Skip to main content Skip to main navigation menu Skip to site footer

On the iso-conversional analysis of the activation energy of amorphous-crystalline transition in nano-crystalline Se-Te-In-Pb chalcogenide glasses

  • Aayush Kainthla
  • Shubham Sharma
  • Meenakshi
  • Sangam Kapoor
  • Anjali
  • Nagesh Thakur
  • Balbir Singh Patial

Abstract

The present paper examines the fluctuations in activation energy of amorphous-crystalline phase transition of Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10) chalcogenide glasses using computational iso-conversional analysis for the data obtained under non-isothermal conditions using differential scanning calorimetric technique at four different heating rates; 5, 10, 15 and 20 K/min. This study examines how the activation energy of crystallization (Ec) varies with the degree of conversion (χ) and temperature (T) using an algorithm developed in Python named as HPU-B-MASS. The Python algorithm incorporates iso-conversional methods; Kissinger-Akahira-Sunose (KAS), Ozawa-Flynn-Wall (OFW), Tang & Chen and Starink methods to analyze the variation of  with both χ and T. It is found that Ec is not constant but varies with χ as well as T. The iso-conversional analysis of the investigated glasses indicates that the assumption of constant Ec is not appropriate. Ec obtained for the investigated alloys from different methods are different. This difference can be attributed to the fact that these methods are based on approximations involved in obtaining the final equation of different formalisms. Furthermore, our findings suggest an increased propensity for crystallization in glasses with Pb content as compared to the parent ternary alloy.

Section

References

  1. Abdel-Rahim, M. A., Hafiz, M. M., & Shamekh, A. M. (2005). A study of crystallization kinetics of some Ge–Se–In glasses. Physica B: Condensed Matter, 369, 143–154. https://doi.org/10.1016/j.physb.2005.08.007
  2. Abu-Sehly, A. A. (2009). Variation of the activation energy of crystallization in Se81.5Te16 Sb2.5 chalcogenide glass: Isoconversional analysis. Thermochim. Acta, 485, 14–19. https://doi.org/10.1016/j.tca.2008.12.006
  3. Abu-Sehly, A. A., & Elabbar, A. A. (2007). Kinetics of crystallization in amorphous Se73.2Te21.1 Sb5.7 under isochronal conditions: Effect of heating rate on the activation energy. Physica B: Condensed Matter, 390, 196–202. https://doi.org/10.1016/j.physb.2006.08.014
  4. Agne, M., Lambrecht, A., Schiessl, U., & Tacke, M. (1994). Guided modes and far-field patterns of lead chalcogenide buried heterostructure laser diodes. Infrared Physics & Technology, 35, 47–58. https://doi.org/10.1016/1350-4495(94)90041-8
  5. Akahira, T. (1971). Trans. Joint convention of four electrical institutes. Res. Rep. Chiba Inst. Technol., 16, 22–31. https://cir.nii.ac.jp/crid/1571417125949031680
  6. Anjali, Patial, B. S., & Thakur, N. (2020). On the structural and thermophysical study of Pb-doped Se–Te–In nanochalcogenide alloys. Journal of Asian Ceramic Societies, 8, 777–792. https://doi.org/10.1080/21870764.2020.1789289
  7. Anjali, Patial, B. S., Sharma, P., & Thakur, N. (2023). Pb-additive Se-Te-In nano-chalcogenide thin films: preparation, morphological, optical analysis and material perspective for phase-change memory devices. Journal of Materials Science: Materials in Electronics, 34, 1833. https://doi.org/10.1007/s10854-023-11164-5
  8. Carlson, D. E., & Wronski, C. R. (1976). Amorphous silicon solar cell. Applied Physics Letters, 28, 671–673. https://doi.org/10.1063/1.88617
  9. Chiba, R., & Funakoshi, N. (1988). Crystallization of vacuum deposited Te100-x Sex0.7 Cu30 alloy film. Journal of Non-crystalline Solids, 105, 149–154. https://doi.org/10.1016/0022-3093(88)90349-3
  10. Cui, S., Chahal, R., Boussard-Plédel, C., Nazabal, V., Doualan, J.-L., Troles, J., . . . Bureau, B. (2013). From selenium-to tellurium-based glass optical fibers for infrared spectroscopies. Molecules, 18, 5373–5388. https://doi.org/10.3390/molecules18055373
  11. Deepika, Rathore, K. S., & Saxena, N. S. (2009, July). A kinetic analysis on non-isothermal glass–crystal transformation in Ge1-x Snx Se2.5 (0 ≤ x ≤ 0.5) glasses. Journal of Physics: Condensed Matter, 21, 335102. https://doi.org/10.1088/0953-8984/21/33/335102
  12. Flynn, J. H., & Wall, L. A. (1966). General treatment of the thermogravimetry of polymers. Journal of research of the National Bureau of Standards. Section A, Physics and chemistry, 70, 487. https://doi.org/10.6028%2Fjres.070A.043
  13. Imran, M., Bhandari, D., & Saxena, N. (2001). Kinetic studies of bulk Ge₂₂ Se₇₈₋ₓ Biₓ (x= 0, 4 and 8) semiconducting glasses. J. Therm. Anal. Calorim., 65, 257–274. https://doi.org/10.1023/a:1011557425244
  14. Jiang, F. J., & Okuda, M. O. (1991). The effect of doping on the erasure speed and stability of reversible phase-change optical recording films. Japanese Journal of Applied Physics, 30, 97. https://doi.org/10.1143/JJAP.30.97
  15. Joraid, A. A. (2005). Limitation of the Johnson–Mehl–Avrami (JMA) formula for kinetic analysis of the crystallization of a chalcogenide glass. Thermochim. Acta, 436, 78–82. https://doi.org/10.1016/j.tca.2005.07.005
  16. Kastner, M., Adler, D., & Fritzsche, H. (1976). Valence-alternation model for localized gap states in lone-pair semiconductors. Physical Review Letters, 37, 1504. https://doi.org/10.1103/PhysRevLett.37.1504
  17. Kaur, G., Komatsu, T., & Thangaraj, R. (2000). Crystallization kinetics of bulk amorphous Se–Te–Sn system. Journal of materials science, 35, 903–906. https://doi.org/10.1023/A:1004798308059
  18. Kissinger, H. E. (1956). Differential thermal analysis. J. Res. Natl. Bur. Stand, 57, 217. https://books.google.com/books?hl=en&lr=&id=AD5XTgl1T0wC&oi=fnd&pg=PA217&dq=+H.E.+Kissinger,+J+Res+Natl+Bur+Stand+57(1956)+217&ots=MW5nHDRyhj&sig=RZH2YLZrkKMJcuJHpxEW3ldYutQ
  19. Kissinger, H. E. (1957). Reaction kinetics in differential thermal analysis. Analytical chemistry, 29, 1702–1706. https://doi.org/10.1021/ac60131a045
  20. Kumar, H., Mehta, N., & Kumar, A. (2011). Effect of some chemical modifiers on the glass/crystal transformation in binary Se₉₀ In₁₀ alloy. J.Therm. Anal. Calorim., 103, 903–909. https://doi.org/10.1007/s10973-010-1181-2
  21. Kumar, H., Mehta, N., & Singh, K. (2009). Calorimetric studies of glass transition phenomenon in glassy Se₈₀₋ₓ Te₂₀ Snₓ alloys. Physica Scripta, 80, 065602. https://doi.org/10.1088/0031-8949/80/06/065602
  22. Lankhorst, M. H., Ketelaars, B. W., & Wolters, R. A. (2005). Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Materials, 4, 347–352. https://doi.org/10.1038/nmat1350
  23. Liu, F., Sommer, F., & Mittemeijer, E. J. (2004). Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys; application to calorimetric data. Acta materialia, 52, 3207–3216. https://doi.org/10.1016/j.actamat.2004.03.020
  24. Liu, Q., Gan, F., Zhao, X., Tanaka, K., Narazaki, A., & Hirao, K. (2001). Second-harmonic generation in Ge₂₀ As₂₅ S₅₅ glass irradiated by an electron beam. Optics Letters, 26, 1347–1349. https://doi.org/10.1364/OL.26.001347
  25. Lopes, A. A., Monteiro, R. C., Soares, R. S., Lima, M. M., & Fernandes, M. H. (2014). Crystallization kinetics of a barium–zinc borosilicate glass by a non-isothermal method. J. Alloys and Compounds, 591, 268–274. https://doi.org/10.1016/j.jallcom.2013.12.086
  26. Lu, Y., Song, S., Shen, X., Wu, L., Song, Z., Liu, B., . . . Nie, Q. (2013). Investigation of Ga₈Sb₃₄Se₅₈ material for low-power phase change memory. ECS Solid State Letters, 2, P94. https://doi.org/10.1149/2.008310ssl
  27. Maharjan, N. B., Singh, K., & Saxena, N. S. (2003). Calorimetric studies in Se₇₅Te₂₅₋ₓSnₓ chalcogenide glasses. physica status solidi (a), 195, 305–310. https://doi.org/10.1002/pssa.200305918
  28. Mott, N. F. (1971). Conduction in non-crystalline systems: VIII. The highly correlated electron gas in doped semiconductors and in vanadium monoxide. Philosophical Magazine, 24, 935–958. https://doi.org/10.1080/14786437108217059
  29. Muragi, B. D., Zope, M. J., & Zope, J. K. (1988). Mechanism for nonlinear IV behaviour and the temperature dependence of threshold switching in the Se–Te–Sn system. Applied Physics A, 46, 299–303. https://doi.org/10.1007/BF01141596
  30. Murugavel, S., & Asokan, S. (1998). Carrier-type reversal in Pb-modified chalcogenide glasses. Physical Review B, 58, 4449. https://doi.org/10.1103/PhysRevB.58.4449
  31. Ovshinsky, S. R. (1968). Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett., 21, 1450. https://doi.org/10.1103/PhysRevLett.21.1450
  32. Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the chemical society of Japan, 38, 1881–1886. https://doi.org/10.1246/bcsj.38.1881
  33. Patial, B. S., Sharma, N., Bhardwaj, S., & Thakur, N. (2022). Crystallization study of Pb additive Se–Te–Ge nanostructured alloys using non-isothermal differential scanning calorimetry. Nanofabrication, 7, 138–145. https://doi.org/10.37819/nanofab.007.195
  34. Patial, B. S., Thakur, N., & Tripathi, S. K. (2011). Crystallization Study of Sn additive Se-Te Chalcogenide Alloys. J. Therm. Anal. Calorim., 106, 845.
  35. Patial, B. S., Thakur, N., & Tripathi, S. K. (2011). On the crystallization kinetics of In additive Se–Te chalcogenide glasses. Thermochim. Acta, 513, 1–8. https://doi.org/10.1016/j.tca.2010.09.009
  36. Patial, B. S., Thakur, N., & Tripathi, S. K. (2013). Kinetics of amorphous-crystallization transformation of Se₈₅₋ₓTe₁₅ Snₓ (x= 2, 4 and 6) alloys under non-isothermal conditions using Matusita's approach. AIP Conf. Proc., 1512, pp. 542–543. https://doi.org/10.1063/1.4791151
  37. Patial, B. S., Thakur, N., & Tripathi, S. K. (2011). Crystallization Study of Sn additive Se-Te Chalcogenide Alloys. J. Therm. Anal. Calorim., 106, 845–852. https://doi.org/10.1007/s10973-011-1579-5
  38. Pattanaik, A. K., & Srinivasan, A. (2003). Electrical and optical properties of amorphous Pbx In25-x Se75 films with a dispersion of nanocrystallites. Journal of Optoelectronics and Advanced Materials, 5, 1161–1167. https://old.joam.inoe.ro/arhiva/pdf5_5/Pattanaik.pdf
  39. Raoux, S., Wełnic, W., & Ielmini, D. (2010). Phase change materials and their application to nonvolatile memories. Chemical Reviews, 110, 240–267. https://doi.org/10.1021/cr900040x
  40. Sahay, S. S., & Krishnan, K. (2004). Modeling the isochronal crystallization kinetics. Physica B: Condensed Matter, 348, 310–316. https://doi.org/10.1016/j.physb.2003.12.006
  41. Shaaban, E. R., & Tomsah, I. B. (2011). The effect of Sb content on glass-forming ability, the thermal stability, and crystallization of Ge–Se chalcogenide glass. J. Therm. Anal. Calorim., 105, 191–198. https://doi.org/10.1007/s10973-011-1317-z
  42. Shaaban, E., Kansal, I., Shapaan, M., & Ferreira, J. (2009). Thermal stability and crystallization kinetics of ternary Se–Te–Sb semiconducting glassy alloys. J. Therm. Anal. Calorim., 98, 347–354. https://doi.org/10.1007/s10973-009-0313-z
  43. Starink, M. J. (2003). The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim. Acta, 404, 163–176. https://doi.org/10.1016/S0040-6031(03)00144-8
  44. Starink, M. J., & Zahra, A.-M. (1997). Determination of the transformation exponent s from experiments at constant heating rate. Thermochim. Acta, 298, 179–189. https://doi.org/10.1016/S0040-6031(97)00118-4
  45. Tacke, M. (1995). New developments and applications of tunable IR lead salt lasers. Infrared Physics & Technology, 36, 447–463. https://doi.org/10.1016/1350-4495(94)00101-P
  46. Tohge, N., Matsuo, H., & Minami, T. (1987). Electrical properties of n-type semiconducting chalcogenide glasses in the system Pb-Ge-Se. Journal of Non-Crystalline Solids, 95, 809–816. https://doi.org/10.1016/S0022-3093(87)80685-3
  47. Tripathi, S. K. (2010). Temperature-dependent barrier height in CdSe Schottky diode. Journal of materials science, 45, 5468–5471. https://doi.org/10.1007/s10853-010-4601-6
  48. Tripathi, S. K., Patial, B. S., & Thakur, N. (2012). Glass transition and crystallization study of chalcogenide Se₇₀ Te₁₅ In₁₅ glass. J. Therm. Anal. Calorim., 107, 31–38. https://doi.org/10.1007/s10973-011-1724-1
  49. Turnbull, D., & Fisher, J. C. (1949). Rate of nucleation in condensed systems. The Journal of chemical physics, 17, 71–73. https://doi.org/10.1063/1.1747055
  50. Vashist, P., Patial, B. S., Bhardwaj, S., Tripathi, S. K., & Thakur, N. (2023). On the non-isothermal crystallization kinetics, glass forming ability and thermal stability of Bi additive Se–Te–Ge alloys. J. Therm. Anal. Calorim., 148, 7717-7726. https://doi.org/10.1007/s10973-023-12271-5
  51. Vyazovkin, S. (2000). Computational aspects of kinetic analysis.: Part C. The ICTAC Kinetics Project—the light at the end of the tunnel? Thermochim. Acta, 355, 155–163. https://doi.org/10.1016/S0040-6031(00)00445-7
  52. Vyazovkin, S. (2000). Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. International Reviews in Physical Chemistry, 19, 45–60. https://doi.org/10.1080/014423500229855
  53. Vyazovkin, S. (2000). On the phenomenon of variable activation energy for condensed phase reactions. New Journal of Chemistry, 24, 913–917. https://doi.org/10.1039/B004279J
  54. Vyazovkin, S. (2003). Reply to “What is meant by the term ‘variable activation energy’when applied in the kinetics analyses of solid state decompositions (crystolysis reactions)?”. Thermochim. Acta, 397, 269–271. https://doi.org/10.1016/S0040-6031(02)00391-X
  55. Vyazovkin, S., & Dranca, I. (2006). Isoconversional analysis of combined melt and glass crystallization data. Macromolecular Chemistry and Physics, 207, 20–25. https://doi.org/10.1002/macp.200500419
  56. Wanjun, T., & Donghua, C. (2005). An integral method to determine variation in activation energy with extent of conversion. Thermochim. Acta, 433, 72–76. https://doi.org/10.1016/j.tca.2005.02.004
  57. Wilhelm, A. A., Boussard-Pledel, C., Coulombier, Q., Lucas, J., Bureau, B., & Lucas, P. (2007). Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics. Advanced Materials, 19, 3796–3800. https://doi.org/10.1002/adma.200700823
  58. Wojciech, W., Kalb, J. A., Wamwangi, D., Steimer, C., & Wuttig, M. (2007). Phase change materials: from structures to kinetics. Journal of Materials Research, 22, 2368–2375. https://doi.org/10.1557/jmr.2007.0301
  59. Wuttig, M., & Steimer, C. (2007). Phase change materials: From material science to novel storage devices. Applied Physics A, 87, 411–417. https://doi.org/10.1007/s00339-007-3931-y
  60. Wuttig, M., & Yamada, N. (2007). Phase-change materials for rewriteable data storage. Nature materials, 6, 824–832. https://doi.org/10.1038/nmat2009
  61. Wuttig, M., Bhaskaran, H., & Taubner, T. (2017). Phase-change materials for non-volatile photonic applications. Nature Photonics, 11, 465–476. https://doi.org/10.1038/nphoton.2017.126
  62. Yoon, S.-M., Lee, N.-Y., Ryu, S.-O., Choi, K.-J., Park, Y.-S., Lee, S.-Y., . . . Wuttig, M. (2006). Sb–Se based phase-change memory device with lower power and higher speed operations. IEEE electron device letters, 27, 445–447. https://doi.org/10.1109/LED.2006.874130
  63. Zakery, A., & Elliott, S. R. (2003). Optical properties and applications of chalcogenide glasses: a review. Journal of Non-Crystalline Solids, 330, 1–12. https://doi.org/10.1016/j.jnoncrysol.2003.08.064

How to Cite

On the iso-conversional analysis of the activation energy of amorphous-crystalline transition in nano-crystalline Se-Te-In-Pb chalcogenide glasses. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2020

How to Cite

On the iso-conversional analysis of the activation energy of amorphous-crystalline transition in nano-crystalline Se-Te-In-Pb chalcogenide glasses. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2020

HTML
19

Total
20

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Aayush Kainthla, Shubham Sharma, Meenakshi, Sangam Kapoor , Anjali , Nagesh Thakur, Balbir Singh Patial

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.