On the iso-conversional analysis of the activation energy of amorphous-crystalline transition in nano-crystalline Se-Te-In-Pb chalcogenide glasses
Abstract
The present paper examines the fluctuations in activation energy of amorphous-crystalline phase transition of Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10) chalcogenide glasses using computational iso-conversional analysis for the data obtained under non-isothermal conditions using differential scanning calorimetric technique at four different heating rates; 5, 10, 15 and 20 K/min. This study examines how the activation energy of crystallization (Ec) varies with the degree of conversion (χ) and temperature (T) using an algorithm developed in Python named as HPU-B-MASS. The Python algorithm incorporates iso-conversional methods; Kissinger-Akahira-Sunose (KAS), Ozawa-Flynn-Wall (OFW), Tang & Chen and Starink methods to analyze the variation of with both χ and T. It is found that Ec is not constant but varies with χ as well as T. The iso-conversional analysis of the investigated glasses indicates that the assumption of constant Ec is not appropriate. Ec obtained for the investigated alloys from different methods are different. This difference can be attributed to the fact that these methods are based on approximations involved in obtaining the final equation of different formalisms. Furthermore, our findings suggest an increased propensity for crystallization in glasses with Pb content as compared to the parent ternary alloy.
References
- Abdel-Rahim, M. A., Hafiz, M. M., & Shamekh, A. M. (2005). A study of crystallization kinetics of some Ge–Se–In glasses. Physica B: Condensed Matter, 369, 143–154. https://doi.org/10.1016/j.physb.2005.08.007
- Abu-Sehly, A. A. (2009). Variation of the activation energy of crystallization in Se81.5Te16 Sb2.5 chalcogenide glass: Isoconversional analysis. Thermochim. Acta, 485, 14–19. https://doi.org/10.1016/j.tca.2008.12.006
- Abu-Sehly, A. A., & Elabbar, A. A. (2007). Kinetics of crystallization in amorphous Se73.2Te21.1 Sb5.7 under isochronal conditions: Effect of heating rate on the activation energy. Physica B: Condensed Matter, 390, 196–202. https://doi.org/10.1016/j.physb.2006.08.014
- Agne, M., Lambrecht, A., Schiessl, U., & Tacke, M. (1994). Guided modes and far-field patterns of lead chalcogenide buried heterostructure laser diodes. Infrared Physics & Technology, 35, 47–58. https://doi.org/10.1016/1350-4495(94)90041-8
- Akahira, T. (1971). Trans. Joint convention of four electrical institutes. Res. Rep. Chiba Inst. Technol., 16, 22–31. https://cir.nii.ac.jp/crid/1571417125949031680
- Anjali, Patial, B. S., & Thakur, N. (2020). On the structural and thermophysical study of Pb-doped Se–Te–In nanochalcogenide alloys. Journal of Asian Ceramic Societies, 8, 777–792. https://doi.org/10.1080/21870764.2020.1789289
- Anjali, Patial, B. S., Sharma, P., & Thakur, N. (2023). Pb-additive Se-Te-In nano-chalcogenide thin films: preparation, morphological, optical analysis and material perspective for phase-change memory devices. Journal of Materials Science: Materials in Electronics, 34, 1833. https://doi.org/10.1007/s10854-023-11164-5
- Carlson, D. E., & Wronski, C. R. (1976). Amorphous silicon solar cell. Applied Physics Letters, 28, 671–673. https://doi.org/10.1063/1.88617
- Chiba, R., & Funakoshi, N. (1988). Crystallization of vacuum deposited Te100-x Sex0.7 Cu30 alloy film. Journal of Non-crystalline Solids, 105, 149–154. https://doi.org/10.1016/0022-3093(88)90349-3
- Cui, S., Chahal, R., Boussard-Plédel, C., Nazabal, V., Doualan, J.-L., Troles, J., . . . Bureau, B. (2013). From selenium-to tellurium-based glass optical fibers for infrared spectroscopies. Molecules, 18, 5373–5388. https://doi.org/10.3390/molecules18055373
- Deepika, Rathore, K. S., & Saxena, N. S. (2009, July). A kinetic analysis on non-isothermal glass–crystal transformation in Ge1-x Snx Se2.5 (0 ≤ x ≤ 0.5) glasses. Journal of Physics: Condensed Matter, 21, 335102. https://doi.org/10.1088/0953-8984/21/33/335102
- Flynn, J. H., & Wall, L. A. (1966). General treatment of the thermogravimetry of polymers. Journal of research of the National Bureau of Standards. Section A, Physics and chemistry, 70, 487. https://doi.org/10.6028%2Fjres.070A.043
- Imran, M., Bhandari, D., & Saxena, N. (2001). Kinetic studies of bulk Ge₂₂ Se₇₈₋ₓ Biₓ (x= 0, 4 and 8) semiconducting glasses. J. Therm. Anal. Calorim., 65, 257–274. https://doi.org/10.1023/a:1011557425244
- Jiang, F. J., & Okuda, M. O. (1991). The effect of doping on the erasure speed and stability of reversible phase-change optical recording films. Japanese Journal of Applied Physics, 30, 97. https://doi.org/10.1143/JJAP.30.97
- Joraid, A. A. (2005). Limitation of the Johnson–Mehl–Avrami (JMA) formula for kinetic analysis of the crystallization of a chalcogenide glass. Thermochim. Acta, 436, 78–82. https://doi.org/10.1016/j.tca.2005.07.005
- Kastner, M., Adler, D., & Fritzsche, H. (1976). Valence-alternation model for localized gap states in lone-pair semiconductors. Physical Review Letters, 37, 1504. https://doi.org/10.1103/PhysRevLett.37.1504
- Kaur, G., Komatsu, T., & Thangaraj, R. (2000). Crystallization kinetics of bulk amorphous Se–Te–Sn system. Journal of materials science, 35, 903–906. https://doi.org/10.1023/A:1004798308059
- Kissinger, H. E. (1956). Differential thermal analysis. J. Res. Natl. Bur. Stand, 57, 217. https://books.google.com/books?hl=en&lr=&id=AD5XTgl1T0wC&oi=fnd&pg=PA217&dq=+H.E.+Kissinger,+J+Res+Natl+Bur+Stand+57(1956)+217&ots=MW5nHDRyhj&sig=RZH2YLZrkKMJcuJHpxEW3ldYutQ
- Kissinger, H. E. (1957). Reaction kinetics in differential thermal analysis. Analytical chemistry, 29, 1702–1706. https://doi.org/10.1021/ac60131a045
- Kumar, H., Mehta, N., & Kumar, A. (2011). Effect of some chemical modifiers on the glass/crystal transformation in binary Se₉₀ In₁₀ alloy. J.Therm. Anal. Calorim., 103, 903–909. https://doi.org/10.1007/s10973-010-1181-2
- Kumar, H., Mehta, N., & Singh, K. (2009). Calorimetric studies of glass transition phenomenon in glassy Se₈₀₋ₓ Te₂₀ Snₓ alloys. Physica Scripta, 80, 065602. https://doi.org/10.1088/0031-8949/80/06/065602
- Lankhorst, M. H., Ketelaars, B. W., & Wolters, R. A. (2005). Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Materials, 4, 347–352. https://doi.org/10.1038/nmat1350
- Liu, F., Sommer, F., & Mittemeijer, E. J. (2004). Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys; application to calorimetric data. Acta materialia, 52, 3207–3216. https://doi.org/10.1016/j.actamat.2004.03.020
- Liu, Q., Gan, F., Zhao, X., Tanaka, K., Narazaki, A., & Hirao, K. (2001). Second-harmonic generation in Ge₂₀ As₂₅ S₅₅ glass irradiated by an electron beam. Optics Letters, 26, 1347–1349. https://doi.org/10.1364/OL.26.001347
- Lopes, A. A., Monteiro, R. C., Soares, R. S., Lima, M. M., & Fernandes, M. H. (2014). Crystallization kinetics of a barium–zinc borosilicate glass by a non-isothermal method. J. Alloys and Compounds, 591, 268–274. https://doi.org/10.1016/j.jallcom.2013.12.086
- Lu, Y., Song, S., Shen, X., Wu, L., Song, Z., Liu, B., . . . Nie, Q. (2013). Investigation of Ga₈Sb₃₄Se₅₈ material for low-power phase change memory. ECS Solid State Letters, 2, P94. https://doi.org/10.1149/2.008310ssl
- Maharjan, N. B., Singh, K., & Saxena, N. S. (2003). Calorimetric studies in Se₇₅Te₂₅₋ₓSnₓ chalcogenide glasses. physica status solidi (a), 195, 305–310. https://doi.org/10.1002/pssa.200305918
- Mott, N. F. (1971). Conduction in non-crystalline systems: VIII. The highly correlated electron gas in doped semiconductors and in vanadium monoxide. Philosophical Magazine, 24, 935–958. https://doi.org/10.1080/14786437108217059
- Muragi, B. D., Zope, M. J., & Zope, J. K. (1988). Mechanism for nonlinear IV behaviour and the temperature dependence of threshold switching in the Se–Te–Sn system. Applied Physics A, 46, 299–303. https://doi.org/10.1007/BF01141596
- Murugavel, S., & Asokan, S. (1998). Carrier-type reversal in Pb-modified chalcogenide glasses. Physical Review B, 58, 4449. https://doi.org/10.1103/PhysRevB.58.4449
- Ovshinsky, S. R. (1968). Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett., 21, 1450. https://doi.org/10.1103/PhysRevLett.21.1450
- Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the chemical society of Japan, 38, 1881–1886. https://doi.org/10.1246/bcsj.38.1881
- Patial, B. S., Sharma, N., Bhardwaj, S., & Thakur, N. (2022). Crystallization study of Pb additive Se–Te–Ge nanostructured alloys using non-isothermal differential scanning calorimetry. Nanofabrication, 7, 138–145. https://doi.org/10.37819/nanofab.007.195
- Patial, B. S., Thakur, N., & Tripathi, S. K. (2011). Crystallization Study of Sn additive Se-Te Chalcogenide Alloys. J. Therm. Anal. Calorim., 106, 845.
- Patial, B. S., Thakur, N., & Tripathi, S. K. (2011). On the crystallization kinetics of In additive Se–Te chalcogenide glasses. Thermochim. Acta, 513, 1–8. https://doi.org/10.1016/j.tca.2010.09.009
- Patial, B. S., Thakur, N., & Tripathi, S. K. (2013). Kinetics of amorphous-crystallization transformation of Se₈₅₋ₓTe₁₅ Snₓ (x= 2, 4 and 6) alloys under non-isothermal conditions using Matusita's approach. AIP Conf. Proc., 1512, pp. 542–543. https://doi.org/10.1063/1.4791151
- Patial, B. S., Thakur, N., & Tripathi, S. K. (2011). Crystallization Study of Sn additive Se-Te Chalcogenide Alloys. J. Therm. Anal. Calorim., 106, 845–852. https://doi.org/10.1007/s10973-011-1579-5
- Pattanaik, A. K., & Srinivasan, A. (2003). Electrical and optical properties of amorphous Pbx In25-x Se75 films with a dispersion of nanocrystallites. Journal of Optoelectronics and Advanced Materials, 5, 1161–1167. https://old.joam.inoe.ro/arhiva/pdf5_5/Pattanaik.pdf
- Raoux, S., Wełnic, W., & Ielmini, D. (2010). Phase change materials and their application to nonvolatile memories. Chemical Reviews, 110, 240–267. https://doi.org/10.1021/cr900040x
- Sahay, S. S., & Krishnan, K. (2004). Modeling the isochronal crystallization kinetics. Physica B: Condensed Matter, 348, 310–316. https://doi.org/10.1016/j.physb.2003.12.006
- Shaaban, E. R., & Tomsah, I. B. (2011). The effect of Sb content on glass-forming ability, the thermal stability, and crystallization of Ge–Se chalcogenide glass. J. Therm. Anal. Calorim., 105, 191–198. https://doi.org/10.1007/s10973-011-1317-z
- Shaaban, E., Kansal, I., Shapaan, M., & Ferreira, J. (2009). Thermal stability and crystallization kinetics of ternary Se–Te–Sb semiconducting glassy alloys. J. Therm. Anal. Calorim., 98, 347–354. https://doi.org/10.1007/s10973-009-0313-z
- Starink, M. J. (2003). The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim. Acta, 404, 163–176. https://doi.org/10.1016/S0040-6031(03)00144-8
- Starink, M. J., & Zahra, A.-M. (1997). Determination of the transformation exponent s from experiments at constant heating rate. Thermochim. Acta, 298, 179–189. https://doi.org/10.1016/S0040-6031(97)00118-4
- Tacke, M. (1995). New developments and applications of tunable IR lead salt lasers. Infrared Physics & Technology, 36, 447–463. https://doi.org/10.1016/1350-4495(94)00101-P
- Tohge, N., Matsuo, H., & Minami, T. (1987). Electrical properties of n-type semiconducting chalcogenide glasses in the system Pb-Ge-Se. Journal of Non-Crystalline Solids, 95, 809–816. https://doi.org/10.1016/S0022-3093(87)80685-3
- Tripathi, S. K. (2010). Temperature-dependent barrier height in CdSe Schottky diode. Journal of materials science, 45, 5468–5471. https://doi.org/10.1007/s10853-010-4601-6
- Tripathi, S. K., Patial, B. S., & Thakur, N. (2012). Glass transition and crystallization study of chalcogenide Se₇₀ Te₁₅ In₁₅ glass. J. Therm. Anal. Calorim., 107, 31–38. https://doi.org/10.1007/s10973-011-1724-1
- Turnbull, D., & Fisher, J. C. (1949). Rate of nucleation in condensed systems. The Journal of chemical physics, 17, 71–73. https://doi.org/10.1063/1.1747055
- Vashist, P., Patial, B. S., Bhardwaj, S., Tripathi, S. K., & Thakur, N. (2023). On the non-isothermal crystallization kinetics, glass forming ability and thermal stability of Bi additive Se–Te–Ge alloys. J. Therm. Anal. Calorim., 148, 7717-7726. https://doi.org/10.1007/s10973-023-12271-5
- Vyazovkin, S. (2000). Computational aspects of kinetic analysis.: Part C. The ICTAC Kinetics Project—the light at the end of the tunnel? Thermochim. Acta, 355, 155–163. https://doi.org/10.1016/S0040-6031(00)00445-7
- Vyazovkin, S. (2000). Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. International Reviews in Physical Chemistry, 19, 45–60. https://doi.org/10.1080/014423500229855
- Vyazovkin, S. (2000). On the phenomenon of variable activation energy for condensed phase reactions. New Journal of Chemistry, 24, 913–917. https://doi.org/10.1039/B004279J
- Vyazovkin, S. (2003). Reply to “What is meant by the term ‘variable activation energy’when applied in the kinetics analyses of solid state decompositions (crystolysis reactions)?”. Thermochim. Acta, 397, 269–271. https://doi.org/10.1016/S0040-6031(02)00391-X
- Vyazovkin, S., & Dranca, I. (2006). Isoconversional analysis of combined melt and glass crystallization data. Macromolecular Chemistry and Physics, 207, 20–25. https://doi.org/10.1002/macp.200500419
- Wanjun, T., & Donghua, C. (2005). An integral method to determine variation in activation energy with extent of conversion. Thermochim. Acta, 433, 72–76. https://doi.org/10.1016/j.tca.2005.02.004
- Wilhelm, A. A., Boussard-Pledel, C., Coulombier, Q., Lucas, J., Bureau, B., & Lucas, P. (2007). Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics. Advanced Materials, 19, 3796–3800. https://doi.org/10.1002/adma.200700823
- Wojciech, W., Kalb, J. A., Wamwangi, D., Steimer, C., & Wuttig, M. (2007). Phase change materials: from structures to kinetics. Journal of Materials Research, 22, 2368–2375. https://doi.org/10.1557/jmr.2007.0301
- Wuttig, M., & Steimer, C. (2007). Phase change materials: From material science to novel storage devices. Applied Physics A, 87, 411–417. https://doi.org/10.1007/s00339-007-3931-y
- Wuttig, M., & Yamada, N. (2007). Phase-change materials for rewriteable data storage. Nature materials, 6, 824–832. https://doi.org/10.1038/nmat2009
- Wuttig, M., Bhaskaran, H., & Taubner, T. (2017). Phase-change materials for non-volatile photonic applications. Nature Photonics, 11, 465–476. https://doi.org/10.1038/nphoton.2017.126
- Yoon, S.-M., Lee, N.-Y., Ryu, S.-O., Choi, K.-J., Park, Y.-S., Lee, S.-Y., . . . Wuttig, M. (2006). Sb–Se based phase-change memory device with lower power and higher speed operations. IEEE electron device letters, 27, 445–447. https://doi.org/10.1109/LED.2006.874130
- Zakery, A., & Elliott, S. R. (2003). Optical properties and applications of chalcogenide glasses: a review. Journal of Non-Crystalline Solids, 330, 1–12. https://doi.org/10.1016/j.jnoncrysol.2003.08.064
How to Cite
How to Cite
Downloads
Article Details
Most Read This Month
License
Copyright (c) 2024 Aayush Kainthla, Shubham Sharma, Meenakshi, Sangam Kapoor , Anjali , Nagesh Thakur, Balbir Singh Patial
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.