Skip to main content Skip to main navigation menu Skip to site footer

MXene-based nanomaterials for supercapacitor applications: New pathways for the future

  • Nishu Devi
  • Samarjeet Singh Siwal

Abstract

MXenes have captivated investigators in methodical and technical areas towards different implementations, such as energy storage appliances, supercapacitors (SCs) and elastic batteries. The utilization of pristine MXenes and their nanomaterial in multiple types of SCs is cumulative due to their outstanding automatic, physicochemical, optical, electric, and electrochemical effects. Due to their exceptional electric performance, better mechanical strength, different practical clusters, and ample interlayer space, MXene-based nanomaterials (NMs) have demonstrated binding energy-storage capacity. In this review article, we have shown the timelines and progress in the synthesis methods over time and applications of MXene-based nanomaterials (NMs) in supercapacitors (SC). Lastly, we have concluded the theme with the future outlook in this field.

Section

References

  1. Boota, M., Anasori, B., Voigt, C., Zhao, M.-Q., Barsoum, M. W., & Gogotsi, Y. (2016). Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene). Advanced Materials, 28(7), 1517-1522. doi:https://doi.org/10.1002/adma.201504705
  2. Chen, Y., Yang, H., Han, Z., Bo, Z., Yan, J., Cen, K., & Ostrikov, K. K. (2022). MXene-Based Electrodes for Supercapacitor Energy Storage. Energy & Fuels, 36(5), 2390-2406. doi:10.1021/acs.energyfuels.1c04104
  3. Chu, S., Cui, Y., & Liu, N. (2017). The path towards sustainable energy. Nature Materials, 16(1), 16-22. doi:10.1038/nmat4834
  4. Forouzandeh, P., & Pillai, S. C. (2021). MXenes-based nanocomposites for supercapacitor applications. Current Opinion in Chemical Engineering, 33, 100710. doi:https://doi.org/10.1016/j.coche.2021.100710
  5. Gogotsi, Y., & Anasori, B. (2019). The Rise of MXenes. ACS Nano, 13(8), 8491-8494. doi:10.1021/acsnano.9b06394
  6. Gogotsi, Y., & Huang, Q. (2021). MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano, 15(4), 5775-5780. doi:10.1021/acsnano.1c03161
  7. Karamveer, S., Thakur, V. K., & Siwal, S. S. (2022). Synthesis and overview of carbon-based materials for high performance energy storage application: A review. Materials Today: Proceedings, 56, 9-17. doi:https://doi.org/10.1016/j.matpr.2021.11.369
  8. Kaur, H., Siwal, S. S., Saini, R. V., Singh, N., & Thakur, V. K. (2022). Significance of an Electrochemical Sensor and Nanocomposites: Toward the Electrocatalytic Detection of Neurotransmitters and Their Importance within the Physiological System. ACS Nanoscience Au. doi:10.1021/acsnanoscienceau.2c00039
  9. Khazaei, M., Ranjbar, A., Esfarjani, K., Bogdanovski, D., Dronskowski, R., & Yunoki, S. (2018). Insights into exfoliation possibility of MAX phases to MXenes. Physical Chemistry Chemical Physics, 20(13), 8579-8592. doi:10.1039/C7CP08645H
  10. Levi, M. D., Lukatskaya, M. R., Sigalov, S., Beidaghi, M., Shpigel, N., Daikhin, L., . . . Gogotsi, Y. (2015). Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartz-Crystal Admittance and In Situ Electronic Conductance Measurements. Advanced Energy Materials, 5(1), 1400815. doi:https://doi.org/10.1002/aenm.201400815
  11. Li, B., Dai, F., Xiao, Q., Yang, L., Shen, J., Zhang, C., & Cai, M. (2016). Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy & Environmental Science, 9(1), 102-106. doi:10.1039/C5EE03149D
  12. Ling, Z., Ren, C. E., Zhao, M.-Q., Yang, J., Giammarco, J. M., Qiu, J., . . . Gogotsi, Y. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 111(47), 16676. doi:10.1073/pnas.1414215111
  13. Lukatskaya Maria, R., Mashtalir, O., Ren Chang, E., Dall’Agnese, Y., Rozier, P., Taberna Pierre, L., . . . Gogotsi, Y. (2013). Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science, 341(6153), 1502-1505. doi:10.1126/science.1241488
  14. Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511-536. doi:https://doi.org/10.1016/j.apenergy.2014.09.081
  15. Mishra, K., Devi, N., Siwal, S. S., Zhang, Q., Alsanie, W. F., Scarpa, F., & Thakur, V. K. (2022). Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. Advanced Science, n/a(n/a), 2202187. doi:https://doi.org/10.1002/advs.202202187
  16. Okubo, M., Sugahara, A., Kajiyama, S., & Yamada, A. (2018). MXene as a Charge Storage Host. Accounts of Chemical Research, 51(3), 591-599. doi:10.1021/acs.accounts.7b00481
  17. Shang, T., Lin, Z., Qi, C., Liu, X., Li, P., Tao, Y., . . . Yang, Q.-H. (2019). 3D Macroscopic Architectures from Self-Assembled MXene Hydrogels. Advanced Functional Materials, 29(33), 1903960. doi:https://doi.org/10.1002/adfm.201903960
  18. Shin, H., Eom, W., Lee, K. H., Jeong, W., Kang, D. J., & Han, T. H. (2021). Highly Electroconductive and Mechanically Strong Ti3C2Tx MXene Fibers Using a Deformable MXene Gel. ACS Nano, 15(2), 3320-3329. doi:10.1021/acsnano.0c10255
  19. Simon, P., & Gogotsi, Y. (2009). Materials for electrochemical capacitors. In Nanoscience and Technology (pp. 320-329): Co-Published with Macmillan Publishers Ltd, UK.
  20. Siwal, S., Devi, N., Perla, V., Barik, R., Ghosh, S., & Mallick, K. (2018). The influencing role of oxophilicity and surface area of the catalyst for electrochemical methanol oxidation reaction: a case study. Materials Research Innovations, 1-8. doi:10.1080/14328917.2018.1533268
  21. Siwal, S., Devi, N., Perla, V. K., Ghosh, S. K., & Mallick, K. (2019). Promotional role of gold in electrochemical methanol oxidation. Catalysis, Structure & Reactivity, 5(1), 1-9. doi:10.1080/2055074x.2019.1595872
  22. Siwal, S. S., Kaur, H., Saini, A. K., & Thakur, V. K. (2022). Recent Progress in Carbon Dots-Based Materials for Electrochemical Energy Storage Toward Environmental Sustainability. Advanced Energy and Sustainability Research, n/a(n/a), 2200062. doi:https://doi.org/10.1002/aesr.202200062
  23. Siwal, S. S., Saini, A. K., Rarotra, S., Zhang, Q., & Thakur, V. K. (2021). Recent advancements in transparent carbon nanotube films: chemistry and imminent challenges. Journal of Nanostructure in Chemistry. doi:10.1007/s40097-020-00378-2
  24. Siwal, S. S., Sheoran, K., Mishra, K., Kaur, H., Saini, A. K., Saini, V., . . . Thakur, V. K. (2022). Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: Future perspectives. Chemosphere, 293, 133542. doi:https://doi.org/10.1016/j.chemosphere.2022.133542
  25. Siwal, S. S., Thakur, S., Zhang, Q. B., & Thakur, V. K. (2019). Electrocatalysts for electrooxidation of direct alcohol fuel cell: chemistry and applications. Materials Today Chemistry, 14, 100182. doi:https://doi.org/10.1016/j.mtchem.2019.06.004
  26. Siwal, S. S., & Zhang, Q. (2022). 3 - Classification and application of redox-active polymer materials for energy storage nanoarchitectonics. In V. Kumar, K. Sharma, R. Sehgal, & S. Kalia (Eds.), Conjugated Polymers for Next-Generation Applications (Vol. 2, pp. 91-113): Woodhead Publishing.
  27. Siwal, S. S., Zhang, Q., Devi, N., & Thakur, K. V. (2020). Carbon-Based Polymer Nanocomposite for High-Performance Energy Storage Applications. Polymers, 12(3). doi:10.3390/polym12030505
  28. Siwal, S. S., Zhang, Q., Sun, C., & Thakur, V. K. (2019). Graphitic Carbon Nitride Doped Copper–Manganese Alloy as High–Performance Electrode Material in Supercapacitor for Energy Storage. Nanomaterials, 10(1). doi:10.3390/nano10010002
  29. Song, Z., & Zhou, H. (2013). Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy & Environmental Science, 6(8), 2280-2301. doi:10.1039/C3EE40709H
  30. Tyagi, A., Chandra Joshi, M., Agarwal, K., Balasubramaniam, B., & Gupta, R. K. (2019). Three-dimensional nickel vanadium layered double hydroxide nanostructures grown on carbon cloth for high-performance flexible supercapacitor applications. Nanoscale Advances, 1(6), 2400-2407. doi:10.1039/C9NA00152B
  31. Tyagi, A., Joshi, M. C., Shah, A., Thakur, V. K., & Gupta, R. K. (2019). Hydrothermally Tailored Three-Dimensional Ni–V Layered Double Hydroxide Nanosheets as High-Performance Hybrid Supercapacitor Applications. ACS Omega, 4(2), 3257-3267. doi:10.1021/acsomega.8b03618
  32. Tyagi, A., Myung, Y., Tripathi, K. M., Kim, T., & Gupta, R. K. (2020). High-performance hybrid microsupercapacitors based on Co–Mn layered double hydroxide nanosheets. Electrochimica Acta, 334, 135590. doi:https://doi.org/10.1016/j.electacta.2019.135590
  33. Tyagi, A., Singh, N., Sharma, Y., & Gupta, R. K. (2019). Improved supercapacitive performance in electrospun TiO2 nanofibers through Ta-doping for electrochemical capacitor applications. Catalysis Today, 325, 33-40. doi:https://doi.org/10.1016/j.cattod.2018.06.026
  34. Wang, G., Zhang, L., & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41(2), 797-828. doi:10.1039/C1CS15060J
  35. Wang, X., Lu, X., Liu, B., Chen, D., Tong, Y., & Shen, G. (2014). Flexible Energy-Storage Devices: Design Consideration and Recent Progress. Advanced Materials, 26(28), 4763-4782. doi:https://doi.org/10.1002/adma.201400910
  36. Wang, Y., Wang, X., Li, X., Bai, Y., Xiao, H., Liu, Y., . . . Yuan, G. (2019). Engineering 3D Ion Transport Channels for Flexible MXene Films with Superior Capacitive Performance. Advanced Functional Materials, 29(14), 1900326. doi:https://doi.org/10.1002/adfm.201900326
  37. Wang, Y., Wang, X., Li, X., Bai, Y., Xiao, H., Liu, Y., & Yuan, G. (2021). Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chemical Engineering Journal, 405, 126664. doi:https://doi.org/10.1016/j.cej.2020.126664
  38. Wei, Y., Zhang, P., Soomro, R. A., Zhu, Q., & Xu, B. (2021). Advances in the Synthesis of 2D MXenes. Advanced Materials, 33(39), 2103148. doi:https://doi.org/10.1002/adma.202103148
  39. Wen, Y., Rufford, T. E., Chen, X., Li, N., Lyu, M., Dai, L., & Wang, L. (2017). Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 38, 368-376. doi:https://doi.org/10.1016/j.nanoen.2017.06.009
  40. Xiu, L.-Y., Wang, Z.-Y., & Qiu, J.-S. (2020). General synthesis of MXene by green etching chemistry of fluoride-free Lewis acidic melts. Rare Metals, 39(11), 1237-1238. doi:10.1007/s12598-020-01488-0
  41. Xu, X., Zhang, Y., Sun, H., Zhou, J., Yang, F., Li, H., . . . Peng, Z. (2021). Progress and Perspective: MXene and MXene-Based Nanomaterials for High-Performance Energy Storage Devices. Advanced Electronic Materials, 7(7), 2000967. doi:https://doi.org/10.1002/aelm.202000967
  42. Zhou, C., Zhang, Y., Li, Y., & Liu, J. (2013). Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Letters, 13(5), 2078-2085. doi:10.1021/nl400378j

How to Cite

MXene-based nanomaterials for supercapacitor applications: New pathways for the future. (2022). Nanofabrication, 7, 165-173. https://doi.org/10.37819/nanofab.007.254

How to Cite

MXene-based nanomaterials for supercapacitor applications: New pathways for the future. (2022). Nanofabrication, 7, 165-173. https://doi.org/10.37819/nanofab.007.254

HTML
442

Total
246

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2022 Nishu Devi, Samarjeet Singh Siwal

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.