Skip to main content Skip to main navigation menu Skip to site footer

Incorporation of sulfur with graphitic carbon nitride into copper nanoparticles toward supercapacitor application

  • Karamveer Sheoran
  • Nishu Devi
  • Samarjeet Singh Siwal

Abstract

The incorporation of S-g-C3N4 into CuNPs resulted in enhanced electrochemical performance. The introduction of sulfur facilitated the formation of a highly conductive network within the composite material, enabling effective charge transfer and improved specific capacitance. The g-C3N4 matrix served as a support network, controlling the accumulation of CuNPs and delivering stability during electrochemical cycling. The optimized S-g-C3N4/CuNPs composite showed superior electrochemical performance, high specific capacitance, and enhanced cycling stability. In this study, a facile and scalable synthesis method was employed to fabricate S-g-C3N4/CuNPs composite materials on GCE. The resulting composites were characterized using different optical and microscopic techniques. The electrochemical performance of the nanocomposites was assessed via using different techniques such as cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) techniques. The S-g-C3N4/CuNPs nanocomposite exhibited excellent electrochemical properties with a specific capacitance of 1944.18 F/g at a current density of 0.5 A/g and excellent cycling stability. The resultant composite material exhibits excellent electrochemical performance, making it an advantageous nominee for energy storage applications needing high power density, extended cycling life, and steadfast performance.

Section

References

  1. Ahmad Kamal, S. A., Ritikos, R., & Abdul Rahman, S. (2015). Wetting behaviour of carbon nitride nanostructures grown by plasma enhanced chemical vapour deposition technique. Applied Surface Science, 328, 146-153. doi:https://doi.org/10.1016/j.apsusc.2014.12.001
  2. Ashritha, M. G., & Hareesh, K. (2020). A review on Graphitic Carbon Nitride based binary nanocomposites as supercapacitors. Journal of Energy Storage, 32, 101840. doi:https://doi.org/10.1016/j.est.2020.101840
  3. Chen, Q., Zhao, Y., Huang, X., Chen, N., & Qu, L. (2015). Three-dimensional graphitic carbon nitride functionalized graphene-based high-performance supercapacitors. Journal of Materials Chemistry A, 3(13), 6761-6766. doi:10.1039/C5TA00734H
  4. Ghaemmaghami, M., & Mohammadi, R. (2019). Carbon nitride as a new way to facilitate the next generation of carbon-based supercapacitors. Sustainable Energy & Fuels, 3(9), 2176-2204. doi:10.1039/C9SE00313D
  5. Ghorui, U. K., Satra, J., Mondal, P., Mardanya, S., Sarkar, A., Srivastava, D. N., . . . Mondal, A. (2021). Graphitic carbon nitride embedded-Ag nanoparticle decorated-ZnWO4 nanocomposite-based photoluminescence sensing of Hg2+. Materials Advances, 2(12), 4041-4057. doi:10.1039/D1MA00211B
  6. González, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2016). Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189-1206. doi:https://doi.org/10.1016/j.rser.2015.12.249
  7. Huang, C., Wen, Y., Ma, J., Dong, D., Shen, Y., Liu, S., . . . Zhang, Y. (2021). Unraveling fundamental active units in carbon nitride for photocatalytic oxidation reactions. Nature Communications, 12(1), 320. doi:10.1038/s41467-020-20521-5
  8. Karamveer, S., Thakur, V. K., & Siwal, S. S. (2022). Synthesis and overview of carbon-based materials for high performance energy storage application: A review. Materials Today: Proceedings, 56, 9-17. doi:https://doi.org/10.1016/j.matpr.2021.11.369
  9. Kim, E., Kim, S., Choi, Y. M., Park, J. H., & Shin, H. (2020). Ultrathin Hematite on Mesoporous WO3 from Atomic Layer Deposition for Minimal Charge Recombination. ACS Sustainable Chemistry & Engineering, 8(30), 11358-11367. doi:10.1021/acssuschemeng.0c03579
  10. Kong, L., Chen, Q., Shen, X., Xia, C., Ji, Z., & Zhu, J. (2017). Ionic Liquid Templated Porous Boron-Doped Graphitic Carbon Nitride Nanosheet Electrode for High-Performance Supercapacitor. Electrochimica Acta, 245, 249-258. doi:https://doi.org/10.1016/j.electacta.2017.05.141
  11. Li, X., & Wei, B. (2013). Supercapacitors based on nanostructured carbon. Nano Energy, 2(2), 159-173. doi:https://doi.org/10.1016/j.nanoen.2012.09.008
  12. Li, Y., Wang, S., Chang, W., Zhang, L., Wu, Z., Song, S., & Xing, Y. (2019). Preparation and enhanced photocatalytic performance of sulfur doped terminal-methylated g-C3N4 nanosheets with extended visible-light response. Journal of Materials Chemistry A, 7(36), 20640-20648. doi:10.1039/C9TA07014A
  13. Li, Z., Wu, L., Wang, L., Gu, A., & Zhou, Q. (2017). Nickel cobalt sulfide nanosheets uniformly anchored on porous graphitic carbon nitride for supercapacitors with high cycling performance. Electrochimica Acta, 231, 617-625. doi:https://doi.org/10.1016/j.electacta.2017.02.087
  14. Lin, R., Li, Z., Abou El Amaiem, D. I., Zhang, B., Brett, D. J. L., He, G., & Parkin, I. P. (2017). A general method for boosting the supercapacitor performance of graphitic carbon nitride/graphene hybrids. Journal of Materials Chemistry A, 5(48), 25545-25554. doi:10.1039/C7TA09492B
  15. Liu, J., Wang, H., & Antonietti, M. (2016). Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis. Chemical Society Reviews, 45(8), 2308-2326. doi:10.1039/C5CS00767D
  16. Luo, Y., Yan, Y., Zheng, S., Xue, H., & Pang, H. (2019). Graphitic carbon nitride based materials for electrochemical energy storage. Journal of Materials Chemistry A, 7(3), 901-924. doi:10.1039/C8TA08464E
  17. Ma, J.-S., Yang, H., Kubendhiran, S., & Lin, L.-Y. (2022). Novel synthesis of sulfur-doped graphitic carbon nitride and NiCo2S4 composites as efficient active materials for supercapacitors. Journal of Alloys and Compounds, 903, 163972. doi:https://doi.org/10.1016/j.jallcom.2022.163972
  18. Mishra, K., Devi, N., Siwal, S. S., Gupta, V. K., & Thakur, V. K. (2023). Hybrid Semiconductor Photocatalyst Nanomaterials for Energy and Environmental Applications: Fundamentals, Designing, and Prospects. Advanced Sustainable Systems, n/a(n/a), 2300095. doi:https://doi.org/10.1002/adsu.202300095
  19. Mishra, K., Devi, N., Siwal, S. S., & Thakur, V. K. (2023). Insight perspective on the synthesis and morphological role of the noble and non-noble metal-based electrocatalyst in fuel cell application. Applied Catalysis B: Environmental, 334, 122820. doi:https://doi.org/10.1016/j.apcatb.2023.122820
  20. Mishra, K., Devi, N., Siwal, S. S., Zhang, Q., Alsanie, W. F., Scarpa, F., & Thakur, V. K. (2022). Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. Advanced Science, 9(26), 2202187. doi:https://doi.org/10.1002/advs.202202187
  21. Najib, S., & Erdem, E. (2019). Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Advances, 1(8), 2817-2827. doi:10.1039/C9NA00345B
  22. Oh, T., Kim, M., Choi, J., & Kim, J. (2018). Design of graphitic carbon nitride nanowires with captured mesoporous carbon spheres for EDLC electrode materials. Ionics, 24(12), 3957-3965. doi:10.1007/s11581-018-2544-0
  23. Qiu, H., Ma, Q., Sun, X., Han, X., Jia, G., Zhang, Y., & He, W. (2022). Facile synthesis of g-C3N4/LDH self-growing nanosheet arrays for enhanced supercapacitor performance. Journal of Alloys and Compounds, 896, 163023. doi:https://doi.org/10.1016/j.jallcom.2021.163023
  24. Radhamani, A. V., Shareef, K. M., & Rao, M. S. R. (2016). ZnO@MnO2 Core–Shell Nanofiber Cathodes for High Performance Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 8(44), 30531-30542. doi:10.1021/acsami.6b08082
  25. Radoń, A., & Łukowiec, D. (2018). Silver nanoparticles synthesized by UV-irradiation method using chloramine T as modifier: structure, formation mechanism and catalytic activity. CrystEngComm, 20(44), 7130-7136. doi:10.1039/C8CE01379A
  26. Shalini Reghunath, B., Rajasekaran, S., Devi K R, S., Saravanakumar, B., William, J. J., Pinheiro, D., . . . Kheawhom, S. (2022). Fabrication of bismuth ferrite/graphitic carbon nitride/N-doped graphene quantum dots composite for high performance supercapacitors. Journal of Physics and Chemistry of Solids, 171, 110985. doi:https://doi.org/10.1016/j.jpcs.2022.110985
  27. Shen, C., Li, R., Yan, L., Shi, Y., Guo, H., Zhang, J., . . . Niu, L. (2018). Rational design of activated carbon nitride materials for symmetric supercapacitor applications. Applied Surface Science, 455, 841-848. doi:https://doi.org/10.1016/j.apsusc.2018.06.065
  28. Siwal, S., Devi, N., Perla, V., Barik, R., Ghosh, S., & Mallick, K. (2018). The influencing role of oxophilicity and surface area of the catalyst for electrochemical methanol oxidation reaction: a case study. Materials Research Innovations, 1-8. doi:10.1080/14328917.2018.1533268
  29. Siwal, S., Devi, N., Perla, V. K., Ghosh, S. K., & Mallick, K. (2019). Promotional role of gold in electrochemical methanol oxidation. Catalysis, Structure & Reactivity, 5(1), 1-9. doi:10.1080/2055074x.2019.1595872
  30. Siwal, S. S., Sheoran, K., Mishra, K., Kaur, H., Saini, A. K., Saini, V., . . . Thakur, V. K. (2022). Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: Future perspectives. Chemosphere, 293, 133542. doi:https://doi.org/10.1016/j.chemosphere.2022.133542
  31. Siwal, S. S., Zhang, Q., Devi, N., & Thakur, K. V. (2020). Carbon-Based Polymer Nanocomposite for High-Performance Energy Storage Applications. Polymers, 12(3). doi:10.3390/polym12030505
  32. Siwal, S. S., Zhang, Q., Sun, C., & Thakur, V. K. (2019). Graphitic Carbon Nitride Doped Copper–Manganese Alloy as High–Performance Electrode Material in Supercapacitor for Energy Storage. Nanomaterials, 10(1). doi:10.3390/nano10010002
  33. Thi, Q. H., Man, P., Huang, L., Chen, X., Zhao, J., & Ly, T. H. (2023). Superhydrophilic 2D Carbon Nitrides Prepared by Direct Chemical Vapor Deposition. Small Science, 3(4), 2200099. doi:https://doi.org/10.1002/smsc.202200099
  34. Tyagi, A., Chandra Joshi, M., Agarwal, K., Balasubramaniam, B., & Gupta, R. K. (2019). Three-dimensional nickel vanadium layered double hydroxide nanostructures grown on carbon cloth for high-performance flexible supercapacitor applications. Nanoscale Advances, 1(6), 2400-2407. doi:10.1039/C9NA00152B
  35. Tyagi, A., Joshi, M. C., Shah, A., Thakur, V. K., & Gupta, R. K. (2019). Hydrothermally Tailored Three-Dimensional Ni–V Layered Double Hydroxide Nanosheets as High-Performance Hybrid Supercapacitor Applications. ACS Omega, 4(2), 3257-3267. doi:10.1021/acsomega.8b03618
  36. Tyagi, A., Myung, Y., Tripathi, K. M., Kim, T., & Gupta, R. K. (2020). High-performance hybrid microsupercapacitors based on Co–Mn layered double hydroxide nanosheets. Electrochimica Acta, 334, 135590. doi:https://doi.org/10.1016/j.electacta.2019.135590
  37. Tyagi, A., Singh, N., Sharma, Y., & Gupta, R. K. (2019). Improved supercapacitive performance in electrospun TiO2 nanofibers through Ta-doping for electrochemical capacitor applications. Catalysis Today, 325, 33-40. doi:https://doi.org/10.1016/j.cattod.2018.06.026
  38. Wang, G., Zhang, L., & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41(2), 797-828. doi:10.1039/C1CS15060J
  39. Wang, H., Liu, Y., Kong, L., Xu, Z., Shen, X., & Premlatha, S. (2023). Porous graphitic carbon nitride nanosheets with three-dimensional interconnected network as electrode for supercapacitors. Journal of Energy Storage, 63, 106935. doi:https://doi.org/10.1016/j.est.2023.106935
  40. Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., . . . Antonietti, M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76-80. doi:10.1038/nmat2317
  41. Xu, J., Yang, L., Cao, S., Wang, J., Ma, Y., Zhang, J., & Lu, X. (2021). Sandwiched Cathodes Assembled from CoS2-Modified Carbon Clothes for High-Performance Lithium-Sulfur Batteries. Advanced Science, 8(16), 2101019. doi:https://doi.org/10.1002/advs.202101019
  42. Xu, Y., Zhou, Y., Guo, J., Zhang, S., & Lu, Y. (2019). Preparation of SnS2/g-C3N4 composite as the electrode material for Supercapacitor. Journal of Alloys and Compounds, 806, 343-349. doi:https://doi.org/10.1016/j.jallcom.2019.07.130
  43. Xue, J., Ma, S., Zhou, Y., Zhang, Z., & He, M. (2015). Facile Photochemical Synthesis of Au/Pt/g-C3N4 with Plasmon-Enhanced Photocatalytic Activity for Antibiotic Degradation. ACS Applied Materials & Interfaces, 7(18), 9630-9637. doi:10.1021/acsami.5b01212
  44. Yesmin, S., Devi, M., Dasgupta, R., & Dhar, S. S. (2022). CoFe2O4 nanocubes over Cu/graphitic carbon nitride as electrode materials for solid-state asymmetric supercapacitors. Chemical Engineering Journal, 446, 136540. doi:https://doi.org/10.1016/j.cej.2022.136540
  45. Zhu, H.-L., & Zheng, Y.-Q. (2018). Mesoporous Co3O4 anchored on the graphitic carbon nitride for enhanced performance supercapacitor. Electrochimica Acta, 265, 372-378. doi:https://doi.org/10.1016/j.electacta.2018.01.162
  46. Zhu, J., Kong, L., Shen, X., Zhu, G., Ji, Z., Xu, K., . . . Li, B. (2020). Carbon cloth supported graphitic carbon nitride nanosheets as advanced binder-free electrodes for supercapacitors. Journal of Electroanalytical Chemistry, 873, 114390. doi:https://doi.org/10.1016/j.jelechem.2020.114390

How to Cite

Incorporation of sulfur with graphitic carbon nitride into copper nanoparticles toward supercapacitor application. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.336

How to Cite

Incorporation of sulfur with graphitic carbon nitride into copper nanoparticles toward supercapacitor application. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.336

HTML
341

Total
528

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Karamveer Sheoran, Nishu Devi, Samarjeet Singh Siwal

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.