Skip to main content Skip to main navigation menu Skip to site footer

Synthesis and Biomedical Applications of Polymer-Functionalized Magnetic Nanoparticles

Abstract

Magnetic nanoparticles (MNPs) are receiving increasing attention from individual scientists and research companies as promising materials for biomedical applications. MNPs can be synthesized by many different methods. Before proceeding to the synthesis process, the cost of using it and the practicality of the synthesis conditions are well investigated. Especially in their use in the biomedical field, features such as not containing toxic substances, high biocompatibility, and low particle size are desired. However, the use of magnetic nanoparticles in biomedical applications is limited due to various difficulties such as particle agglomeration and oxidation of magnetic cores of MNPs. To overcome these challenges, MNPs can be coated with various natural and synthetic polymers to alter their morphological structure, magnetic character, biocompatibility, and especially surface functional groups. Therefore, this review focuses on the synthesis of MNPs by different methods and the effects of these synthesis methods on magnetic properties and size, their modifications with natural and synthetic polymers, and the use of these polymer-coated MNPs in biomedical fields such as targeted drug release, enzyme immobilization, biosensors, tissue engineering, magnetic imaging, and hyperthermia. The review article also provides examples of advanced biomedical applications of polymer-coated MNPs and perspectives for future research to promote polymer-coated MNPs. To this end, we aim to highlight knowledge gaps that can guide future research to improve the performance of MNPs for different applications.

.

Section

References

  1. ABBASI, E., AVAL, S. F., AKBARZADEH, A., MILANI, M., NASRABADI, H. T., JOO, S. W., ... & PASHAEI-ASL, R. (2014). Dendrimers: synthesis, applications, and properties. Nanoscale research letters, 9(1), 1-10. https://doi.org/10.1186/1556-276X-9-247
  2. ABDELFATAH, A. M., FAWZY, M., ELTAWEIL, A. S., & EL-KHOULY, M. E. (2021). Green synthesis of nano-zero-valent iron using ricinus communis seeds extract: Characterization and application in the treatment of methylene blue-polluted water. ACS omega, 6(39), 25397-25411. https://doi.org/10.1021/acsomega.1c03355
  3. ADIMOOLAM, M. G., AMREDDY, N., NALAM, M. R., & SUNKARA, M. V. (2018). A simple approach to design chitosan functionalized Fe3O4 nanoparticles for pH responsive delivery of doxorubicin for cancer therapy. Journal of Magnetism and Magnetic Materials, 448, 199-207. https://doi.org/10.1016/j.jmmm.2017.09.018
  4. AFROUZ, M., AHMADİ-NOURALDİNVAND, F., AMANİ, A., ZAHEDİAN, H., ELİAS, S. G., ARABNEJAD, F., ... & ESKANLOU, H. (2023). Preparation and characterization of magnetic PEG-PEI-PLA-PEI-PEG/Fe3O4-PCL/DNA micelles for gene delivery into MCF-7 cells. Journal of Drug Delivery Science and Technology, 79, 104016. https://doi.org/10.1016/j.jddst.2022.104016
  5. ANGERMANN, A., & TÖPFER, J. (2008). Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dihydrate. Journal of Materials Science, 43, 5123-5130. https://doi.org/10.1007/s10853-008-2738-3
  6. ANTARNUSA, G., JAYANTİ, P. D., DENNY, Y. R., & SUHERMAN, A. (2022). Utilization of co-precipitation method on synthesis of Fe3O4/PEG with different concentrations of PEG for biosensor applications. Materialia, 25, 101525. https://doi.org/10.1016/j.mtla.2022.101525
  7. BEHROUZKİA, Z., JOVEİNİ, Z., KESHAVARZİ, B., EYVAZZADEH, N., & AGHDAM, R. Z. (2016). Hyperthermia: how can it be used?. Oman medical journal, 31(2), 89. https://doi.org/10.5001%2Fomj.2016.19
  8. BINU, N. M., PREMA, D., PRAKASH, J., BALAGANGADHARAN, K., BALASHANMUGAM, P., SELVAMURUGAN, N., & VENKATASUBBU, G. D. (2021). Folic acid decorated pH sensitive polydopamine coated honeycomb structured nickel oxide nanoparticles for targeted delivery of quercetin to triple negative breast cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630, 127609. https://doi.org/10.1016/j.colsurfa.2021.127609
  9. BIRLA, R. (2016). Biosensors in tissue and organ fabrication. In Tissue Engineering for the Heart (pp. 31-57). Springer, Cham. https://doi.org/10.1007/978-3-319-41504-8_2
  10. BOODOO, C., DESTER, E., SHARİEF, S. A., & ALOCİLJA, E. C. (2023). Influence of Biological and Environmental Factors in the Extraction and Concentration of Foodborne Pathogens Using Glycan-Coated Magnetic Nanoparticles. Journal of Food Protection, 86(4), 100066. https://doi.org/10.1016/j.jfp.2023.100066
  11. BUTTER, K., KASSAPIDOU, K., VROEGE, G. J., & PHILIPSE, A. P. (2005). Preparation and properties of colloidal iron dispersions. Journal of colloid and interface science, 287(2), 485-495. https://doi.org/10.1016/j.jcis.2005.02.014
  12. CHAICHI, M. J., & EHSANI, M. (2016). A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol–H2O2–gold nanoparticle chemiluminescence detection system. Sensors and Actuators B: Chemical, 223, 713-722. https://doi.org/10.1016/j.snb.2015.09.125
  13. CHANDRAN, S. P., CHAUDHARY, M., PASRICHA, R., AHMAD, A., & SASTRY, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnology progress, 22(2), 577-583. https://doi.org/10.1021/bp0501423
  14. CHAUDHARY, V., & CHAUDHARY, R. (2018). Magnetic nanoparticles: synthesis, functionalization, and applications. Encyclopedia of nanoscience and nanotechnology, 28, 153-183.
  15. CHEN, P. C., LAI, J. J., & HUANG, C. J. (2021). Bio-Inspired Amphoteric Polymer for Triggered-Release Drug Delivery on Breast Cancer Cells Based on Metal Coordination. ACS applied materials & interfaces, 13(22), 25663-25673. https://doi.org/10.1021/acsami.1c03191
  16. CHEN, W., WEN, X., ZHEN, G., & ZHENG, X. (2015). Assembly of Fe3O4 nanoparticles on PEG-functionalized graphene oxide for efficient magnetic imaging and drug delivery. Rsc Advances, 5(85), 69307-69311. https://doi.org/10.1039/C5RA09901C
  17. CHERAGHALİ, S., DİNİ, G., CALİGİURİ, I., BACK, M., & RİZZOLİO, F. (2023). PEG-coated MnZn ferrite nanoparticles with hierarchical structure as MRI contrast agent. Nanomaterials, 13(3), 452. https://doi.org/10.3390/nano13030452
  18. CHIN, A. B., & YAACOB, I. I. (2007). Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart's procedure. Journal of materials processing technology, 191(1-3), 235-237. https://doi.org/10.1016/j.jmatprotec.2007.03.011
  19. COROT, C., ROBERT, P., IDÉE, J. M., & PORT, M. (2006). Recent advances in iron oxide nanocrystal technology for medical imaging. Advanced drug delivery reviews, 58(14), 1471-1504. https://doi.org/10.1016/j.addr.2006.09.013
  20. DA SİLVA JUNİOR, A. G., FRİAS, I. A., LİMA-NETO, R. G., FRANCO, O. L., OLİVEİRA, M. D., & ANDRADE, C. A. (2022). Electrochemical detection of gram-negative bacteria through mastoparan-capped magnetic nanoparticle. Enzyme and Microbial Technology, 160, 110088. https://doi.org/10.1016/j.enzmictec.2022.110088
  21. DA, X., Lİ, R., Lİ, X., LU, Y., GU, F., & LİU, Y. (2022). Synthesis and characterization of PEG coated hollow Fe3O4 magnetic nanoparticles as a drug carrier. Materials Letters, 309, 131357. https://doi.org/10.1016/j.matlet.2021.131357
  22. DABAGH, S., HARİS, S. A., & ERTAS, Y. N. (2023). Engineered Polyethylene Glycol-Coated Zinc Ferrite Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/acsbiomaterials.3c00255
  23. DEGEN, C. L., POGGİO, M., MAMİN, H. J., RETTNER, C. T., & RUGAR, D. (2009). Nanoscale magnetic resonance imaging. Proceedings of the National Academy of Sciences, 106(5), 1313-1317. https://doi.org/10.1073/pnas.0812068106
  24. DEMİN, A. M., PERSHİNA, A. G., MİNİN, A. S., MEKHAEV, A. V., IVANOV, V. V., LEZHAVA, S. P., ... & OGORODOVA, L. M. (2018). PMIDA-modified Fe3O4 magnetic nanoparticles: synthesis and application for liver MRI. Langmuir, 34(11), 3449-3458. https://doi.org/10.1021/acs.langmuir.7b04023
  25. DHEYAB, M. A., AZİZ, A. A., JAMEEL, M. S., KHANİABADİ, P. M., & MEHRDEL, B. (2021). Sonochemical-assisted synthesis of highly stable gold nanoparticles catalyst for decoloration of methylene blue dye. Inorganic Chemistry Communications, 127, 108551. https://doi.org/10.1016/j.inoche.2021.108551
  26. DIK, G., ULU, A., INAN, O. O., ATALAY, S., & ATEŞ, B. (2022). A positive effect of magnetic field on the catalytic activity of immobilized L-asparaginase: evaluation of its feasibility. Catalysis Letters, 1-15. https://doi.org/10.1007/s10562-022-04075-3
  27. DING, Y., SHEN, S. Z., SUN, H., SUN, K., LIU, F., QI, Y., & YAN, J. (2015). Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery. Materials Science and Engineering: C, 48, 487-498. https://doi.org/10.1016/j.msec.2014.12.036
  28. DOBSON, J. (2006). Magnetic nanoparticles for drug delivery. Drug development research, 67(1), 55-60. https://doi.org/10.1038/sj.gt.3302720
  29. DURAİSAMY, K., GANGADHARAN, A., MARTİROSYAN, K. S., SAHU, N. K., MANOGARAN, P., & EASWARADAS KREEDAPATHY, G. (2022). Fabrication of Multifunctional Drug Loaded Magnetic Phase Supported Calcium Phosphate Nanoparticle for Local Hyperthermia Combined Drug Delivery and Antibacterial Activity. ACS Applied Bio Materials, 6(1), 104-116. https://doi.org/10.1021/acsabm.2c00768
  30. EBADİ, M., BUSKARAN, K., BULLO, S., HUSSEİN, M. Z., FAKURAZİ, S., & PASTORİN, G. (2021). Drug delivery system based on magnetic iron oxide nanoparticles coated with (polyvinyl alcohol-zinc/aluminium-layered double hydroxide-sorafenib). Alexandria Engineering Journal, 60(1), 733-747. https://doi.org/10.1016/j.aej.2020.09.061
  31. EBADI, M., RIFQI MD ZAIN, A., TENGKU ABDUL AZIZ, T. H., MOHAMMADI, H., TEE, C. A. T., & RAHIMI YUSOP, M. (2023). Formulation and Characterization of Fe3O4@ PEG Nanoparticles Loaded Sorafenib; Molecular Studies and Evaluation of Cytotoxicity in Liver Cancer Cell Lines. Polymers, 15(4), 971. https://doi.org/10.3390/polym15040971
  32. FARAJI, M., YAMINI, Y., & REZAEE, M. (2010). Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. Journal of the Iranian Chemical Society, 7(1), 1-37. https://doi.org/10.1007/BF03245856
  33. FARMANBAR, N., MOHSENİ, S., & DARROUDİ, M. (2022). Green synthesis of chitosan-coated magnetic nanoparticles for drug delivery of oxaliplatin and irinotecan against colorectal cancer cells. Polymer Bulletin, 79(12), 10595-10613. https://doi.org/10.1007/s00289-021-04066-1
  34. FERNÁNDEZ-AFONSO, Y., ASÍN, L., BEOLA, L., FRATİLA, R. M., & GUTİÉRREZ, L. (2022). Influence of Magnetic Nanoparticle Degradation in the Frame of Magnetic Hyperthermia and Photothermal Treatments. ACS Applied Nano Materials, 5(11), 16220-16230. https://doi.org/10.1021/acsanm.2c03220
  35. FUENTES-GARCÍA, J. A., CARVALHO ALAVARSE, A., MORENO MALDONADO, A. C., TORO-CÓRDOVA, A., IBARRA, M. R., & GOYA, G. F. (2020). Simple sonochemical method to optimize the heating efficiency of magnetic nanoparticles for magnetic fluid hyperthermia. ACS omega, 5(41), 26357-26364. https://doi.org/10.1021/acsomega.0c02212
  36. GEBREYOHANNES, A. Y., MAZZEI, R., MAREI ABDELRAHIM, M. Y., VITOLA, G., PORZIO, E., MANCO, G., ... & GIORNO, L. (2018). Phosphotriesterase-magnetic nanoparticle bioconjugates with improved enzyme activity in a biocatalytic membrane reactor. Bioconjugate Chemistry, 29(6), 2001-2008. https://doi.org/10.1021/acs.bioconjchem.8b00214
  37. GUISASOLA, E., ASÍN, L., BEOLA, L., DE LA FUENTE, J. M., BAEZA, A., & VALLET-REGÍ, M. (2018). Beyond traditional hyperthermia: in vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers. ACS applied materials & interfaces, 10(15), 12518-12525. https://doi.org/10.1021/acsami.8b02398
  38. HAROOSH, H. J., DONG, Y., & INGRAM, G. D. (2013). Synthesis, morphological structures, and material characterization of electrospun PLA: PCL/magnetic nanoparticle composites for drug delivery. Journal of Polymer Science Part B: Polymer Physics, 51(22), 1607-1617. https://doi.org/10.1002/polb.23374
  39. HEDAYATNASAB, Z., ABNISA, F., & DAUD, W. M. A. W. (2017). Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Materials & Design, 123, 174-196. https://doi.org/10.1016/j.matdes.2017.03.036
  40. HOSSEINI, S. H., HOSSEINI, S. A., ZOHREH, N., YAGHOUBI, M., & POURJAVADI, A. (2018). Covalent immobilization of cellulase using magnetic poly (ionic liquid) support: improvement of the enzyme activity and stability. Journal of agricultural and food chemistry, 66(4), 789-798. https://doi.org/10.1021/acs.jafc.7b03922
  41. HU, Y., GUO, X., WANG, H., LUO, Q., SONG, Y., & SONG, E. (2020). Magnetic-separation-assisted magnetic relaxation switching assay for mercury ion based on the concentration change of oligonucleotide-functionalized magnetic nanoparticle. ACS Applied Bio Materials, 3(5), 2651-2657. https://doi.org/10.1021/acsabm.0c00021
  42. IMRAN, M., HAIDER, A., SHAHZADI, I., MOEEN, S., UL-HAMID, A., NABGAN, W., ... & IKRAM, M. (2023). Polyvinylpyrrolidone and chitosan-coated magnetite (Fe3O4) nanoparticles for catalytic and antimicrobial activity with molecular docking analysis. Journal of Environmental Chemical Engineering, 11(3), 110088. https://doi.org/10.1016/j.jece.2023.110088
  43. IRFAN, M., DOGAN, N., BINGOLBALI, A., & ALIEW, F. (2021). Synthesis and characterization of NiFe2O4 magnetic nanoparticles with different coating materials for magnetic particle imaging (MPI). Journal of Magnetism and Magnetic Materials, 537, 168150. https://doi.org/10.1016/j.jmmm.2021.168150
  44. JAIN, T. K., MORALES, M. A., SAHOO, S. K., LESLIE-PELECKY, D. L., & LABHASETWAR, V. (2005). Iron oxide nanoparticles for sustained delivery of anticancer agents. Molecular pharmaceutics, 2(3), 194-205. https://doi.org/10.1021/mp0500014
  45. JİA, H., HUANG, F., GAO, Z., ZHONG, C., ZHOU, H., JİANG, M., & WEİ, P. (2016). Immobilization of ω-transaminase by magnetic PVA-Fe3O4 nanoparticles. Biotechnology reports, 10, 49-55. https://doi.org/10.1016/j.btre.2016.03.004
  46. JIANG, X., WANG, H., WANG, H., ZHUO, Y., YUAN, R., & CHAI, Y. (2017). Electrochemiluminescence biosensor based on 3-D DNA nanomachine signal probe powered by protein-aptamer binding complex for ultrasensitive mucin 1 detection. Analytical chemistry, 89(7), 4280-4286. https://doi.org/10.1021/acs.analchem.7b00347
  47. KARIMI, S., & NAMAZI, H. (2021). Fe3O4@ PEG-coated dendrimer modified graphene oxide nanocomposite as a pH-sensitive drug carrier for targeted delivery of doxorubicin. Journal of Alloys and Compounds, 879, 160426. https://doi.org/10.1016/j.jallcom.2021.160426
  48. KARTHIKA, V., ALSALHI, M. S., DEVANESAN, S., GOPINATH, K., ARUMUGAM, A., & GOVINDARAJAN, M. (2020). Chitosan overlaid Fe3O4/rGO nanocomposite for targeted drug delivery, imaging, and biomedical applications. Scientific Reports, 10(1), 18912. https://doi.org/10.1038/s41598-020-76015-3
  49. KASİŃSKİ, A., ŚWİERCZEK, A., ZİELİŃSKA-PİSKLAK, M., KOWALCZYK, S., PLİCHTA, A., ZGADZAJ, A., ... & SOBCZAK, M. (2023). Dual-Stimuli-Sensitive Smart Hydrogels Containing Magnetic Nanoparticles as Antitumor Local Drug Delivery Systems—Synthesis and Characterization. International Journal of Molecular Sciences, 24(8), 6906. https://doi.org/10.3390/ijms24086906
  50. KATTİ, G., ARA, S. A., & SHİREEN, A. (2011). Magnetic resonance imaging (MRI)–A review. International journal of dental clinics, 3(1), 65-70.
  51. KAUFMAN, A. A., HANSEN, R. O., & KLEİNBERG, R. L. (2008). Paramagnetism, Diamagnetism, and Ferromagnetism. Methods in Geochemistry and Geophysics, 42, 207-254. https://doi.org/10.1016/S0076-6895(08)00006-1
  52. Keng, P. Y., Shim, I., Korth, B. D., Douglas, J. F., & Pyun, J. (2007). Synthesis and self-assembly of polymer-coated ferromagnetic nanoparticles. Acs Nano, 1(4), 279-292. https://doi.org/10.1021/nn7001213
  53. KHARAZMI, S., TAHERI-KAFRANI, A., SOOZANIPOUR, A., NASROLLAHZADEH, M., & VARMA, R. S. (2020). Xylanase immobilization onto trichlorotriazine-functionalized polyethylene glycol grafted magnetic nanoparticles: A thermostable and robust nanobiocatalyst for fruit juice clarification. International Journal of Biological Macromolecules, 163, 402-413. https://doi.org/10.1016/j.ijbiomac.2020.06.273
  54. KHODADADİ, A., TALEBTASH, M. R., & FARAHMANDJOU, M. (2022). Effect of PVA/PEG-coated Fe3O4 Nanoparticles on the Structure, Morphology and Magnetic Properties. Physical Chemistry Research, 10(4), 537-547. 10.22036/PCR.2022.326878.2023
  55. KLAUS, T., JOERGER, R., OLSSON, E., & GRANQVIST, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences, 96(24), 13611-13614. https://doi.org/10.1073/pnas.96.24.13611
  56. LAI, S. M., HSIAO, J. K., YU, H. P., LU, C. W., HUANG, C. C., SHIEH, M. J., & LAI, P. S. (2012). Polyethylene glycol-based biocompatible and highly stable superparamagnetic iron oxide nanoclusters for magnetic resonance imaging. Journal of Materials Chemistry, 22(30), 15160-15167. https://doi.org/10.1039/C2JM32086J
  57. LAKSHMINARAYANAN, S., SHEREEN, M. F., NIRAIMATHI, K. L., BRINDHA, P., & ARUMUGAM, A. (2021). One-pot green synthesis of iron oxide nanoparticles from Bauhinia tomentosa: Characterization and application towards synthesis of 1, 3 diolein. Scientific reports, 11(1), 1-13. https://doi.org/10.1038/s41598-021-87960-y
  58. LEE, H., KIM, D. I., KWON, S. H., & PARK, S. (2021). Magnetically actuated drug delivery helical microrobot with magnetic nanoparticle retrieval ability. ACS Applied Materials & Interfaces, 13(17), 19633-19647. https://doi.org/10.1021/acsami.1c01742
  59. LI, J., HE, Y., SUN, W., LUO, Y., CAI, H., PAN, Y., ... & SHI, X. (2014). Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials, 35(11), 3666-3677. https://doi.org/10.1016/j.biomaterials.2014.01.011
  60. LI, J., WANG, J., LI, J., YANG, X., WAN, J., ZHENG, C., ... & YANG, X. (2021). Fabrication of Fe3O4@ PVA microspheres by one-step electrospray for magnetic resonance imaging during transcatheter arterial embolization. Acta Biomaterialia, 131, 532-543. https://doi.org/10.1016/j.jallcom.2021.160426
  61. LI, J., ZHENG, L., CAI, H., SUN, W., SHEN, M., ZHANG, G., & SHI, X. (2013). Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials, 34(33), 8382-8392. https://doi.org/10.1016/j.biomaterials.2013.07.070
  62. LI, Z., TAN, B., ALLIX, M., COOPER, A. I., & ROSSEINSKY, M. J. (2008). Direct coprecipitation route to monodisperse dual‐functionalized magnetic iron oxide nanocrystals without size selection. Small, 4(2), 231-239. https://doi.org/10.1002/smll.200700575
  63. Li, Z., Zhu, Q., Liu, Z., Sha, L., & Chen, Z. (2022). Improved performance of immobilized laccase for catalytic degradation of synthetic dyes using redox mediators. New Journal of Chemistry, 46(20), 9792-9798. https://doi.org/10.1039/D2NJ00049K
  64. LİANG, Z. P., & LAUTERBUR, P. C. (2000). Principles of magnetic resonance imaging (pp. 1-7). Belllingham, WA: SPIE Optical Engineering Press.
  65. LİAO, H., CHEN, D., YUAN, L., ZHENG, M., ZHU, Y., & LİU, X. (2010). Immobilized cellulase by polyvinyl alcohol/Fe2O3 magnetic nanoparticle to degrade microcrystalline cellulose. Carbohydrate Polymers, 82(3), 600-604. https://doi.org/10.1016/j.carbpol.2010.05.021
  66. LIU, J., CHEN, G., YAN, B., YI, W., & YAO, J. (2022). Biodiesel production in a magnetically fluidized bed reactor using whole-cell biocatalysts immobilized within ferroferric oxide-polyvinyl alcohol composite beads. Bioresource Technology, 355, 127253. https://doi.org/10.1016/j.biortech.2022.127253
  67. LIU, Q., TAN, Z., ZHENG, D., & QIU, X. (2023). pH-responsive magnetic Fe3O4/carboxymethyl chitosan/aminated lignosulfonate nanoparticles with uniform size for targeted drug loading. International Journal of Biological Macromolecules, 225, 1182-1192. https://doi.org/10.1016/j.ijbiomac.2022.11.179
  68. LOMBARDO, D., KISELEV, M. A., & CACCAMO, M. T. (2019). Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of Nanomaterials, 2019. https://doi.org/10.1155/2019/3702518
  69. LU, J., LI, Y., ZHU, H., & SHI, G. (2021). SiO2-coated Fe3O4 nanoparticle/polyacrylonitrile beads for one-step lipase immobilization. ACS Applied Nano Materials, 4(8), 7856-7869. https://doi.org/10.1021/acsanm.1c01181
  70. MA, H., LI, M., YU, T., ZHANG, H., XIONG, M., & LI, F. (2021). Magnetic ZIF-8-Based Mimic Multi-enzyme System as a Colorimetric Biosensor for Detection of Aryloxyphenoxypropionate Herbicides. ACS Applied Materials & Interfaces, 13(37), 44329-44338. https://doi.org/10.1021/acsami.1c11815
  71. MAFTOON, H., TARAVATİ, A., & TOHİDİ, F. (2023). Immobilization of laccase on carboxyl-functionalized chitosan-coated magnetic nanoparticles with improved stability and reusability. Monatshefte für Chemie-Chemical Monthly, 154(2), 279-291. https://doi.org/10.1007/s00706-022-03029-0
  72. MAI, B. T., CONTEH, J. S., GAVILÁN, H., DI GIROLAMO, A., & PELLEGRINO, T. (2022). Clickable polymer ligand-functionalized iron oxide nanocubes: a promising nanoplatform for ‘local hot spots’ magnetically triggered drug release. ACS Applied Materials & Interfaces, 14(43), 48476-48488. https://doi.org/10.1021/acsami.2c14752
  73. MAI, T. T. T., HA, P. T., PHAM, H. N., LE, T. T. H., PHAM, H. L., PHAN, T. B. H., ... & NGUYEN, X. P. (2012). Chitosan and O-carboxymethyl chitosan modified Fe3O4 for hyperthermic treatment. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(1), 015006. DOI 10.1088/2043-6262/3/1/015006
  74. MAJIDI, S., ZEINALI SEHRIG, F., FARKHANI, S. M., SOLEYMANI GOLOUJEH, M., & AKBARZADEH, A. (2016). Current methods for synthesis of magnetic nanoparticles. Artificial cells, nanomedicine, and biotechnology, 44(2), 722-734. https://doi.org/10.3109/21691401.2014.982802
  75. MANJUSHA, V., RAJEEV, M. R., & ANIRUDHAN, T. S. (2023). Magnetic nanoparticle embedded chitosan-based polymeric network for the hydrophobic drug delivery of paclitaxel. International Journal of Biological Macromolecules, 235, 123900. https://doi.org/10.1016/j.ijbiomac.2023.123900
  76. MANZOOR, S., YASMIN, G., RAZA, N., FERNANDEZ, J., ATIQ, R., CHOHAN, S., ... & AZAM, M. (2021). Synthesis of polyaniline coated magnesium and cobalt oxide nanoparticles through eco-friendly approach and their application as antifungal agents. Polymers, 13(16), 2669. https://doi.org/10.3390/polym13162669
  77. MARKIDES, H., ROTHERHAM, M., & EL HAJ, A. J. (2012). Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. Journal of nanomaterials, 2012, 13-13. https://doi.org/10.1155/2012/614094
  78. MEKSERIWATTANA, W., PHANCHAI, W., THIANGTRONGJIT, T., REAMTONG, O., PUANGMALI, T., WONGTRAKOONGATE, P., ... & KATEWONGSA, K. P. (2023). Proteomic Analysis and Molecular Dynamics Simulation of Riboflavin-Coated Superparamagnetic Iron Oxide Nanoparticles Reveal Human Serum-Derived Protein Coronas: Implications as Magnetic Resonance Imaging Contrast Agents. ACS Applied Nano Materials. https://doi.org/10.1021/acsanm.3c01767
  79. MIN, K., & YOO, Y. J. (2014). Recent progress in nanobiocatalysis for enzyme immobilization and its application. Biotechnology and Bioprocess Engineering, 19(4), 553-567. DOI 10.1007/s12257-014-0173-7. https://doi.org/10.1007/s12257-014-0173-7
  80. MOGHADDAM-MANESH, M., SARGAZI, G., ROOHANI, M., ZANJANI, N. G., KHALEGHI, M., & HOSSEINZADEGAN, S. (2022). Synthesis of PVA/Fe3O4@SiO2@CPS@SID@ Ni as novel magnetic fibrous composite polymer nanostructures and evaluation of anti-cancer and antimicrobial activity. Polymer Bulletin, 1-12.
  81. MOHAMMADI, H., NEKOBAHR, E., AKHTARI, J., SAEEDI, M., AKBARI, J., & FATHI, F. (2021). Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity. Toxicology reports, 8, 331-336. https://doi.org/10.1016/j.toxrep.2021.01.012
  82. MOSTARADDİ, S., PAZHANG, M., EBADİ-NAHARİ, M., & NAJAVAND, S. (2023). The Relationship Between the Cross-Linker on Chitosan-Coated Magnetic Nanoparticles and the Properties of Immobilized Papain. Molecular Biotechnology, 1-15. https://doi.org/10.1007/s12033-023-00687-1
  83. MS, L. S., & NAMPOOTHIRI, K. M. (2022). Xylose Dehydrogenase Immobilized on Ferromagnetic Nanoparticles for Bioconversion of Xylose to Xylonic Acid. Bioconjugate Chemistry. https://doi.org/10.1021/acs.bioconjchem.2c00159
  84. MYLKIE, K., NOWAK, P., RYBCZYNSKI, P., & ZIEGLER-BOROWSKA, M. (2021). Polymer-coated magnetite nanoparticles for protein immobilization. Materials, 14(2), 248. https://doi.org/10.3390/ma14020248
  85. NABAEI, V., CHANDRAWATI, R., & HEIDARI, H. (2018). Magnetic biosensors: Modelling and simulation. Biosensors and Bioelectronics, 103, 69-86. https://doi.org/10.1016/j.bios.2017.12.023
  86. NAİDEK, N., KHALİL, N. M., & ALMEİDA, C. A. P. (2023). Poly-(lactic-co-glycolic acid)/poly-(vinyl alcohol) and cobalt ferrite magnetic nanoparticles as vanillin carriers. Soft Materials, 21(2), 206-217. https://doi.org/10.1080/1539445X.2023.2199419
  87. NAIR, B., & PRADEEP, T. (2002). Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crystal growth & design, 2(4), 293-298. https://doi.org/10.1021/cg0255164
  88. OROPESA-NUÑEZ, R., ZARDÁN GÓMEZ DE LA TORRE, T., STOPFEL, H., SVEDLINDH, P., STRÖMBERG, M., & GUNNARSSON, K. (2020). Insights into the Formation of DNA–Magnetic Nanoparticle Hybrid Structures: Correlations between Morphological Characterization and Output from Magnetic Biosensor Measurements. ACS sensors, 5(11), 3510-3519. https://doi.org/10.1021/acssensors.0c01623
  89. ORTEGA, D., & PANKHURST, Q. A. (2013). Magnetic hyperthermia. Nanoscience, 1(60), e88.
  90. PANDEY, S., OZA, G., MEWADA, A., & SHARON, M. (2012). Green synthesis of highly stable gold nanoparticles using Momordica charantia as nano fabricator. Archives of Applied Science Research, 4(2), 1135-1141.
  91. QU, J., LIU, G., WANG, Y., & HONG, R. (2010). Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Advanced Powder Technology, 21(4), 461-467. https://doi.org/10.1016/j.apt.2010.01.008
  92. REDDY, L. H., ARIAS, J. L., NICOLAS, J., & COUVREUR, P. (2012). Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chemical reviews, 112(11), 5818-5878. https://doi.org/10.1021/cr300068p
  93. REZAYAN, A. H., KHEİRJOU, S., EDRİSİ, M., SHAFİEE ARDESTANİ, M., & ALVANDİ, H. (2022). A Modified PEG-Fe3O4 Magnetic Nanoparticles Conjugated with D (+) Glucosamine (DG): MRI Contrast Agent. Journal of Inorganic and Organometallic Polymers and Materials, 32(6), 1988-1998. https://doi.org/10.1007/s10904-022-02253-9
  94. RITTER, D., KNEBEL, J., NIEHOF, M., LOINAZ, I., MARRADI, M., GRACIA, R., ... & HANSEN, T. (2020). In vitro inhalation cytotoxicity testing of therapeutic nanosystems for pulmonary infection. Toxicology in Vitro, 63, 104714. https://doi.org/10.1016/j.tiv.2019.104714
  95. SAHİN, S., & OZMEN, I. (2020). Covalent immobilization of trypsin on polyvinyl alcohol-coated magnetic nanoparticles activated with glutaraldehyde. Journal of pharmaceutical and biomedical analysis, 184, 113195. https://doi.org/10.1016/j.jpba.2020.113195
  96. SAKALLIOĞLU, H. (2013). Manyetik Nanopartiküller Üzerine Desteklenmiş Schiff Bazı Türevi Metal Komplekslerinin Sentezleri ve Katalitik Etkinliklerinin İncelenmesi. Çukurova University, Institute of Science, Department of Chemistry, Master Thesis.
  97. SALAHUDDIN, N., GABER, M., MOUSA, M., & ABDELWAHAB, M. A. (2020). Poly (3-hydroxybutyrate)/poly (amine)-coated nickel oxide nanoparticles for norfloxacin delivery: antibacterial and cytotoxicity efficiency. RSC advances, 10(56), 34046-34058. https://doi.org/10.1039/D0RA04784H
  98. SANAEİFAR, N., RABİEE, M., ABDOLRAHİM, M., TAHRİRİ, M., VASHAEE, D., & TAYEBİ, L. (2017). A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Analytical Biochemistry, 519, 19-26. https://doi.org/10.1016/j.ab.2016.12.006
  99. SÁNCHEZ, J., CORTÉS-HERNÁNDEZ, D. A., ESCOBEDO-BOCARDO, J. C., JASSO-TERÁN, R. A., & ZUGASTI-CRUZ, A. (2014). Bioactive magnetic nanoparticles of Fe–Ga synthesized by sol–gel for their potential use in hyperthermia treatment. Journal of Materials Science: Materials in Medicine, 25(10), 2237-2242. https://doi.org/10.1007/s10856-014-5197-1
  100. SANDEEP KUMAR, V. (2013). Magnetic nanoparticles-based biomedical and bioanalytical applications. J Nanomed Nanotechol, 4, e130. doı:10.4172/2157-7439.1000e130
  101. SAYINER, Ö., & ÇOMOĞLU, T. (2016). Nanotaşıyıcı Sistemlerde Hedeflendirme Targetıng Wıth Nanocarrıer Systems. Journal Of Faculty of Pharmacy of Ankara University, 40(3), 62-79. https://doi.org/10.1501/Eczfak_0000000589
  102. SHABANI, M., SAEBNOORI, E., HASSANZADEH-TABRIZI, S. A., & BAKHSHESHI-RAD, H. R. (2023). Solution plasma synthesis of polymer-coated NiFe2O4 nanoparticles for hyperthermia application. Journal of Materials Engineering and Performance, 32(5), 2165-2182. https://doi.org/10.1007/s11665-022-07268-4
  103. SHAHRIAR, S., MAHIN, S., & MOHAMMAD, R. (2020). ring the synthesis of Fe3O4@ PVA nanocomposites from industrial waste (raffinate). Environmental Science and Pollution Research International, 27(25), 32088-32099. DOI:10.1007/s11356-020-09436-2
  104. SHELDON, R. A., & VAN PELT, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews, 42(15), 6223-6235. https://doi.org/10.1039/C3CS60075K
  105. SHEN, H., SONG, J., ZHOU, Z., LI, M., ZHANG, R., SU, P., & YANG, Y. (2019). DNA-directed immobilized enzymes on recoverable magnetic nanoparticles shielded in nucleotide coordinated polymers. Industrial & Engineering Chemistry Research, 58(20), 8585-8596. https://doi.org/10.1021/acs.iecr.9b01341
  106. SINGH, R. K., TIWARI, M. K., SINGH, R., & LEE, J. K. (2013). From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. International journal of molecular sciences, 14(1), 1232-1277. https://doi.org/10.3390/ijms14011232
  107. SINGH, A., GAUTAM, P. K., VERMA, A., SINGH, V., SHIVAPRIYA, P. M., SHIVALKAR, S., ... & SAMANTA, S. K. (2020). Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnology Reports, 25, e00427. https://doi.org/10.1016/j.btre.2020.e00427
  108. SONG, J. Y., & KIM, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and biosystems engineering, 32(1), 79-84. https://doi.org/10.1007/s00449-008-0224-6
  109. SONG, X., LUO, X., ZHANG, Q., ZHU, A., JI, L., & YAN, C. (2015). Preparation and characterization of biofunctionalized chitosan/Fe3O4 magnetic nanoparticles for application in liver magnetic resonance imaging. Journal of Magnetism and Magnetic Materials, 388, 116-122. https://doi.org/10.1016/j.jmmm.2015.04.017
  110. SUN, S., & ZENG, H. (2002). Size-controlled synthesis of magnetite nanoparticles. Journal of the American Chemical Society, 124(28), 8204-8205. https://doi.org/10.1021/ja026501x
  111. TAHERİAN, A., ESFANDİARİ, N., & ROUHANİ, S. (2021). Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nanotechnology, 12(1), 1-20. https://doi.org/10.1186/s12645-021-00086-8
  112. TAHERI‐LEDARI, R., ZHANG, W., RADMANESH, M., MIRMOHAMMADI, S. S., MALEKI, A., CATHCART, N., & KITAEV, V. (2020). Multi‐stimuli nanocomposite therapeutic: docetaxel targeted delivery and synergies in treatment of human breast cancer tumor. Small, 16(41), 2002733. https://doi.org/10.1002/smll.202002733
  113. TANG, W., LI, H., ZHANG, W., MA, T., ZHUANG, J., WANG, P., & CHEN, C. (2022). Site-Specific and Covalent Immobilization of Lipase on Natural Polyphenol-Modified Magnetic Nanoparticles for Effective Biodiesel Production. ACS Sustainable Chemistry & Engineering, 10(17), 5384-5395. https://doi.org/10.1021/acssuschemeng.1c07881
  114. TARHAN, T., DIK, G., ULU, A., TURAL, B., TURAL, S., & ATEŞ, B. (2022). Newly Synthesized Multifunctional Biopolymer Coated Magnetic Core/Shell Fe3O4@ Au Nanoparticles for Evaluation of L-asparaginase Immobilization. Topics in Catalysis, 1-15. https://doi.org/10.1007/s11244-022-01742-y
  115. THONG, P. Q., THU HUONG, L. T., TU, N. D., MY NHUNG, H. T., KHANH, L., MANH, D. H., ... & KİM THANH, N. T. (2022). Multifunctional nanocarriers of Fe3O4@ PLA-PEG/curcumin for MRI, magnetic hyperthermia and drug delivery. Nanomedicine, 17(22), 1677-1693. https://doi.org/10.2217/nnm-2022-0070
  116. TIAMA, T. M., ISMAIL, A. M., ELHAES, H., & IBRAHIM, M. A. (2023). Structural and Spectroscopic Studies for Chitosan/Fe3O4 Nanocomposites as Glycine Biosensors. https://doi.org/10.33263/BRIAC136.547
  117. TRAN, N., & WEBSTER, T. J. (2010). Magnetic nanoparticles: biomedical applications and challenges. Journal of Materials Chemistry, 20(40), 8760-8767. https://doi.org/10.1039/C0JM00994F
  118. VEISEH, O., KIEVIT, F. M., FANG, C., MU, N., JANA, S., LEUNG, M. C., ... & ZHANG, M. (2010). Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials, 31(31), 8032-8042. https://doi.org/10.1016/j.biomaterials.2010.07.016
  119. VİNİCİUS-ARAUJO, M., SHRİVASTAVA, N., SOUSA-JUNİOR, A. A., MENDANHA, S. A., SANTANA, R. C. D., & BAKUZİS, A. F. (2021). Zn x Mn1–X Fe2O4@ SiO2: z Nd3+ Core–Shell Nanoparticles for Low-Field Magnetic Hyperthermia and Enhanced Photothermal Therapy with the Potential for Nanothermometry. ACS Applied Nano Materials, 4(2), 2190-2210. https://doi.org/10.1021/acsanm.1c00027
  120. WANG, K., XU, X., LI, Y., RONG, M., WANG, L., LU, L., ... & JIANG, Y. (2021). Preparation Fe3O4@ chitosan-graphene quantum dots nanocomposites for fluorescence and magnetic resonance imaging. Chemical Physics Letters, 783, 139060. https://doi.org/10.1016/j.cplett.2021.139060
  121. WANG, Z., FENG, X., XİAO, F., BAİ, X., XU, Q., & XU, H. (2022). A novel PEG-mediated boric acid functionalized magnetic nanomaterials based fluorescence biosensor for the detection of Staphylococcus aureus. Microchemical Journal, 178, 107379. https://doi.org/10.1016/j.microc.2022.107379
  122. WEİSHAUPT, D., KÖCHLİ, V. D., MARİNCEK, B., FROEHLİCH, J. M., NANZ, D., & PRUESSMANN, K. P. (2006). How does MRI work?: an introduction to the physics and function of magnetic resonance imaging (Vol. 2). Berlin: Springer.
  123. WILLNER, I., BARON, R., & WILLNER, B. (2006). Growing metal nanoparticles by enzymes. Advanced Materials, 18(9), 1109-1120. https://doi.org/10.1002/adma.200501865
  124. WU, W., HE, Q., & JIANG, C. (2008). Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale research letters, 3(11), 397-415 https://doi.org/10.1007/s11671-008-9174-9
  125. WU, W., WU, Z., YU, T., JIANG, C., & KIM, W. S. (2015). Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Science and technology of advanced materials, 16(2), 023501. 10.1088/1468-6996/16/2/023501
  126. YADAV, N., SİNGH, A., & KAUSHİK, M. (2020). Hydrothermal synthesis and characterization of magnetic Fe3O4 and APTS coated Fe3O4 nanoparticles: physicochemical investigations of interaction with DNA. Journal of Materials Science: Materials in Medicine, 31, 1-11. https://doi.org/10.1007/s10856-020-06405-6
  127. YALLAPU, M. M., FOY, S. P., JAİN, T. K., & LABHASETWAR, V. (2010). PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharmaceutical research, 27, 2283-2295. https://doi.org/10.1007/s11095-010-0260-1
  128. YANG, C., & YAN, H. (2012). A green and facile approach for synthesis of magnetite nanoparticles with tunable sizes and morphologies. Materials Letters, 73, 129-132. https://doi.org/10.1016/j.matlet.2012.01.031
  129. YANG, F., ZHANG, X., SONG, L., CUİ, H., MYERS, J. N., BAİ, T., ... & GU, N. (2015). Controlled drug release and hydrolysis mechanism of polymer–magnetic nanoparticle composite. ACS Applied Materials & Interfaces, 7(18), 9410-9419. https://doi.org/10.1016/j.matlet.2012.01.031
  130. Yang, Y., Yan, X., Cui, Y., He, Q., Li, D., Wang, A., ... & Li, J. (2008). Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a “graft-from” method. Journal of Materials Chemistry, 18(47), 5731-5737. https://doi.org/10.1039/B811573G
  131. YILDIRIMER, L., THANH, N. T., LOIZIDOU, M., & SEIFALIAN, A. M. (2011). Toxicology and clinical potential of nanoparticles. Nano today, 6(6), 585-607. https://doi.org/10.1016/j.nantod.2011.10.001
  132. YIN, P. T., PONGKULAPA, T., CHO, H. Y., HAN, J., PASQUALE, N. J., RABIE, H., ... & LEE, K. B. (2018). Overcoming chemoresistance in cancer via combined microRNA therapeutics with anticancer drugs using multifunctional magnetic core–shell nanoparticles. ACS applied materials & interfaces, 10(32), 26954-26963. https://doi.org/10.1021/acsami.8b09086
  133. YU, H., WANG, Y., WANG, S., LI, X., LI, W., DING, D., ... & ZHANG, W. (2018). Paclitaxel-loaded core–shell magnetic nanoparticles and cold atmospheric plasma inhibit non-small cell lung cancer growth. ACS applied materials & interfaces, 10(50), 43462-43471. https://doi.org/10.1021/acsami.8b16487
  134. YUSEFI, M., SHAMELI, K., LEE-KIUN, M. S., TEOW, S. Y., MOEINI, H., ALI, R. R., ... & ABDULLAH, N. H. (2023). Chitosan coated magnetic cellulose nanowhisker as a drug delivery system for potential colorectal cancer treatment. International journal of biological macromolecules, 233, 123388. https://doi.org/10.1016/j.ijbiomac.2023.123388
  135. ZANDI, A., AHANGAR, H. A., & SAFFAR, A. (2022). pH responsive Fe3O4@ GT/PVA nanocomposite for drug release of hydroxychloroquine sulfate (HCQ). https://doi.org/10.21203/rs.3.rs-1799339/v1
  136. ZHAO, G., WANG, J., PENG, X., LI, Y., YUAN, X., & MA, Y. (2014). Facile solvothermal synthesis of mesostructured Fe3O4/chitosan nanoparticles as delivery vehicles for ph‐responsive drug delivery and magnetic resonance imaging contrast agents. Chemistry–An Asian Journal, 9(2), 546-553. https://doi.org/10.1002/asia.201301072
  137. ZHENG, Y. Y., SUN, Q., DUAN, Y. H., ZHAI, J., ZHANG, L. L., & WANG, J. X. (2020). Controllable synthesis of monodispersed iron oxide nanoparticles by an oxidation-precipitation combined with solvothermal process. Materials Chemistry and Physics, 252, 123431. https://doi.org/10.1016/j.matchemphys.2020.123431
  138. ZHOU, G., SUN, J., YASEEN, M., ZHANG, H., HE, H., WANG, Y., ... & LIAO, D. (2018). Synthesis of highly selective magnetite (Fe3O4) and tyrosinase immobilized on chitosan microspheres as low potential electrochemical biosensor. Journal of The Electrochemical Society, 165(2), G11. DOI 10.1149/2.1031802jes
  139. ZUFELATO, N., AQUİNO, V. R., SHRİVASTAVA, N., MENDANHA, S., MİOTTO, R., & BAKUZİS, A. F. (2022). Heat generation in magnetic hyperthermia by manganese ferrite-based nanoparticles arises from Néel collective magnetic relaxation. ACS Applied Nano Materials, 5(5), 7521-7539. https://doi.org/10.1021/acsanm.2c01536

How to Cite

Synthesis and Biomedical Applications of Polymer-Functionalized Magnetic Nanoparticles. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.329

How to Cite

Synthesis and Biomedical Applications of Polymer-Functionalized Magnetic Nanoparticles. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.329

HTML
378

Total
601

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Gamze Dik, Ahmet Ulu, Burhan Ateş

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Most read articles by the same author(s)