Synthesis and Biomedical Applications of Polymer-Functionalized Magnetic Nanoparticles
Abstract
Magnetic nanoparticles (MNPs) are receiving increasing attention from individual scientists and research companies as promising materials for biomedical applications. MNPs can be synthesized by many different methods. Before proceeding to the synthesis process, the cost of using it and the practicality of the synthesis conditions are well investigated. Especially in their use in the biomedical field, features such as not containing toxic substances, high biocompatibility, and low particle size are desired. However, the use of magnetic nanoparticles in biomedical applications is limited due to various difficulties such as particle agglomeration and oxidation of magnetic cores of MNPs. To overcome these challenges, MNPs can be coated with various natural and synthetic polymers to alter their morphological structure, magnetic character, biocompatibility, and especially surface functional groups. Therefore, this review focuses on the synthesis of MNPs by different methods and the effects of these synthesis methods on magnetic properties and size, their modifications with natural and synthetic polymers, and the use of these polymer-coated MNPs in biomedical fields such as targeted drug release, enzyme immobilization, biosensors, tissue engineering, magnetic imaging, and hyperthermia. The review article also provides examples of advanced biomedical applications of polymer-coated MNPs and perspectives for future research to promote polymer-coated MNPs. To this end, we aim to highlight knowledge gaps that can guide future research to improve the performance of MNPs for different applications.
.
References
- ABBASI, E., AVAL, S. F., AKBARZADEH, A., MILANI, M., NASRABADI, H. T., JOO, S. W., ... & PASHAEI-ASL, R. (2014). Dendrimers: synthesis, applications, and properties. Nanoscale research letters, 9(1), 1-10. https://doi.org/10.1186/1556-276X-9-247 DOI: https://doi.org/10.1186/1556-276X-9-247
- ABDELFATAH, A. M., FAWZY, M., ELTAWEIL, A. S., & EL-KHOULY, M. E. (2021). Green synthesis of nano-zero-valent iron using ricinus communis seeds extract: Characterization and application in the treatment of methylene blue-polluted water. ACS omega, 6(39), 25397-25411. https://doi.org/10.1021/acsomega.1c03355 DOI: https://doi.org/10.1021/acsomega.1c03355
- ADIMOOLAM, M. G., AMREDDY, N., NALAM, M. R., & SUNKARA, M. V. (2018). A simple approach to design chitosan functionalized Fe3O4 nanoparticles for pH responsive delivery of doxorubicin for cancer therapy. Journal of Magnetism and Magnetic Materials, 448, 199-207. https://doi.org/10.1016/j.jmmm.2017.09.018 DOI: https://doi.org/10.1016/j.jmmm.2017.09.018
- AFROUZ, M., AHMADİ-NOURALDİNVAND, F., AMANİ, A., ZAHEDİAN, H., ELİAS, S. G., ARABNEJAD, F., ... & ESKANLOU, H. (2023). Preparation and characterization of magnetic PEG-PEI-PLA-PEI-PEG/Fe3O4-PCL/DNA micelles for gene delivery into MCF-7 cells. Journal of Drug Delivery Science and Technology, 79, 104016. https://doi.org/10.1016/j.jddst.2022.104016 DOI: https://doi.org/10.1016/j.jddst.2022.104016
- ANGERMANN, A., & TÖPFER, J. (2008). Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dihydrate. Journal of Materials Science, 43, 5123-5130. https://doi.org/10.1007/s10853-008-2738-3 DOI: https://doi.org/10.1007/s10853-008-2738-3
- ANTARNUSA, G., JAYANTİ, P. D., DENNY, Y. R., & SUHERMAN, A. (2022). Utilization of co-precipitation method on synthesis of Fe3O4/PEG with different concentrations of PEG for biosensor applications. Materialia, 25, 101525. https://doi.org/10.1016/j.mtla.2022.101525 DOI: https://doi.org/10.1016/j.mtla.2022.101525
- BEHROUZKİA, Z., JOVEİNİ, Z., KESHAVARZİ, B., EYVAZZADEH, N., & AGHDAM, R. Z. (2016). Hyperthermia: how can it be used?. Oman medical journal, 31(2), 89. https://doi.org/10.5001%2Fomj.2016.19 DOI: https://doi.org/10.5001/omj.2016.19
- BINU, N. M., PREMA, D., PRAKASH, J., BALAGANGADHARAN, K., BALASHANMUGAM, P., SELVAMURUGAN, N., & VENKATASUBBU, G. D. (2021). Folic acid decorated pH sensitive polydopamine coated honeycomb structured nickel oxide nanoparticles for targeted delivery of quercetin to triple negative breast cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630, 127609. https://doi.org/10.1016/j.colsurfa.2021.127609 DOI: https://doi.org/10.1016/j.colsurfa.2021.127609
- BIRLA, R. (2016). Biosensors in tissue and organ fabrication. In Tissue Engineering for the Heart (pp. 31-57). Springer, Cham. https://doi.org/10.1007/978-3-319-41504-8_2 DOI: https://doi.org/10.1007/978-3-319-41504-8_2
- BOODOO, C., DESTER, E., SHARİEF, S. A., & ALOCİLJA, E. C. (2023). Influence of Biological and Environmental Factors in the Extraction and Concentration of Foodborne Pathogens Using Glycan-Coated Magnetic Nanoparticles. Journal of Food Protection, 86(4), 100066. https://doi.org/10.1016/j.jfp.2023.100066 DOI: https://doi.org/10.1016/j.jfp.2023.100066
- BUTTER, K., KASSAPIDOU, K., VROEGE, G. J., & PHILIPSE, A. P. (2005). Preparation and properties of colloidal iron dispersions. Journal of colloid and interface science, 287(2), 485-495. https://doi.org/10.1016/j.jcis.2005.02.014 DOI: https://doi.org/10.1016/j.jcis.2005.02.014
- CHAICHI, M. J., & EHSANI, M. (2016). A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol–H2O2–gold nanoparticle chemiluminescence detection system. Sensors and Actuators B: Chemical, 223, 713-722. https://doi.org/10.1016/j.snb.2015.09.125 DOI: https://doi.org/10.1016/j.snb.2015.09.125
- CHANDRAN, S. P., CHAUDHARY, M., PASRICHA, R., AHMAD, A., & SASTRY, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnology progress, 22(2), 577-583. https://doi.org/10.1021/bp0501423 DOI: https://doi.org/10.1021/bp0501423
- CHAUDHARY, V., & CHAUDHARY, R. (2018). Magnetic nanoparticles: synthesis, functionalization, and applications. Encyclopedia of nanoscience and nanotechnology, 28, 153-183.
- CHEN, P. C., LAI, J. J., & HUANG, C. J. (2021). Bio-Inspired Amphoteric Polymer for Triggered-Release Drug Delivery on Breast Cancer Cells Based on Metal Coordination. ACS applied materials & interfaces, 13(22), 25663-25673. https://doi.org/10.1021/acsami.1c03191 DOI: https://doi.org/10.1021/acsami.1c03191
- CHEN, W., WEN, X., ZHEN, G., & ZHENG, X. (2015). Assembly of Fe3O4 nanoparticles on PEG-functionalized graphene oxide for efficient magnetic imaging and drug delivery. Rsc Advances, 5(85), 69307-69311. https://doi.org/10.1039/C5RA09901C DOI: https://doi.org/10.1039/C5RA09901C
- CHERAGHALİ, S., DİNİ, G., CALİGİURİ, I., BACK, M., & RİZZOLİO, F. (2023). PEG-coated MnZn ferrite nanoparticles with hierarchical structure as MRI contrast agent. Nanomaterials, 13(3), 452. https://doi.org/10.3390/nano13030452 DOI: https://doi.org/10.3390/nano13030452
- CHIN, A. B., & YAACOB, I. I. (2007). Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart's procedure. Journal of materials processing technology, 191(1-3), 235-237. https://doi.org/10.1016/j.jmatprotec.2007.03.011 DOI: https://doi.org/10.1016/j.jmatprotec.2007.03.011
- COROT, C., ROBERT, P., IDÉE, J. M., & PORT, M. (2006). Recent advances in iron oxide nanocrystal technology for medical imaging. Advanced drug delivery reviews, 58(14), 1471-1504. https://doi.org/10.1016/j.addr.2006.09.013 DOI: https://doi.org/10.1016/j.addr.2006.09.013
- DA SİLVA JUNİOR, A. G., FRİAS, I. A., LİMA-NETO, R. G., FRANCO, O. L., OLİVEİRA, M. D., & ANDRADE, C. A. (2022). Electrochemical detection of gram-negative bacteria through mastoparan-capped magnetic nanoparticle. Enzyme and Microbial Technology, 160, 110088. https://doi.org/10.1016/j.enzmictec.2022.110088 DOI: https://doi.org/10.1016/j.enzmictec.2022.110088
- DA, X., Lİ, R., Lİ, X., LU, Y., GU, F., & LİU, Y. (2022). Synthesis and characterization of PEG coated hollow Fe3O4 magnetic nanoparticles as a drug carrier. Materials Letters, 309, 131357. https://doi.org/10.1016/j.matlet.2021.131357 DOI: https://doi.org/10.1016/j.matlet.2021.131357
- DABAGH, S., HARİS, S. A., & ERTAS, Y. N. (2023). Engineered Polyethylene Glycol-Coated Zinc Ferrite Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/acsbiomaterials.3c00255 DOI: https://doi.org/10.1021/acsbiomaterials.3c00255
- DEGEN, C. L., POGGİO, M., MAMİN, H. J., RETTNER, C. T., & RUGAR, D. (2009). Nanoscale magnetic resonance imaging. Proceedings of the National Academy of Sciences, 106(5), 1313-1317. https://doi.org/10.1073/pnas.0812068106 DOI: https://doi.org/10.1073/pnas.0812068106
- DEMİN, A. M., PERSHİNA, A. G., MİNİN, A. S., MEKHAEV, A. V., IVANOV, V. V., LEZHAVA, S. P., ... & OGORODOVA, L. M. (2018). PMIDA-modified Fe3O4 magnetic nanoparticles: synthesis and application for liver MRI. Langmuir, 34(11), 3449-3458. https://doi.org/10.1021/acs.langmuir.7b04023 DOI: https://doi.org/10.1021/acs.langmuir.7b04023
- DHEYAB, M. A., AZİZ, A. A., JAMEEL, M. S., KHANİABADİ, P. M., & MEHRDEL, B. (2021). Sonochemical-assisted synthesis of highly stable gold nanoparticles catalyst for decoloration of methylene blue dye. Inorganic Chemistry Communications, 127, 108551. https://doi.org/10.1016/j.inoche.2021.108551 DOI: https://doi.org/10.1016/j.inoche.2021.108551
- DIK, G., ULU, A., INAN, O. O., ATALAY, S., & ATEŞ, B. (2022). A positive effect of magnetic field on the catalytic activity of immobilized L-asparaginase: evaluation of its feasibility. Catalysis Letters, 1-15. https://doi.org/10.1007/s10562-022-04075-3 DOI: https://doi.org/10.1007/s10562-022-04075-3
- DING, Y., SHEN, S. Z., SUN, H., SUN, K., LIU, F., QI, Y., & YAN, J. (2015). Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery. Materials Science and Engineering: C, 48, 487-498. https://doi.org/10.1016/j.msec.2014.12.036 DOI: https://doi.org/10.1016/j.msec.2014.12.036
- DOBSON, J. (2006). Magnetic nanoparticles for drug delivery. Drug development research, 67(1), 55-60. https://doi.org/10.1038/sj.gt.3302720 DOI: https://doi.org/10.1002/ddr.20067
- DURAİSAMY, K., GANGADHARAN, A., MARTİROSYAN, K. S., SAHU, N. K., MANOGARAN, P., & EASWARADAS KREEDAPATHY, G. (2022). Fabrication of Multifunctional Drug Loaded Magnetic Phase Supported Calcium Phosphate Nanoparticle for Local Hyperthermia Combined Drug Delivery and Antibacterial Activity. ACS Applied Bio Materials, 6(1), 104-116. https://doi.org/10.1021/acsabm.2c00768 DOI: https://doi.org/10.1021/acsabm.2c00768
- EBADİ, M., BUSKARAN, K., BULLO, S., HUSSEİN, M. Z., FAKURAZİ, S., & PASTORİN, G. (2021). Drug delivery system based on magnetic iron oxide nanoparticles coated with (polyvinyl alcohol-zinc/aluminium-layered double hydroxide-sorafenib). Alexandria Engineering Journal, 60(1), 733-747. https://doi.org/10.1016/j.aej.2020.09.061 DOI: https://doi.org/10.1016/j.aej.2020.09.061
- EBADI, M., RIFQI MD ZAIN, A., TENGKU ABDUL AZIZ, T. H., MOHAMMADI, H., TEE, C. A. T., & RAHIMI YUSOP, M. (2023). Formulation and Characterization of Fe3O4@ PEG Nanoparticles Loaded Sorafenib; Molecular Studies and Evaluation of Cytotoxicity in Liver Cancer Cell Lines. Polymers, 15(4), 971. https://doi.org/10.3390/polym15040971 DOI: https://doi.org/10.3390/polym15040971
- FARAJI, M., YAMINI, Y., & REZAEE, M. (2010). Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. Journal of the Iranian Chemical Society, 7(1), 1-37. https://doi.org/10.1007/BF03245856 DOI: https://doi.org/10.1007/BF03245856
- FARMANBAR, N., MOHSENİ, S., & DARROUDİ, M. (2022). Green synthesis of chitosan-coated magnetic nanoparticles for drug delivery of oxaliplatin and irinotecan against colorectal cancer cells. Polymer Bulletin, 79(12), 10595-10613. https://doi.org/10.1007/s00289-021-04066-1 DOI: https://doi.org/10.1007/s00289-021-04066-1
- FERNÁNDEZ-AFONSO, Y., ASÍN, L., BEOLA, L., FRATİLA, R. M., & GUTİÉRREZ, L. (2022). Influence of Magnetic Nanoparticle Degradation in the Frame of Magnetic Hyperthermia and Photothermal Treatments. ACS Applied Nano Materials, 5(11), 16220-16230. https://doi.org/10.1021/acsanm.2c03220 DOI: https://doi.org/10.1021/acsanm.2c03220
- FUENTES-GARCÍA, J. A., CARVALHO ALAVARSE, A., MORENO MALDONADO, A. C., TORO-CÓRDOVA, A., IBARRA, M. R., & GOYA, G. F. (2020). Simple sonochemical method to optimize the heating efficiency of magnetic nanoparticles for magnetic fluid hyperthermia. ACS omega, 5(41), 26357-26364. https://doi.org/10.1021/acsomega.0c02212 DOI: https://doi.org/10.1021/acsomega.0c02212
- GEBREYOHANNES, A. Y., MAZZEI, R., MAREI ABDELRAHIM, M. Y., VITOLA, G., PORZIO, E., MANCO, G., ... & GIORNO, L. (2018). Phosphotriesterase-magnetic nanoparticle bioconjugates with improved enzyme activity in a biocatalytic membrane reactor. Bioconjugate Chemistry, 29(6), 2001-2008. https://doi.org/10.1021/acs.bioconjchem.8b00214 DOI: https://doi.org/10.1021/acs.bioconjchem.8b00214
- GUISASOLA, E., ASÍN, L., BEOLA, L., DE LA FUENTE, J. M., BAEZA, A., & VALLET-REGÍ, M. (2018). Beyond traditional hyperthermia: in vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers. ACS applied materials & interfaces, 10(15), 12518-12525. https://doi.org/10.1021/acsami.8b02398 DOI: https://doi.org/10.1021/acsami.8b02398
- HAROOSH, H. J., DONG, Y., & INGRAM, G. D. (2013). Synthesis, morphological structures, and material characterization of electrospun PLA: PCL/magnetic nanoparticle composites for drug delivery. Journal of Polymer Science Part B: Polymer Physics, 51(22), 1607-1617. https://doi.org/10.1002/polb.23374 DOI: https://doi.org/10.1002/polb.23374
- HEDAYATNASAB, Z., ABNISA, F., & DAUD, W. M. A. W. (2017). Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Materials & Design, 123, 174-196. https://doi.org/10.1016/j.matdes.2017.03.036 DOI: https://doi.org/10.1016/j.matdes.2017.03.036
- HOSSEINI, S. H., HOSSEINI, S. A., ZOHREH, N., YAGHOUBI, M., & POURJAVADI, A. (2018). Covalent immobilization of cellulase using magnetic poly (ionic liquid) support: improvement of the enzyme activity and stability. Journal of agricultural and food chemistry, 66(4), 789-798. https://doi.org/10.1021/acs.jafc.7b03922 DOI: https://doi.org/10.1021/acs.jafc.7b03922
- HU, Y., GUO, X., WANG, H., LUO, Q., SONG, Y., & SONG, E. (2020). Magnetic-separation-assisted magnetic relaxation switching assay for mercury ion based on the concentration change of oligonucleotide-functionalized magnetic nanoparticle. ACS Applied Bio Materials, 3(5), 2651-2657. https://doi.org/10.1021/acsabm.0c00021 DOI: https://doi.org/10.1021/acsabm.0c00021
- IMRAN, M., HAIDER, A., SHAHZADI, I., MOEEN, S., UL-HAMID, A., NABGAN, W., ... & IKRAM, M. (2023). Polyvinylpyrrolidone and chitosan-coated magnetite (Fe3O4) nanoparticles for catalytic and antimicrobial activity with molecular docking analysis. Journal of Environmental Chemical Engineering, 11(3), 110088. https://doi.org/10.1016/j.jece.2023.110088 DOI: https://doi.org/10.1016/j.jece.2023.110088
- IRFAN, M., DOGAN, N., BINGOLBALI, A., & ALIEW, F. (2021). Synthesis and characterization of NiFe2O4 magnetic nanoparticles with different coating materials for magnetic particle imaging (MPI). Journal of Magnetism and Magnetic Materials, 537, 168150. https://doi.org/10.1016/j.jmmm.2021.168150 DOI: https://doi.org/10.1016/j.jmmm.2021.168150
- JAIN, T. K., MORALES, M. A., SAHOO, S. K., LESLIE-PELECKY, D. L., & LABHASETWAR, V. (2005). Iron oxide nanoparticles for sustained delivery of anticancer agents. Molecular pharmaceutics, 2(3), 194-205. https://doi.org/10.1021/mp0500014 DOI: https://doi.org/10.1021/mp0500014
- JİA, H., HUANG, F., GAO, Z., ZHONG, C., ZHOU, H., JİANG, M., & WEİ, P. (2016). Immobilization of ω-transaminase by magnetic PVA-Fe3O4 nanoparticles. Biotechnology reports, 10, 49-55. https://doi.org/10.1016/j.btre.2016.03.004 DOI: https://doi.org/10.1016/j.btre.2016.03.004
- JIANG, X., WANG, H., WANG, H., ZHUO, Y., YUAN, R., & CHAI, Y. (2017). Electrochemiluminescence biosensor based on 3-D DNA nanomachine signal probe powered by protein-aptamer binding complex for ultrasensitive mucin 1 detection. Analytical chemistry, 89(7), 4280-4286. https://doi.org/10.1021/acs.analchem.7b00347 DOI: https://doi.org/10.1021/acs.analchem.7b00347
- KARIMI, S., & NAMAZI, H. (2021). Fe3O4@ PEG-coated dendrimer modified graphene oxide nanocomposite as a pH-sensitive drug carrier for targeted delivery of doxorubicin. Journal of Alloys and Compounds, 879, 160426. https://doi.org/10.1016/j.jallcom.2021.160426 DOI: https://doi.org/10.1016/j.jallcom.2021.160426
- KARTHIKA, V., ALSALHI, M. S., DEVANESAN, S., GOPINATH, K., ARUMUGAM, A., & GOVINDARAJAN, M. (2020). Chitosan overlaid Fe3O4/rGO nanocomposite for targeted drug delivery, imaging, and biomedical applications. Scientific Reports, 10(1), 18912. https://doi.org/10.1038/s41598-020-76015-3 DOI: https://doi.org/10.1038/s41598-020-76015-3
- KASİŃSKİ, A., ŚWİERCZEK, A., ZİELİŃSKA-PİSKLAK, M., KOWALCZYK, S., PLİCHTA, A., ZGADZAJ, A., ... & SOBCZAK, M. (2023). Dual-Stimuli-Sensitive Smart Hydrogels Containing Magnetic Nanoparticles as Antitumor Local Drug Delivery Systems—Synthesis and Characterization. International Journal of Molecular Sciences, 24(8), 6906. https://doi.org/10.3390/ijms24086906 DOI: https://doi.org/10.3390/ijms24086906
- KATTİ, G., ARA, S. A., & SHİREEN, A. (2011). Magnetic resonance imaging (MRI)–A review. International journal of dental clinics, 3(1), 65-70.
- KAUFMAN, A. A., HANSEN, R. O., & KLEİNBERG, R. L. (2008). Paramagnetism, Diamagnetism, and Ferromagnetism. Methods in Geochemistry and Geophysics, 42, 207-254. https://doi.org/10.1016/S0076-6895(08)00006-1 DOI: https://doi.org/10.1016/S0076-6895(08)00006-1
- Keng, P. Y., Shim, I., Korth, B. D., Douglas, J. F., & Pyun, J. (2007). Synthesis and self-assembly of polymer-coated ferromagnetic nanoparticles. Acs Nano, 1(4), 279-292. https://doi.org/10.1021/nn7001213 DOI: https://doi.org/10.1021/nn7001213
- KHARAZMI, S., TAHERI-KAFRANI, A., SOOZANIPOUR, A., NASROLLAHZADEH, M., & VARMA, R. S. (2020). Xylanase immobilization onto trichlorotriazine-functionalized polyethylene glycol grafted magnetic nanoparticles: A thermostable and robust nanobiocatalyst for fruit juice clarification. International Journal of Biological Macromolecules, 163, 402-413. https://doi.org/10.1016/j.ijbiomac.2020.06.273 DOI: https://doi.org/10.1016/j.ijbiomac.2020.06.273
- KHODADADİ, A., TALEBTASH, M. R., & FARAHMANDJOU, M. (2022). Effect of PVA/PEG-coated Fe3O4 Nanoparticles on the Structure, Morphology and Magnetic Properties. Physical Chemistry Research, 10(4), 537-547. 10.22036/PCR.2022.326878.2023
- KLAUS, T., JOERGER, R., OLSSON, E., & GRANQVIST, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences, 96(24), 13611-13614. https://doi.org/10.1073/pnas.96.24.13611 DOI: https://doi.org/10.1073/pnas.96.24.13611
- LAI, S. M., HSIAO, J. K., YU, H. P., LU, C. W., HUANG, C. C., SHIEH, M. J., & LAI, P. S. (2012). Polyethylene glycol-based biocompatible and highly stable superparamagnetic iron oxide nanoclusters for magnetic resonance imaging. Journal of Materials Chemistry, 22(30), 15160-15167. https://doi.org/10.1039/C2JM32086J DOI: https://doi.org/10.1039/c2jm32086j
- LAKSHMINARAYANAN, S., SHEREEN, M. F., NIRAIMATHI, K. L., BRINDHA, P., & ARUMUGAM, A. (2021). One-pot green synthesis of iron oxide nanoparticles from Bauhinia tomentosa: Characterization and application towards synthesis of 1, 3 diolein. Scientific reports, 11(1), 1-13. https://doi.org/10.1038/s41598-021-87960-y DOI: https://doi.org/10.1038/s41598-021-87960-y
- LEE, H., KIM, D. I., KWON, S. H., & PARK, S. (2021). Magnetically actuated drug delivery helical microrobot with magnetic nanoparticle retrieval ability. ACS Applied Materials & Interfaces, 13(17), 19633-19647. https://doi.org/10.1021/acsami.1c01742 DOI: https://doi.org/10.1021/acsami.1c01742
- LI, J., HE, Y., SUN, W., LUO, Y., CAI, H., PAN, Y., ... & SHI, X. (2014). Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials, 35(11), 3666-3677. https://doi.org/10.1016/j.biomaterials.2014.01.011 DOI: https://doi.org/10.1016/j.biomaterials.2014.01.011
- LI, J., WANG, J., LI, J., YANG, X., WAN, J., ZHENG, C., ... & YANG, X. (2021). Fabrication of Fe3O4@ PVA microspheres by one-step electrospray for magnetic resonance imaging during transcatheter arterial embolization. Acta Biomaterialia, 131, 532-543. https://doi.org/10.1016/j.jallcom.2021.160426 DOI: https://doi.org/10.1016/j.actbio.2021.07.006
- LI, J., ZHENG, L., CAI, H., SUN, W., SHEN, M., ZHANG, G., & SHI, X. (2013). Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials, 34(33), 8382-8392. https://doi.org/10.1016/j.biomaterials.2013.07.070 DOI: https://doi.org/10.1016/j.biomaterials.2013.07.070
- LI, Z., TAN, B., ALLIX, M., COOPER, A. I., & ROSSEINSKY, M. J. (2008). Direct coprecipitation route to monodisperse dual‐functionalized magnetic iron oxide nanocrystals without size selection. Small, 4(2), 231-239. https://doi.org/10.1002/smll.200700575 DOI: https://doi.org/10.1002/smll.200700575
- Li, Z., Zhu, Q., Liu, Z., Sha, L., & Chen, Z. (2022). Improved performance of immobilized laccase for catalytic degradation of synthetic dyes using redox mediators. New Journal of Chemistry, 46(20), 9792-9798. https://doi.org/10.1039/D2NJ00049K DOI: https://doi.org/10.1039/D2NJ00049K
- LİANG, Z. P., & LAUTERBUR, P. C. (2000). Principles of magnetic resonance imaging (pp. 1-7). Belllingham, WA: SPIE Optical Engineering Press. DOI: https://doi.org/10.1109/9780470545652
- LİAO, H., CHEN, D., YUAN, L., ZHENG, M., ZHU, Y., & LİU, X. (2010). Immobilized cellulase by polyvinyl alcohol/Fe2O3 magnetic nanoparticle to degrade microcrystalline cellulose. Carbohydrate Polymers, 82(3), 600-604. https://doi.org/10.1016/j.carbpol.2010.05.021 DOI: https://doi.org/10.1016/j.carbpol.2010.05.021
- LIU, J., CHEN, G., YAN, B., YI, W., & YAO, J. (2022). Biodiesel production in a magnetically fluidized bed reactor using whole-cell biocatalysts immobilized within ferroferric oxide-polyvinyl alcohol composite beads. Bioresource Technology, 355, 127253. https://doi.org/10.1016/j.biortech.2022.127253 DOI: https://doi.org/10.1016/j.biortech.2022.127253
- LIU, Q., TAN, Z., ZHENG, D., & QIU, X. (2023). pH-responsive magnetic Fe3O4/carboxymethyl chitosan/aminated lignosulfonate nanoparticles with uniform size for targeted drug loading. International Journal of Biological Macromolecules, 225, 1182-1192. https://doi.org/10.1016/j.ijbiomac.2022.11.179 DOI: https://doi.org/10.1016/j.ijbiomac.2022.11.179
- LOMBARDO, D., KISELEV, M. A., & CACCAMO, M. T. (2019). Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of Nanomaterials, 2019. https://doi.org/10.1155/2019/3702518 DOI: https://doi.org/10.1155/2019/3702518
- LU, J., LI, Y., ZHU, H., & SHI, G. (2021). SiO2-coated Fe3O4 nanoparticle/polyacrylonitrile beads for one-step lipase immobilization. ACS Applied Nano Materials, 4(8), 7856-7869. https://doi.org/10.1021/acsanm.1c01181 DOI: https://doi.org/10.1021/acsanm.1c01181
- MA, H., LI, M., YU, T., ZHANG, H., XIONG, M., & LI, F. (2021). Magnetic ZIF-8-Based Mimic Multi-enzyme System as a Colorimetric Biosensor for Detection of Aryloxyphenoxypropionate Herbicides. ACS Applied Materials & Interfaces, 13(37), 44329-44338. https://doi.org/10.1021/acsami.1c11815 DOI: https://doi.org/10.1021/acsami.1c11815
- MAFTOON, H., TARAVATİ, A., & TOHİDİ, F. (2023). Immobilization of laccase on carboxyl-functionalized chitosan-coated magnetic nanoparticles with improved stability and reusability. Monatshefte für Chemie-Chemical Monthly, 154(2), 279-291. https://doi.org/10.1007/s00706-022-03029-0 DOI: https://doi.org/10.1007/s00706-022-03029-0
- MAI, B. T., CONTEH, J. S., GAVILÁN, H., DI GIROLAMO, A., & PELLEGRINO, T. (2022). Clickable polymer ligand-functionalized iron oxide nanocubes: a promising nanoplatform for ‘local hot spots’ magnetically triggered drug release. ACS Applied Materials & Interfaces, 14(43), 48476-48488. https://doi.org/10.1021/acsami.2c14752 DOI: https://doi.org/10.1021/acsami.2c14752
- MAI, T. T. T., HA, P. T., PHAM, H. N., LE, T. T. H., PHAM, H. L., PHAN, T. B. H., ... & NGUYEN, X. P. (2012). Chitosan and O-carboxymethyl chitosan modified Fe3O4 for hyperthermic treatment. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(1), 015006. DOI 10.1088/2043-6262/3/1/015006 DOI: https://doi.org/10.1088/2043-6262/3/1/015006
- MAJIDI, S., ZEINALI SEHRIG, F., FARKHANI, S. M., SOLEYMANI GOLOUJEH, M., & AKBARZADEH, A. (2016). Current methods for synthesis of magnetic nanoparticles. Artificial cells, nanomedicine, and biotechnology, 44(2), 722-734. https://doi.org/10.3109/21691401.2014.982802 DOI: https://doi.org/10.3109/21691401.2014.982802
- MANJUSHA, V., RAJEEV, M. R., & ANIRUDHAN, T. S. (2023). Magnetic nanoparticle embedded chitosan-based polymeric network for the hydrophobic drug delivery of paclitaxel. International Journal of Biological Macromolecules, 235, 123900. https://doi.org/10.1016/j.ijbiomac.2023.123900 DOI: https://doi.org/10.1016/j.ijbiomac.2023.123900
- MANZOOR, S., YASMIN, G., RAZA, N., FERNANDEZ, J., ATIQ, R., CHOHAN, S., ... & AZAM, M. (2021). Synthesis of polyaniline coated magnesium and cobalt oxide nanoparticles through eco-friendly approach and their application as antifungal agents. Polymers, 13(16), 2669. https://doi.org/10.3390/polym13162669 DOI: https://doi.org/10.3390/polym13162669
- MARKIDES, H., ROTHERHAM, M., & EL HAJ, A. J. (2012). Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. Journal of nanomaterials, 2012, 13-13. https://doi.org/10.1155/2012/614094 DOI: https://doi.org/10.1155/2012/614094
- MEKSERIWATTANA, W., PHANCHAI, W., THIANGTRONGJIT, T., REAMTONG, O., PUANGMALI, T., WONGTRAKOONGATE, P., ... & KATEWONGSA, K. P. (2023). Proteomic Analysis and Molecular Dynamics Simulation of Riboflavin-Coated Superparamagnetic Iron Oxide Nanoparticles Reveal Human Serum-Derived Protein Coronas: Implications as Magnetic Resonance Imaging Contrast Agents. ACS Applied Nano Materials. https://doi.org/10.1021/acsanm.3c01767 DOI: https://doi.org/10.1021/acsanm.3c01767
- MIN, K., & YOO, Y. J. (2014). Recent progress in nanobiocatalysis for enzyme immobilization and its application. Biotechnology and Bioprocess Engineering, 19(4), 553-567. DOI 10.1007/s12257-014-0173-7. https://doi.org/10.1007/s12257-014-0173-7 DOI: https://doi.org/10.1007/s12257-014-0173-7
- MOGHADDAM-MANESH, M., SARGAZI, G., ROOHANI, M., ZANJANI, N. G., KHALEGHI, M., & HOSSEINZADEGAN, S. (2022). Synthesis of PVA/Fe3O4@SiO2@CPS@SID@ Ni as novel magnetic fibrous composite polymer nanostructures and evaluation of anti-cancer and antimicrobial activity. Polymer Bulletin, 1-12. DOI: https://doi.org/10.1007/s00289-022-04584-6
- MOHAMMADI, H., NEKOBAHR, E., AKHTARI, J., SAEEDI, M., AKBARI, J., & FATHI, F. (2021). Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity. Toxicology reports, 8, 331-336. https://doi.org/10.1016/j.toxrep.2021.01.012 DOI: https://doi.org/10.1016/j.toxrep.2021.01.012
- MOSTARADDİ, S., PAZHANG, M., EBADİ-NAHARİ, M., & NAJAVAND, S. (2023). The Relationship Between the Cross-Linker on Chitosan-Coated Magnetic Nanoparticles and the Properties of Immobilized Papain. Molecular Biotechnology, 1-15. https://doi.org/10.1007/s12033-023-00687-1 DOI: https://doi.org/10.1007/s12033-023-00687-1
- MS, L. S., & NAMPOOTHIRI, K. M. (2022). Xylose Dehydrogenase Immobilized on Ferromagnetic Nanoparticles for Bioconversion of Xylose to Xylonic Acid. Bioconjugate Chemistry. https://doi.org/10.1021/acs.bioconjchem.2c00159 DOI: https://doi.org/10.1021/acs.bioconjchem.2c00159
- MYLKIE, K., NOWAK, P., RYBCZYNSKI, P., & ZIEGLER-BOROWSKA, M. (2021). Polymer-coated magnetite nanoparticles for protein immobilization. Materials, 14(2), 248. https://doi.org/10.3390/ma14020248 DOI: https://doi.org/10.3390/ma14020248
- NABAEI, V., CHANDRAWATI, R., & HEIDARI, H. (2018). Magnetic biosensors: Modelling and simulation. Biosensors and Bioelectronics, 103, 69-86. https://doi.org/10.1016/j.bios.2017.12.023 DOI: https://doi.org/10.1016/j.bios.2017.12.023
- NAİDEK, N., KHALİL, N. M., & ALMEİDA, C. A. P. (2023). Poly-(lactic-co-glycolic acid)/poly-(vinyl alcohol) and cobalt ferrite magnetic nanoparticles as vanillin carriers. Soft Materials, 21(2), 206-217. https://doi.org/10.1080/1539445X.2023.2199419 DOI: https://doi.org/10.1080/1539445X.2023.2199419
- NAIR, B., & PRADEEP, T. (2002). Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crystal growth & design, 2(4), 293-298. https://doi.org/10.1021/cg0255164 DOI: https://doi.org/10.1021/cg0255164
- OROPESA-NUÑEZ, R., ZARDÁN GÓMEZ DE LA TORRE, T., STOPFEL, H., SVEDLINDH, P., STRÖMBERG, M., & GUNNARSSON, K. (2020). Insights into the Formation of DNA–Magnetic Nanoparticle Hybrid Structures: Correlations between Morphological Characterization and Output from Magnetic Biosensor Measurements. ACS sensors, 5(11), 3510-3519. https://doi.org/10.1021/acssensors.0c01623 DOI: https://doi.org/10.1021/acssensors.0c01623
- ORTEGA, D., & PANKHURST, Q. A. (2013). Magnetic hyperthermia. Nanoscience, 1(60), e88. DOI: https://doi.org/10.1039/9781849734844-00060
- PANDEY, S., OZA, G., MEWADA, A., & SHARON, M. (2012). Green synthesis of highly stable gold nanoparticles using Momordica charantia as nano fabricator. Archives of Applied Science Research, 4(2), 1135-1141.
- QU, J., LIU, G., WANG, Y., & HONG, R. (2010). Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Advanced Powder Technology, 21(4), 461-467. https://doi.org/10.1016/j.apt.2010.01.008 DOI: https://doi.org/10.1016/j.apt.2010.01.008
- REDDY, L. H., ARIAS, J. L., NICOLAS, J., & COUVREUR, P. (2012). Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chemical reviews, 112(11), 5818-5878. https://doi.org/10.1021/cr300068p DOI: https://doi.org/10.1021/cr300068p
- REZAYAN, A. H., KHEİRJOU, S., EDRİSİ, M., SHAFİEE ARDESTANİ, M., & ALVANDİ, H. (2022). A Modified PEG-Fe3O4 Magnetic Nanoparticles Conjugated with D (+) Glucosamine (DG): MRI Contrast Agent. Journal of Inorganic and Organometallic Polymers and Materials, 32(6), 1988-1998. https://doi.org/10.1007/s10904-022-02253-9 DOI: https://doi.org/10.1007/s10904-022-02253-9
- RITTER, D., KNEBEL, J., NIEHOF, M., LOINAZ, I., MARRADI, M., GRACIA, R., ... & HANSEN, T. (2020). In vitro inhalation cytotoxicity testing of therapeutic nanosystems for pulmonary infection. Toxicology in Vitro, 63, 104714. https://doi.org/10.1016/j.tiv.2019.104714 DOI: https://doi.org/10.1016/j.tiv.2019.104714
- SAHİN, S., & OZMEN, I. (2020). Covalent immobilization of trypsin on polyvinyl alcohol-coated magnetic nanoparticles activated with glutaraldehyde. Journal of pharmaceutical and biomedical analysis, 184, 113195. https://doi.org/10.1016/j.jpba.2020.113195 DOI: https://doi.org/10.1016/j.jpba.2020.113195
- SAKALLIOĞLU, H. (2013). Manyetik Nanopartiküller Üzerine Desteklenmiş Schiff Bazı Türevi Metal Komplekslerinin Sentezleri ve Katalitik Etkinliklerinin İncelenmesi. Çukurova University, Institute of Science, Department of Chemistry, Master Thesis.
- SALAHUDDIN, N., GABER, M., MOUSA, M., & ABDELWAHAB, M. A. (2020). Poly (3-hydroxybutyrate)/poly (amine)-coated nickel oxide nanoparticles for norfloxacin delivery: antibacterial and cytotoxicity efficiency. RSC advances, 10(56), 34046-34058. https://doi.org/10.1039/D0RA04784H DOI: https://doi.org/10.1039/D0RA04784H
- SANAEİFAR, N., RABİEE, M., ABDOLRAHİM, M., TAHRİRİ, M., VASHAEE, D., & TAYEBİ, L. (2017). A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Analytical Biochemistry, 519, 19-26. https://doi.org/10.1016/j.ab.2016.12.006 DOI: https://doi.org/10.1016/j.ab.2016.12.006
- SÁNCHEZ, J., CORTÉS-HERNÁNDEZ, D. A., ESCOBEDO-BOCARDO, J. C., JASSO-TERÁN, R. A., & ZUGASTI-CRUZ, A. (2014). Bioactive magnetic nanoparticles of Fe–Ga synthesized by sol–gel for their potential use in hyperthermia treatment. Journal of Materials Science: Materials in Medicine, 25(10), 2237-2242. https://doi.org/10.1007/s10856-014-5197-1 DOI: https://doi.org/10.1007/s10856-014-5197-1
- SANDEEP KUMAR, V. (2013). Magnetic nanoparticles-based biomedical and bioanalytical applications. J Nanomed Nanotechol, 4, e130. doı:10.4172/2157-7439.1000e130
- SAYINER, Ö., & ÇOMOĞLU, T. (2016). Nanotaşıyıcı Sistemlerde Hedeflendirme Targetıng Wıth Nanocarrıer Systems. Journal Of Faculty of Pharmacy of Ankara University, 40(3), 62-79. https://doi.org/10.1501/Eczfak_0000000589 DOI: https://doi.org/10.1501/Eczfak_0000000589
- SHABANI, M., SAEBNOORI, E., HASSANZADEH-TABRIZI, S. A., & BAKHSHESHI-RAD, H. R. (2023). Solution plasma synthesis of polymer-coated NiFe2O4 nanoparticles for hyperthermia application. Journal of Materials Engineering and Performance, 32(5), 2165-2182. https://doi.org/10.1007/s11665-022-07268-4 DOI: https://doi.org/10.1007/s11665-022-07268-4
- SHAHRIAR, S., MAHIN, S., & MOHAMMAD, R. (2020). ring the synthesis of Fe3O4@ PVA nanocomposites from industrial waste (raffinate). Environmental Science and Pollution Research International, 27(25), 32088-32099. DOI:10.1007/s11356-020-09436-2 DOI: https://doi.org/10.1007/s11356-020-09436-2
- SHELDON, R. A., & VAN PELT, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews, 42(15), 6223-6235. https://doi.org/10.1039/C3CS60075K DOI: https://doi.org/10.1039/C3CS60075K
- SHEN, H., SONG, J., ZHOU, Z., LI, M., ZHANG, R., SU, P., & YANG, Y. (2019). DNA-directed immobilized enzymes on recoverable magnetic nanoparticles shielded in nucleotide coordinated polymers. Industrial & Engineering Chemistry Research, 58(20), 8585-8596. https://doi.org/10.1021/acs.iecr.9b01341 DOI: https://doi.org/10.1021/acs.iecr.9b01341
- SINGH, R. K., TIWARI, M. K., SINGH, R., & LEE, J. K. (2013). From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. International journal of molecular sciences, 14(1), 1232-1277. https://doi.org/10.3390/ijms14011232 DOI: https://doi.org/10.3390/ijms14011232
- SINGH, A., GAUTAM, P. K., VERMA, A., SINGH, V., SHIVAPRIYA, P. M., SHIVALKAR, S., ... & SAMANTA, S. K. (2020). Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnology Reports, 25, e00427. https://doi.org/10.1016/j.btre.2020.e00427 DOI: https://doi.org/10.1016/j.btre.2020.e00427
- SONG, J. Y., & KIM, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and biosystems engineering, 32(1), 79-84. https://doi.org/10.1007/s00449-008-0224-6 DOI: https://doi.org/10.1007/s00449-008-0224-6
- SONG, X., LUO, X., ZHANG, Q., ZHU, A., JI, L., & YAN, C. (2015). Preparation and characterization of biofunctionalized chitosan/Fe3O4 magnetic nanoparticles for application in liver magnetic resonance imaging. Journal of Magnetism and Magnetic Materials, 388, 116-122. https://doi.org/10.1016/j.jmmm.2015.04.017 DOI: https://doi.org/10.1016/j.jmmm.2015.04.017
- SUN, S., & ZENG, H. (2002). Size-controlled synthesis of magnetite nanoparticles. Journal of the American Chemical Society, 124(28), 8204-8205. https://doi.org/10.1021/ja026501x DOI: https://doi.org/10.1021/ja026501x
- TAHERİAN, A., ESFANDİARİ, N., & ROUHANİ, S. (2021). Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nanotechnology, 12(1), 1-20. https://doi.org/10.1186/s12645-021-00086-8 DOI: https://doi.org/10.1186/s12645-021-00086-8
- TAHERI‐LEDARI, R., ZHANG, W., RADMANESH, M., MIRMOHAMMADI, S. S., MALEKI, A., CATHCART, N., & KITAEV, V. (2020). Multi‐stimuli nanocomposite therapeutic: docetaxel targeted delivery and synergies in treatment of human breast cancer tumor. Small, 16(41), 2002733. https://doi.org/10.1002/smll.202002733 DOI: https://doi.org/10.1002/smll.202002733
- TANG, W., LI, H., ZHANG, W., MA, T., ZHUANG, J., WANG, P., & CHEN, C. (2022). Site-Specific and Covalent Immobilization of Lipase on Natural Polyphenol-Modified Magnetic Nanoparticles for Effective Biodiesel Production. ACS Sustainable Chemistry & Engineering, 10(17), 5384-5395. https://doi.org/10.1021/acssuschemeng.1c07881 DOI: https://doi.org/10.1021/acssuschemeng.1c07881
- TARHAN, T., DIK, G., ULU, A., TURAL, B., TURAL, S., & ATEŞ, B. (2022). Newly Synthesized Multifunctional Biopolymer Coated Magnetic Core/Shell Fe3O4@ Au Nanoparticles for Evaluation of L-asparaginase Immobilization. Topics in Catalysis, 1-15. https://doi.org/10.1007/s11244-022-01742-y DOI: https://doi.org/10.1007/s11244-022-01742-y
- THONG, P. Q., THU HUONG, L. T., TU, N. D., MY NHUNG, H. T., KHANH, L., MANH, D. H., ... & KİM THANH, N. T. (2022). Multifunctional nanocarriers of Fe3O4@ PLA-PEG/curcumin for MRI, magnetic hyperthermia and drug delivery. Nanomedicine, 17(22), 1677-1693. https://doi.org/10.2217/nnm-2022-0070 DOI: https://doi.org/10.2217/nnm-2022-0070
- TIAMA, T. M., ISMAIL, A. M., ELHAES, H., & IBRAHIM, M. A. (2023). Structural and Spectroscopic Studies for Chitosan/Fe3O4 Nanocomposites as Glycine Biosensors. https://doi.org/10.33263/BRIAC136.547
- TRAN, N., & WEBSTER, T. J. (2010). Magnetic nanoparticles: biomedical applications and challenges. Journal of Materials Chemistry, 20(40), 8760-8767. https://doi.org/10.1039/C0JM00994F DOI: https://doi.org/10.1039/c0jm00994f
- VEISEH, O., KIEVIT, F. M., FANG, C., MU, N., JANA, S., LEUNG, M. C., ... & ZHANG, M. (2010). Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials, 31(31), 8032-8042. https://doi.org/10.1016/j.biomaterials.2010.07.016 DOI: https://doi.org/10.1016/j.biomaterials.2010.07.016
- VİNİCİUS-ARAUJO, M., SHRİVASTAVA, N., SOUSA-JUNİOR, A. A., MENDANHA, S. A., SANTANA, R. C. D., & BAKUZİS, A. F. (2021). Zn x Mn1–X Fe2O4@ SiO2: z Nd3+ Core–Shell Nanoparticles for Low-Field Magnetic Hyperthermia and Enhanced Photothermal Therapy with the Potential for Nanothermometry. ACS Applied Nano Materials, 4(2), 2190-2210. https://doi.org/10.1021/acsanm.1c00027 DOI: https://doi.org/10.1021/acsanm.1c00027
- WANG, K., XU, X., LI, Y., RONG, M., WANG, L., LU, L., ... & JIANG, Y. (2021). Preparation Fe3O4@ chitosan-graphene quantum dots nanocomposites for fluorescence and magnetic resonance imaging. Chemical Physics Letters, 783, 139060. https://doi.org/10.1016/j.cplett.2021.139060 DOI: https://doi.org/10.1016/j.cplett.2021.139060
- WANG, Z., FENG, X., XİAO, F., BAİ, X., XU, Q., & XU, H. (2022). A novel PEG-mediated boric acid functionalized magnetic nanomaterials based fluorescence biosensor for the detection of Staphylococcus aureus. Microchemical Journal, 178, 107379. https://doi.org/10.1016/j.microc.2022.107379 DOI: https://doi.org/10.1016/j.microc.2022.107379
- WEİSHAUPT, D., KÖCHLİ, V. D., MARİNCEK, B., FROEHLİCH, J. M., NANZ, D., & PRUESSMANN, K. P. (2006). How does MRI work?: an introduction to the physics and function of magnetic resonance imaging (Vol. 2). Berlin: Springer.
- WILLNER, I., BARON, R., & WILLNER, B. (2006). Growing metal nanoparticles by enzymes. Advanced Materials, 18(9), 1109-1120. https://doi.org/10.1002/adma.200501865 DOI: https://doi.org/10.1002/adma.200501865
- WU, W., HE, Q., & JIANG, C. (2008). Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale research letters, 3(11), 397-415 https://doi.org/10.1007/s11671-008-9174-9 DOI: https://doi.org/10.1007/s11671-008-9174-9
- WU, W., WU, Z., YU, T., JIANG, C., & KIM, W. S. (2015). Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Science and technology of advanced materials, 16(2), 023501. 10.1088/1468-6996/16/2/023501 DOI: https://doi.org/10.1088/1468-6996/16/2/023501
- YADAV, N., SİNGH, A., & KAUSHİK, M. (2020). Hydrothermal synthesis and characterization of magnetic Fe3O4 and APTS coated Fe3O4 nanoparticles: physicochemical investigations of interaction with DNA. Journal of Materials Science: Materials in Medicine, 31, 1-11. https://doi.org/10.1007/s10856-020-06405-6 DOI: https://doi.org/10.1007/s10856-020-06405-6
- YALLAPU, M. M., FOY, S. P., JAİN, T. K., & LABHASETWAR, V. (2010). PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharmaceutical research, 27, 2283-2295. https://doi.org/10.1007/s11095-010-0260-1 DOI: https://doi.org/10.1007/s11095-010-0260-1
- YANG, C., & YAN, H. (2012). A green and facile approach for synthesis of magnetite nanoparticles with tunable sizes and morphologies. Materials Letters, 73, 129-132. https://doi.org/10.1016/j.matlet.2012.01.031 DOI: https://doi.org/10.1016/j.matlet.2012.01.031
- YANG, F., ZHANG, X., SONG, L., CUİ, H., MYERS, J. N., BAİ, T., ... & GU, N. (2015). Controlled drug release and hydrolysis mechanism of polymer–magnetic nanoparticle composite. ACS Applied Materials & Interfaces, 7(18), 9410-9419. https://doi.org/10.1016/j.matlet.2012.01.031 DOI: https://doi.org/10.1021/acsami.5b02210
- Yang, Y., Yan, X., Cui, Y., He, Q., Li, D., Wang, A., ... & Li, J. (2008). Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a “graft-from” method. Journal of Materials Chemistry, 18(47), 5731-5737. https://doi.org/10.1039/B811573G DOI: https://doi.org/10.1039/b811573g
- YILDIRIMER, L., THANH, N. T., LOIZIDOU, M., & SEIFALIAN, A. M. (2011). Toxicology and clinical potential of nanoparticles. Nano today, 6(6), 585-607. https://doi.org/10.1016/j.nantod.2011.10.001 DOI: https://doi.org/10.1016/j.nantod.2011.10.001
- YIN, P. T., PONGKULAPA, T., CHO, H. Y., HAN, J., PASQUALE, N. J., RABIE, H., ... & LEE, K. B. (2018). Overcoming chemoresistance in cancer via combined microRNA therapeutics with anticancer drugs using multifunctional magnetic core–shell nanoparticles. ACS applied materials & interfaces, 10(32), 26954-26963. https://doi.org/10.1021/acsami.8b09086 DOI: https://doi.org/10.1021/acsami.8b09086
- YU, H., WANG, Y., WANG, S., LI, X., LI, W., DING, D., ... & ZHANG, W. (2018). Paclitaxel-loaded core–shell magnetic nanoparticles and cold atmospheric plasma inhibit non-small cell lung cancer growth. ACS applied materials & interfaces, 10(50), 43462-43471. https://doi.org/10.1021/acsami.8b16487 DOI: https://doi.org/10.1021/acsami.8b16487
- YUSEFI, M., SHAMELI, K., LEE-KIUN, M. S., TEOW, S. Y., MOEINI, H., ALI, R. R., ... & ABDULLAH, N. H. (2023). Chitosan coated magnetic cellulose nanowhisker as a drug delivery system for potential colorectal cancer treatment. International journal of biological macromolecules, 233, 123388. https://doi.org/10.1016/j.ijbiomac.2023.123388 DOI: https://doi.org/10.1016/j.ijbiomac.2023.123388
- ZANDI, A., AHANGAR, H. A., & SAFFAR, A. (2022). pH responsive Fe3O4@ GT/PVA nanocomposite for drug release of hydroxychloroquine sulfate (HCQ). https://doi.org/10.21203/rs.3.rs-1799339/v1 DOI: https://doi.org/10.21203/rs.3.rs-1799339/v1
- ZHAO, G., WANG, J., PENG, X., LI, Y., YUAN, X., & MA, Y. (2014). Facile solvothermal synthesis of mesostructured Fe3O4/chitosan nanoparticles as delivery vehicles for ph‐responsive drug delivery and magnetic resonance imaging contrast agents. Chemistry–An Asian Journal, 9(2), 546-553. https://doi.org/10.1002/asia.201301072 DOI: https://doi.org/10.1002/asia.201301072
- ZHENG, Y. Y., SUN, Q., DUAN, Y. H., ZHAI, J., ZHANG, L. L., & WANG, J. X. (2020). Controllable synthesis of monodispersed iron oxide nanoparticles by an oxidation-precipitation combined with solvothermal process. Materials Chemistry and Physics, 252, 123431. https://doi.org/10.1016/j.matchemphys.2020.123431 DOI: https://doi.org/10.1016/j.matchemphys.2020.123431
- ZHOU, G., SUN, J., YASEEN, M., ZHANG, H., HE, H., WANG, Y., ... & LIAO, D. (2018). Synthesis of highly selective magnetite (Fe3O4) and tyrosinase immobilized on chitosan microspheres as low potential electrochemical biosensor. Journal of The Electrochemical Society, 165(2), G11. DOI 10.1149/2.1031802jes DOI: https://doi.org/10.1149/2.1031802jes
- ZUFELATO, N., AQUİNO, V. R., SHRİVASTAVA, N., MENDANHA, S., MİOTTO, R., & BAKUZİS, A. F. (2022). Heat generation in magnetic hyperthermia by manganese ferrite-based nanoparticles arises from Néel collective magnetic relaxation. ACS Applied Nano Materials, 5(5), 7521-7539. https://doi.org/10.1021/acsanm.2c01536 DOI: https://doi.org/10.1021/acsanm.2c01536
How to Cite
How to Cite
Downloads
Article Details
Most Read This Month
License
Copyright (c) 2023 Gamze Dik, Ahmet Ulu, Burhan Ateş

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.