Skip to main content Skip to main navigation menu Skip to site footer

Fabrication and characterization of high molecular mass tmpe-based polyurethane wound dressing materials containing allantoin and gentamicin by electrospinning

  • Ayşe Başak Çakmen
  • Samir Abbas Ali Noma
  • Canbolat GÜRSES
  • Süleyman Köytepe
  • Burhan Ateş
  • İsmet Yılmaz

Abstract

In this study, biocompatible, antibacterial and high mechanical strength polyurethane-based wound dressing materials were prepared by using the electrospinning technique. In addition, allantoin and gentamicin which will contribute to wound healing, were incorporated into these fiber materials. Polyurethane structures containing trimethylolpropane ethoxylate (TMPE) with 2 different molecular weights were synthesized. TMPE-based polyurethanes/polycaprolactone (1:3) blends were also prepared by adding 1% gentamicin and 10% allantoin and they were knitted by the electrospinning method and turned into a wound dressing material. After this stage, chemical structure, morphological, thermal and mechanical properties, flexibility, antibacterial effect, in vitro biocompatibility, cell adhesion tests, allantoin release level, and biodegradability of the prepared wound dressing materials were performed. The prepared fiber materials exhibited antibacterial properties and 80% cell viability, approximately. In addition, the obtained wound dressing materials showed high mechanical strength and ideal gas permeability. For this reason, it offers an ideal alternative for closing wounds.

Section

References

  1. BHOYAR, S.D., MALHOTRA, K., & MADKE, B. (2023). Dressing Materials: A Comprehensive Review. J. Cutan. Aesthet. Surg., 16(2), 81-89. https://doi.org/10.4103/JCAS.JCAS_163_22
  2. BOATENG, J.S., MATTHEWS, K.H., STEVENS, H.N.E., & ECCLESTON, G.M. (2008). Wound Healing Dressings and Drug Delivery Systems: A Review. Indian J. Pharml. Sci., 97, 2892–2923. https://doi.org/10.1002/jps.21210
  3. CHATURVEDI, A., BAJPAI, A.K., BAJPAI, J., & SINGH, S.K. (2016). Evaluation of poly (vinyl alcohol) based cryogel-zinc oxide nanocomposites for possible applications as wound dressing materials. Mater. Sci. Eng., 65, 408-418. https://doi.org/10.1016/j.msec.2016.04.054
  4. CHEN, J.P., & CHIANG, Y. (2010). Bioactive electrospun silver nanoparticles-containing polyurethane nanofibers as wound dressings. J. Nanosci. Nanotechnol., 10, 7560-7564. https://doi.org/10.1166/jnn.2010.2829
  5. CHITRATTHA, S., & PHAECHAMUD, T. (2016). Porous poly(dl-lactic acid) matrix film with antimicrobial activities for wound dressing application. Mater. Sci. Eng., 58, 1122-1130. https://doi.org/10.1016/j.msec.2015.09.083
  6. DEITZEL, J.M., KLEINMEYER, J.D., HIRVONEN, J.K., & BECK TAN, N.C. (2001). Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer, 42, 8163-8170. https://doi.org/10.1016/S0032-3861(01)00336-6
  7. DEMARRE, L., VERHAEGHE, S., VAN HECKE, A., CLAYS, E., GRYPDONCK, M., & BEECKMAN, D. (2015). Factors predicting the development of pressure ulcers in an at-risk population who receive standardized preventive care: secondary analyses of a multicentre randomised controlled trial. J. Adv. Nurs., 71, 391–403. https://doi.org/10.1111/jan.12497
  8. DHIVYA, S., PADMA, V.V., & SANTHINI, E. (2015). Wound dressings - a review. Biomedicine, 5(4), 22. https://doi.org/10.7603/s40681-015-0022-9
  9. ESKANDARINIA, A., KEFAYAT, A., AGHEB, M., RAFIENIA, M., BAGHBADORANI, M.A., NAVID, S., EBRAHIMPOUR, K., KHODABAKHSHI, D., & GHAHREMANI, F. (2020). A novel bilayer wound dressing composed of a dense polyurethane/propolis membrane and a biodegradable polycaprolactone/gelatin nanofbrous scafold. Scientific Reports, 10, 3063. https://doi.org/10.1038/s41598-020-59931-2
  10. ESKANDARINIA, A., KEFAYAT, A., GHARAKHLOO, M., AGHEB, M., KHODABAKHSHI, D., KHORSHIDI, M., SHEIKHMORADI, V., RAFIENIA, M., & SALEHI, H. (2020). A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities. International Journal of Biological Macromolecules, 149, 467-476. https://doi.org/10.1016/j.ijbiomac.2020.01.255
  11. HARYŃSKA, A., KUCINSKA-LIPKA, J., SULOWSKA, A., GUBANSKA, I., KOSTRZEWA, M., & JANIK, H. (2019). Medical-grade PCL based polyurethane system for FDM 3D printing—characterization and fabrication. Materials, 12, 887. https://doi:10.3390/ma12060887
  12. HEYER, K., AUGUSTIN, M., PROTZ, K., HERBERGER, K., SPEHR, C., & RUSTENBACH, S. J. (2013). Effectiveness of advanced versus conventional wound dressings on healing of chronic wounds: systematic review and meta-analysis. Dermatology, 226, 172–184. https://doi.org/10.1159/000348331
  13. KIM, S., PARK, S.G., KANG, S.W., & LEE, K.J. (2016). Nanofiber‐based hydrocolloid from colloid electrospinning toward next generation wound dressing. Macromol. Mater. And Eng., 301, 818-826. https://doi.org/10.1002/mame.201600002
  14. KİMEL, K., GODLEWSKA, S., GLEŃSK, M., GOBİS, K., OŚKO, J., GREMBECKA, M., & KRAUZE-BARANOWSKA, M. (2023). LC-MS/MS evaluation of pyrrolizidine alkaloids profile in relation to safety of comfrey roots and leaves from Polish sources. Molecules, 28, 6171. https://doi.org/10.3390/molecules28166171
  15. LEE, S.J., HEO, D.N., MOON, J.H., PARK, H.N., KO, W.K., BAE, M.S., LEE, J.B., PARK, S.W., KIM, E.C., LEE, C.H., JUNG, B.Y., & KWON, I.K. (2014). Chitosan/polyurethane blended fiber sheets containing silver sulfadiazine for use as an antimicrobial wound dressing. J. Nanosci. Nannotechnol., 14, 7488-7494. https://doi.org/ 10.1166/jnn.2014.9581
  16. LIONELLI, G.T., & LAWRENCE, W.T. (2003). Wound dressings. Surg. Clin. North Am., 83, 617-638.
  17. LIU, M., DUAN, X.P., LI, Y.M., YANG, D.P., & LONG, Y.Z. (2017). Electrospun nanofibers for wound healing. Materials Sci. and Eng. C., 76, 1413-1423. https://doi.org/10.1016/j.msec.2017.03.034.
  18. MEHTEROĞLU, E., ÇAKMEN, A., AKSOY, B., BALCIOĞLU, S., KÖYTEPE, S., ATEŞ, B., & YILMAZ, İ. (2020). Preparation of hybrid PU/PCL fibers from steviol glycosides via electrospinning as a potential wound dressing materials. Journal of Applied Polymer Science, 49217. https://doi.org/10.1002/app.49217
  19. MIGUEL, S.P., RIBEIRO, M.P., BRANCAL, H., COUTINHO, P., & CORREIA, I.J. (2014). Thermoresponsive chitosan–agarose hydrogel for skin regeneration. Carbohydr. Polym., 111, 366-373. https://doi.org/10.1016/j.carbpol.2014.04.093
  20. MOGOŞANU, G.D., & GRUMEZESCU, A.M. (2014). Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm., 463, 127-136. https://doi.org/10.1016/j.ijpharm.2013.12.015
  21. NASTİĆ, N., BORRÁS-LİNARES, I., LOZANO-SÁNCHEZ, J., ŠVARC-GAJİĆ, J., & SEGURA-CARRETERO, A. (2020). Comparative assessment of phytochemical profiles of comfrey (Symphytum officinale L.) root extracts obtained by different extraction techniques. Molecules, 25(4), 837. https://doi.org/10.3390/molecules2504083
  22. NGUYEN, H.M., LE, T.T.N., NGUYEN, A.T., LE, H.N.T., & PHAM, T.T. (2023). Biomedical materials for wound dressing: recent advances and applications. RSC Adv., 13, 5509-5528. https://doi.org/10.1039/D2RA07673J
  23. PİERCHALA, M.K., MAKAREMİ, M., TAN, H.L., PUSHPAMALAR, J., MUNİYANDY, S., SOLOUK, A., LEE, S.M., & PASBAKHSH, P. (2018). Nanotubes in nanofibers: Antibacterial multilayered polylactic acid/halloysite/gentamicin membranes for bone regeneration application. App. Clay Sci., 160, 95-105. https://doi.org/10.1016/j.clay.2017.12.016
  24. PYUN, D.G., CHOI, H.J., YOON, H.S., THAMBI, T., & LEE, D.S. (2015). Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: synthesis, characterization, in vitro and in vivo studies. Colloids Surf., 135, 699-706. https://doi.org/10.1016/j.colsurfb.2015.08.029
  25. SAHRARO, M., YEGANEH, H., & SORAYYA, M. (2016). Guanidine hydrochloride embedded polyurethanes as antimicrobial and absorptive wound dressing membranes with promising cytocompatibility. Mater. Sci. Eng., 59, 1025-1037. https://doi.org/10.1016/j.msec.2015.11.038
  26. SİNGH, B., SHARMA, S., & DHİMAN, A. (2013). Design of antibiotic containing hydrogel wound dressings: Biomedical properties and histological study of wound healing. Int J. Pharm., 457, 82-91. https://doi.org/10.1016/j.ijpharm.2013.09.028
  27. STAİGER, C. (2013). Comfrey root: From tradition to modern clinical trials. Wien. Med. Wochenschr., 163, 58–64. https://doi.org/10.1007/s10354-012-0162-4
  28. XU, R., LUO, G., XIA, H., HE, W., ZHAO, J., LIU, B., TAN, J., ZHOU, J., LIU, D., WANG, Y., YAO, Z., ZHAN, R., YANG, S., & WU, J. (2015). Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials, 40, 1-11. https://doi.org/10.1016/j.biomaterials.2014.10.077
  29. XU, R., XIA, H., HE, W., LI, Z., ZHAO, B., LIU, B., WANG, Y., LEI, Q., KONG, Y., BAI, Y., YAO, Z., YAN, R., LI, H., ZHAN, R., YANG, S., LUO, G., & WU, J. (2016). Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci. Rep., 6, 24596. https://doi.org/10.1038/srep24596
  30. XU, W.T., MA, C.F., MA, J.L., GAN, T.S., & ZHANG, G.Z. (2014). Marine biofouling resistance of polyurethane with biodegradation and hydrolyzation. ACS Appl. Mater. Interfaces., 6, 4017-4024. https://doi.org/10.1021/am4054578
  31. YAO, C.H., LEE, C.Y., HUANG, C.H., CHEN, Y.S., & CHEN, K.Y. (2017). Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. Mater. Sci. Eng. C Mater. Biol. Appl., 79, 533-540. https://doi.org/10.1016/j.msec.2017.05.076
  32. YAN, L., SI, S., CHEN, Y, YUAN T., FAN H., YAO Y., ZHANK Q. (2011) Electrospun in-situ hybrid polyurethane/nano-TiO2 as wound dressings. Fibers Polym. 12, 207–213. https://doi.org/10.1007/s12221-011-0207-0.
  33. YUDANOVA, T.N., & RESHETOV, I.V. (2006). Modern wound dressings: Manufacturing and properties. Pharm. Chem. J., 40, 85-92.
  34. ZAHEDI, P., REZAEIAN, I., RANAEI-SIADAT, S.O., JAFARI, S.H., & SUPAPHOL, P. (2009). A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym. Adv. Technol., 21, 77-95. https://doi.org/10.1002/pat.1625

How to Cite

Fabrication and characterization of high molecular mass tmpe-based polyurethane wound dressing materials containing allantoin and gentamicin by electrospinning. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.1787

How to Cite

Fabrication and characterization of high molecular mass tmpe-based polyurethane wound dressing materials containing allantoin and gentamicin by electrospinning. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.1787

HTML
191

Total
256

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Ayşe Başak Çakmen, Samir Abbas Ali Noma, Canbolat GÜRSES, Süleyman Köytepe, Burhan Ateş, İsmet Yılmaz

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.