "Depth of focus extension in optical coherence tomography using ultrahigh chromatic dispersion of zinc selenide". Journal of Biophotonics, e202200051.
  27. Sakata, L. M., DeLeon‐Ortega, J., Sakata, V., & Girkin, C. A. 2009. "Optical coherence tomography of the retina and optic nerve–a review". Clinical & experimental ophthalmology, 37(1), 90-99.
  28. Sasaki, K., Kurokawa, K., Makita, S., & Yasuno, Y. 2012. "Extended depth of focus adaptive optics spectral domain optical coherence tomography". Biomedical optics express, 3(10), 2353-2370.
  29. Scheiding, S., Allen, Y. Y., Gebhardt, A., Li, L., Risse, S., Eberhardt, R., & Tünnermann, A. 2011. "Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo". Optics express, 19(24), 23938-23951.
  30. Singh, K., Dion, C., Wajszilber, M., Ozaki, T., Lesk, M. R., & Costantino, S. 2011. "Measurement of ocular fundus pulsation in healthy subjects using a novel Fourier-domain optical coherence tomography". Investigative ophthalmology & visual science, 52(12), 8927-8932.
  31. Singh, K., Sharma, G., & Tearney, G. J. 2018. "Estimation and compensation of dispersion for a high-resolution optical coherence tomography system". Journal of Optics, 20(2), 025301.
  32. Tohme, Y. 2008. "Trends in ultra precision machining of freeform optical surfaces". Paper presented at the Optical fabrication and testing.
  33. Tohme, Y. E., & Lowe, J. A. 2004. "Machining of freeform optical surfaces by slow slide servo method". Paper presented at the Proceedings of the American Society for Precision Engineering (ASPE) Annual Meeting.
  34. Tsai, T.-H., Leggett, C. L., Trindade, A. J., Sethi, A., Swager, A.-F., Joshi, V., . . . Namati, E. 2017. "Optical coherence tomography in gastroenterology: a review and future outlook". Journal of biomedical optics, 22(12), 121716.
  35. Xiao, H., Liang, R., Spires, O., Wang, H., Wu, H., & Zhang, Y. 2019. "Evaluation of surface and subsurface damages for diamond turning of ZnSe crystal". Optics express, 27(20), 28364-28382.
  36. Yan, J., Zhang, Z., Kuriyagawa, T., & Gonda, H. 2010. "Fabricating micro-structured surface by using single-crystalline diamond endmill". The International Journal of Advanced Manufacturing Technology, 51(9), 957-964.
  37. Yi, A., & Li, L. 2005. "Design and fabrication of a microlens array by use of a slow tool servo". Optics letters, 30(13), 1707-1709.
  38. Yin, Z., Dai, Y., Li, S., Guan, C., & Tie, G. 2011. "Fabrication of off-axis aspheric surfaces using a slow tool servo". International journal of machine tools and manufacture, 51(5), 404-410.
  39. Yu, D. P., Gan, S. W., Wong, Y. S., Hong, G. S., Rahman, M., & Yao, J. 2012. "Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces". The International Journal of Advanced Manufacturing Technology, 63(9), 1137-1152.
  40. Yu, D. P., Wong, Y. S., & Hong, G. S. 2011. "Optimal selection of machining parameters for fast tool servo diamond turning". The International Journal of Advanced Manufacturing Technology, 57(1), 85-99.
  41. Yuan, W., Li, L.-H., Lee, W.-B., & Chan, C.-Y. 2018. "Fabrication of microlens array and its application: a review". Chinese Journal of Mechanical Engineering, 31(1), 1-9.
  42. Zhang, F., Yang, Q., Bian, H., Liu, F., Li, M., Hou, X., & Chen, F. 2020. "Fabrication of ZnSe microlens array for a wide infrared spectral region". IEEE Photonics Technology Letters, 32(20), 1327-1330.
  43. Zhu, Z., To, S., Zhu, W.-L., & Huang, P. 2017. "Feasibility study of the novel quasi-elliptical tool servo for vibration suppression in the turning of micro-lens arrays". International journal of machine tools and manufacture, 122, 98-105.

How to Cite

Optical design and fabrication of zinc selenide microlens array with extended depth of focus for biomedical imaging . (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.008.293

How to Cite

Optical design and fabrication of zinc selenide microlens array with extended depth of focus for biomedical imaging . (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.008.293

HTML
782

Total
1347

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Neha Khatri, Sonam Berwal, K Manjunath, Bharpoor Singh

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Most read articles by the same author(s)