Skip to main content Skip to main navigation menu Skip to site footer

Fabrication and characterization of high molecular mass tmpe-based polyurethane wound dressing materials containing allantoin and gentamicin by electrospinning

  • Ayşe Başak Çakmen
  • Samir Abbas Ali Noma
  • Canbolat GÜRSES
  • Süleyman Köytepe
  • Burhan Ateş
  • İsmet Yılmaz


In this study, biocompatible, antibacterial and high mechanical strength polyurethane-based wound dressing materials were prepared by using the electrospinning technique. In addition, allantoin and gentamicin which will contribute to wound healing, were incorporated into these fiber materials. Polyurethane structures containing trimethylolpropane ethoxylate (TMPE) with 2 different molecular weights were synthesized. TMPE-based polyurethanes/polycaprolactone (1:3) blends were also prepared by adding 1% gentamicin and 10% allantoin and they were knitted by the electrospinning method and turned into a wound dressing material. After this stage, chemical structure, morphological, thermal and mechanical properties, flexibility, antibacterial effect, in vitro biocompatibility, cell adhesion tests, allantoin release level, and biodegradability of the prepared wound dressing materials were performed. The prepared fiber materials exhibited antibacterial properties and 80% cell viability, approximately. In addition, the obtained wound dressing materials showed high mechanical strength and ideal gas permeability. For this reason, it offers an ideal alternative for closing wounds.



  1. BHOYAR, S.D., MALHOTRA, K., & MADKE, B. (2023). Dressing Materials: A Comprehensive Review. J. Cutan. Aesthet. Surg., 16(2), 81-89.
  2. BOATENG, J.S., MATTHEWS, K.H., STEVENS, H.N.E., & ECCLESTON, G.M. (2008). Wound Healing Dressings and Drug Delivery Systems: A Review. Indian J. Pharml. Sci., 97, 2892–2923.
  3. CHATURVEDI, A., BAJPAI, A.K., BAJPAI, J., & SINGH, S.K. (2016). Evaluation of poly (vinyl alcohol) based cryogel-zinc oxide nanocomposites for possible applications as wound dressing materials. Mater. Sci. Eng., 65, 408-418.
  4. CHEN, J.P., & CHIANG, Y. (2010). Bioactive electrospun silver nanoparticles-containing polyurethane nanofibers as wound dressings. J. Nanosci. Nanotechnol., 10, 7560-7564.
  5. CHITRATTHA, S., & PHAECHAMUD, T. (2016). Porous poly(dl-lactic acid) matrix film with antimicrobial activities for wound dressing application. Mater. Sci. Eng., 58, 1122-1130.
  6. DEITZEL, J.M., KLEINMEYER, J.D., HIRVONEN, J.K., & BECK TAN, N.C. (2001). Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer, 42, 8163-8170.
  7. DEMARRE, L., VERHAEGHE, S., VAN HECKE, A., CLAYS, E., GRYPDONCK, M., & BEECKMAN, D. (2015). Factors predicting the development of pressure ulcers in an at-risk population who receive standardized preventive care: secondary analyses of a multicentre randomised controlled trial. J. Adv. Nurs., 71, 391–403.
  8. DHIVYA, S., PADMA, V.V., & SANTHINI, E. (2015). Wound dressings - a review. Biomedicine, 5(4), 22.
  9. ESKANDARINIA, A., KEFAYAT, A., AGHEB, M., RAFIENIA, M., BAGHBADORANI, M.A., NAVID, S., EBRAHIMPOUR, K., KHODABAKHSHI, D., & GHAHREMANI, F. (2020). A novel bilayer wound dressing composed of a dense polyurethane/propolis membrane and a biodegradable polycaprolactone/gelatin nanofbrous scafold. Scientific Reports, 10, 3063.
  10. ESKANDARINIA, A., KEFAYAT, A., GHARAKHLOO, M., AGHEB, M., KHODABAKHSHI, D., KHORSHIDI, M., SHEIKHMORADI, V., RAFIENIA, M., & SALEHI, H. (2020). A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities. International Journal of Biological Macromolecules, 149, 467-476.
  11. HARYŃSKA, A., KUCINSKA-LIPKA, J., SULOWSKA, A., GUBANSKA, I., KOSTRZEWA, M., & JANIK, H. (2019). Medical-grade PCL based polyurethane system for FDM 3D printing—characterization and fabrication. Materials, 12, 887. https://doi:10.3390/ma12060887
  12. HEYER, K., AUGUSTIN, M., PROTZ, K., HERBERGER, K., SPEHR, C., & RUSTENBACH, S. J. (2013). Effectiveness of advanced versus conventional wound dressings on healing of chronic wounds: systematic review and meta-analysis. Dermatology, 226, 172–184.
  13. KIM, S., PARK, S.G., KANG, S.W., & LEE, K.J. (2016). Nanofiber‐based hydrocolloid from colloid electrospinning toward next generation wound dressing. Macromol. Mater. And Eng., 301, 818-826.
  14. KİMEL, K., GODLEWSKA, S., GLEŃSK, M., GOBİS, K., OŚKO, J., GREMBECKA, M., & KRAUZE-BARANOWSKA, M. (2023). LC-MS/MS evaluation of pyrrolizidine alkaloids profile in relation to safety of comfrey roots and leaves from Polish sources. Molecules, 28, 6171.
  15. LEE, S.J., HEO, D.N., MOON, J.H., PARK, H.N., KO, W.K., BAE, M.S., LEE, J.B., PARK, S.W., KIM, E.C., LEE, C.H., JUNG, B.Y., & KWON, I.K. (2014). Chitosan/polyurethane blended fiber sheets containing silver sulfadiazine for use as an antimicrobial wound dressing. J. Nanosci. Nannotechnol., 14, 7488-7494. 10.1166/jnn.2014.9581
  16. LIONELLI, G.T., & LAWRENCE, W.T. (2003). Wound dressings. Surg. Clin. North Am., 83, 617-638.
  17. LIU, M., DUAN, X.P., LI, Y.M., YANG, D.P., & LONG, Y.Z. (2017). Electrospun nanofibers for wound healing. Materials Sci. and Eng. C., 76, 1413-1423.
  18. MEHTEROĞLU, E., ÇAKMEN, A., AKSOY, B., BALCIOĞLU, S., KÖYTEPE, S., ATEŞ, B., & YILMAZ, İ. (2020). Preparation of hybrid PU/PCL fibers from steviol glycosides via electrospinning as a potential wound dressing materials. Journal of Applied Polymer Science, 49217.
  19. MIGUEL, S.P., RIBEIRO, M.P., BRANCAL, H., COUTINHO, P., & CORREIA, I.J. (2014). Thermoresponsive chitosan–agarose hydrogel for skin regeneration. Carbohydr. Polym., 111, 366-373.
  20. MOGOŞANU, G.D., & GRUMEZESCU, A.M. (2014). Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm., 463, 127-136.
  21. NASTİĆ, N., BORRÁS-LİNARES, I., LOZANO-SÁNCHEZ, J., ŠVARC-GAJİĆ, J., & SEGURA-CARRETERO, A. (2020). Comparative assessment of phytochemical profiles of comfrey (Symphytum officinale L.) root extracts obtained by different extraction techniques. Molecules, 25(4), 837.
  22. NGUYEN, H.M., LE, T.T.N., NGUYEN, A.T., LE, H.N.T., & PHAM, T.T. (2023). Biomedical materials for wound dressing: recent advances and applications. RSC Adv., 13, 5509-5528.
  23. PİERCHALA, M.K., MAKAREMİ, M., TAN, H.L., PUSHPAMALAR, J., MUNİYANDY, S., SOLOUK, A., LEE, S.M., & PASBAKHSH, P. (2018). Nanotubes in nanofibers: Antibacterial multilayered polylactic acid/halloysite/gentamicin membranes for bone regeneration application. App. Clay Sci., 160, 95-105.
  24. PYUN, D.G., CHOI, H.J., YOON, H.S., THAMBI, T., & LEE, D.S. (2015). Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: synthesis, characterization, in vitro and in vivo studies. Colloids Surf., 135, 699-706.
  25. SAHRARO, M., YEGANEH, H., & SORAYYA, M. (2016). Guanidine hydrochloride embedded polyurethanes as antimicrobial and absorptive wound dressing membranes with promising cytocompatibility. Mater. Sci. Eng., 59, 1025-1037.
  26. SİNGH, B., SHARMA, S., & DHİMAN, A. (2013). Design of antibiotic containing hydrogel wound dressings: Biomedical properties and histological study of wound healing. Int J. Pharm., 457, 82-91.
  27. STAİGER, C. (2013). Comfrey root: From tradition to modern clinical trials. Wien. Med. Wochenschr., 163, 58–64.
  28. XU, R., LUO, G., XIA, H., HE, W., ZHAO, J., LIU, B., TAN, J., ZHOU, J., LIU, D., WANG, Y., YAO, Z., ZHAN, R., YANG, S., & WU, J. (2015). Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials, 40, 1-11.
  29. XU, R., XIA, H., HE, W., LI, Z., ZHAO, B., LIU, B., WANG, Y., LEI, Q., KONG, Y., BAI, Y., YAO, Z., YAN, R., LI, H., ZHAN, R., YANG, S., LUO, G., & WU, J. (2016). Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci. Rep., 6, 24596.
  30. XU, W.T., MA, C.F., MA, J.L., GAN, T.S., & ZHANG, G.Z. (2014). Marine biofouling resistance of polyurethane with biodegradation and hydrolyzation. ACS Appl. Mater. Interfaces., 6, 4017-4024.
  31. YAO, C.H., LEE, C.Y., HUANG, C.H., CHEN, Y.S., & CHEN, K.Y. (2017). Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. Mater. Sci. Eng. C Mater. Biol. Appl., 79, 533-540.
  32. YAN, L., SI, S., CHEN, Y, YUAN T., FAN H., YAO Y., ZHANK Q. (2011) Electrospun in-situ hybrid polyurethane/nano-TiO2 as wound dressings. Fibers Polym. 12, 207–213.
  33. YUDANOVA, T.N., & RESHETOV, I.V. (2006). Modern wound dressings: Manufacturing and properties. Pharm. Chem. J., 40, 85-92.
  34. ZAHEDI, P., REZAEIAN, I., RANAEI-SIADAT, S.O., JAFARI, S.H., & SUPAPHOL, P. (2009). A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym. Adv. Technol., 21, 77-95.

How to Cite

Çakmen, A. B., Noma, S. A. A., GÜRSES, C., Köytepe, S., Ateş, B., & Yılmaz, İsmet. (2023). Fabrication and characterization of high molecular mass tmpe-based polyurethane wound dressing materials containing allantoin and gentamicin by electrospinning. Nanofabrication, 8.




Search Panel


Article Details

Most Read This Month


Copyright (c) 2023 Ayşe Başak Çakmen, Samir Abbas Ali Noma, Canbolat GÜRSES, Süleyman Köytepe, Burhan Ateş, İsmet Yılmaz

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.