Skip to main content Skip to main navigation menu Skip to site footer

Optical design of a tunable microneedle array for photodynamic therapy of metastatic melanomas

  • Diptayan Dasgupta
  • Sonam Berwal
  • Bharpoor Singh
  • Neha Khatri

Abstract

The need for photodynamic therapy is increasing with the rise of skin cancer melanoma detection. However, low penetration depth of light in the UV range and higher scattering of skin tissues cause harsh clinical practices and reduced irradiance for the activation of chemicals such as photosensitizers to facilitate cell necrosis of malignant tumors. In this paper, a tunable microlens integrated on a microneedle array is designed for variable focusing to reduce melanomas at multiple sites with an improved intensity for reactive oxygen species production. A light distribution of 36% percent of the input intensity is achieved at the targeted distance of 4.35 mm for blue light. Red light attained a light distribution of 13% of the input intensity at a targeted distance of 6.5 mm. Designing such a light, delivery-based in-vivo biomedical device is of extreme importance for photodynamic therapy of skin cancer on and beyond the epidermal tissue layer.

Section

References

  1. Abrahamse, H., & Hamblin, M. R. 2016. "New photosensitizers for photodynamic therapy". Biochemical Journal, 473(4), 347-364.
  2. Allen, D. C. (2000). Histopathology reporting: Springer.
  3. Ash, C., Dubec, M., Donne, K., & Bashford, T. 2017. "Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods". Lasers in medical science, 32, 1909-1918.
  4. Calixto, G. M. F., Bernegossi, J., De Freitas, L. M., Fontana, C. R., & Chorilli, M. 2016. "Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review". Molecules, 21(3), 342.
  5. Eggermont, A. M., Chiarion-Sileni, V., Grob, J. J., Dummer, R., Wolchok, J. D., Schmidt, H., . . . Richards, J. M. (2014). Ipilimumab versus placebo after complete resection of stage III melanoma: Initial efficacy and safety results from the EORTC 18071 phase III trial. In: American Society of Clinical Oncology.
  6. Ganeson, K., Alias, A. H., Murugaiyah, V., Amirul, A.-A. A., Ramakrishna, S., & Vigneswari, S. 2023. "Microneedles for Efficient and Precise Drug Delivery in Cancer Therapy". Pharmaceutics, 15(3), 744.
  7. Guo, C., Yu, H., Feng, B., Gao, W., Yan, M., Zhang, Z., . . . Liu, S. 2015. "Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent". Biomaterials, 52, 407-416.
  8. He, X., Chen, Y., & Tang, L. (2008). Modeling of flexible needle for haptic insertion simulation. Paper presented at the 2008 IEEE Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems.
  9. Iqbal, A., Biermann, D., Ali, H. M., Zaini, J., & Metzger, M. 2019. "Investigating the impact of tool inertia on machinability of a β-titanium alloy using tool deflection and acoustic emission". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233(7), 1745-1760.
  10. Jiang, Z., Shao, J., Yang, T., Wang, J., & Jia, L. 2014. "Pharmaceutical development, composition and quantitative analysis of phthalocyanine as the photosensitizer for cancer photodynamic therapy". Journal of pharmaceutical and biomedical analysis, 87, 98-104.
  11. Keung, E. Z., & Gershenwald, J. E. 2018. "The eighth edition American Joint Committee on Cancer (AJCC) melanoma staging system: implications for melanoma treatment and care". Expert review of anticancer therapy, 18(8), 775-784.
  12. Khatri, N., Berwal, S., Manjunath, K., & Singh, B. 2023. "Optical design and fabrication of zinc selenide microlens array with extended depth of focus for biomedical imaging". Nanofabrication, 8.
  13. Kim, M., An, J., Kim, K. S., Choi, M., Humar, M., Kwok, S. J., . . . Yun, S. H. 2016. "Optical lens-microneedle array for percutaneous light delivery". Biomedical optics express, 7(10), 4220-4227.
  14. Kim, M. M., & Darafsheh, A. 2020. "Light sources and dosimetry techniques for photodynamic therapy". Photochemistry and photobiology, 96(2), 280-294.
  15. Li, X., Zhao, Z., Zhang, M., Ling, G., & Zhang, P. 2022. "Research progress of microneedles in the treatment of melanoma". Journal of Controlled Release, 348, 631-647.
  16. Magnain, C., Elias, M., & Frigerio, J.-M. 2008. "Skin color modeling using the radiative transfer equation solved by the auxiliary function method: inverse problem". JOSA A, 25(7), 1737-1743.
  17. Marghoob, A. A., Koenig, K., Bittencourt, F. V., Kopf, A. W., & Bart, R. S. 2000. "Breslow thickness and Clark level in melanoma: support for including level in pathology reports and in American Joint Committee on Cancer Staging". Cancer, 88(3), 589-595.
  18. Naidoo, C., Kruger, C. A., & Abrahamse, H. 2018. "Photodynamic therapy for metastatic melanoma treatment: A review". Technology in cancer research & treatment, 17, 1533033818791795.
  19. Okuno, T., Kato, S., Hatakeyama, Y., Okajima, J., Maruyama, S., Sakamoto, M., . . . Kodama, T. 2013. "Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light". Journal of controlled release, 172(3), 879-884.
  20. Oltulu, P., Ince, B., Kokbudak, N., Findik, S., & Kilinc, F. 2018. "Measurement of epidermis, dermis, and total skin thicknesses from six different body regions with a new ethical histometric technique". Turkish Journal of Plastic Surgery, 26(2), 56.
  21. Paluncic, J., Kovacevic, Z., Jansson, P. J., Kalinowski, D., Merlot, A. M., Huang, M. L.-H., . . . Richardson, D. R. 2016. "Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic signaling". Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863(4), 770-784.
  22. Robinson, J. T., Welsher, K., Tabakman, S. M., Sherlock, S. P., Wang, H., Luong, R., & Dai, H. 2010. "High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes". Nano research, 3, 779-793.
  23. Ruiz-González, R., Acedo, P., Sánchez-García, D., Nonell, S., Cañete, M., Stockert, J. C., & Villanueva, A. 2013. "Efficient induction of apoptosis in HeLa cells by a novel cationic porphycene photosensitizer". European Journal of Medicinal Chemistry, 63, 401-414.
  24. Sharman, W. M., Allen, C. M., & Van Lier, J. E. 1999. "Photodynamic therapeutics: basic principles and clinical applications". Drug discovery today, 4(11), 507-517.
  25. Singh, S., Aggarwal, A., Bhupathiraju, N. D. K., Arianna, G., Tiwari, K., & Drain, C. M. 2015. "Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics". Chemical reviews, 115(18), 10261-10306.
  26. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. 2021. "Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries". CA: a cancer journal for clinicians, 71(3), 209-249.
  27. Swavey, S., & Tran, M. (2013). Porphyrin and phthalocyanine photosensitizers as PDT agents: a new modality for the treatment of melanoma. In Recent Advances in the biology, therapy and management of melanoma: IntechOpen.
  28. Wu, X., KONO, J., TAKAMA, N., & KIM, B. (2019). Development of Optical Microlens-Microneedle Array for Phototherapy. Paper presented at the Proceedings of JSPE Semestrial Meeting 2019 JSPE Spring Conference.
  29. Wu, X., Park, J., Chow, S. Y. A., Kasuya, M. C. Z., Ikeuchi, Y., & Kim, B. 2022. "Localised light delivery on melanoma cells using optical microneedles". Biomedical optics express, 13(2), 1045-1060.
  30. Wu, X., Takama, N., & Kim, B. (2019). A biodegradable microneedles–trapezoidal micropatterned patch in the LED therapy. Paper presented at the 2019 IEEE CPMT Symposium Japan (ICSJ).
  31. Yang, T. D., Park, K., Kim, H.-J., Im, N.-R., Kim, B., Kim, T., . . . Choi, Y. 2017. "In vivo photothermal treatment with real-time monitoring by optical fiber-needle array". Biomedical optics express, 8(7), 3482-3492.
  32. Zhao, H., Wang, X., Geng, Z., Liang, N., Li, Q., Hu, X., & Wei, Z. 2022. "Dual-function microneedle array for efficient photodynamic therapy with transdermal co-delivered light and photosensitizers". Lab on a Chip, 22(23), 4521-4530.
  33. Zhu, T. C., & Finlay, J. C. 2008. "The role of photodynamic therapy (PDT) physics". Medical physics, 35(7Part1), 3127-3136.

How to Cite

Optical design of a tunable microneedle array for photodynamic therapy of metastatic melanomas. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1795

How to Cite

Optical design of a tunable microneedle array for photodynamic therapy of metastatic melanomas. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1795

HTML
247

Total
44

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Diptayan Dasgupta, Sonam Berwal, Bharpoor Singh, Neha Khatri

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.