Skip to main content Skip to main navigation menu Skip to site footer

Applications of graphitic carbon nitride-based S-scheme heterojunctions for environmental remediation and energy conversion

  • Anita Sudhaik
  • Sonu
  • Vasudha Hasija
  • Rangabhashiyam Selvasembian
  • Tansir Ahamad
  • Arachana Singh
  • Aftab Aslam Parwaz Khan
  • Pankaj Raizada
  • Pardeep Singh

Abstract

The contemporary era's top environmental problems include the lack of energy, recycling of waste resources, and water pollution. Due to the speedy growth of modern industrialization, the utilization of non-renewable sources has increased rapidly, which has caused many serious environmental and energy issues. In photocatalysis, as a proficient candidate, g-C3N4 (metal-free polymeric photocatalyst) has gained much attention due to its auspicious properties and excellent photocatalytic performance. But, regrettably, the quick recombination of photoinduced charge carriers, feeble redox ability, and inadequate visible light absorption are some major drawbacks of g-C3N4 that hamper its photocatalytic ability. Henceforth, these significant limitations can be solved by incorporating modification strategies. Among all modification techniques, the amalgamation of g-C3N4 with two or more photocatalytic semiconducting materials via heterojunction formation is more advantageous. In this review, we have discussed various modification strategies, including conventional, Z-scheme and S-scheme heterojunctions. S-scheme heterojunction is consideredan efficient and profitable charge transferal pathway due to the excellent departure and transferal of photoexcited charge carriers with outstanding redox ability. Consequently, the current review is focused on various photocatalytic applications of S-scheme-based g-C3N4 photocatalysts in pollutant degradation, H2 production, and CO2 reduction.

Section

References

  1. Afroz, R., Masud, M. M., Akhtar, R., & Duasa, J. B. (2014). Water pollution: Challenges and future direction for water resource management policies in Malaysia. Environment and urbanization ASIA, 5(1), 63-81.
  2. Ahmad, F., Zhu, D., & Sun, J. (2021). Environmental fate of tetracycline antibiotics: degradation pathway mechanisms, challenges, and perspectives. Environmental Sciences Europe, 33(1), 1-17.
  3. Akhundi, A., Badiei, A., Ziarani, G. M., Habibi-Yangjeh, A., Munoz-Batista, M. J., & Luque, R. (2020). Graphitic carbon nitride-based photocatalysts: toward efficient organic transformation for value-added chemicals production. Molecular Catalysis, 488, 110902.
  4. Akhundi, A., Habibi-Yangjeh, A., Abitorabi, M., & Rahim Pouran, S. (2019). Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. Catalysis Reviews, 61(4), 595-628.
  5. Akhundi, A., Zaker Moshfegh, A., Habibi-Yangjeh, A., & Sillanpää, M. (2022). Simultaneous Dual-Functional Photocatalysis by g-C3N4-Based Nanostructures. ACS ES&T Engineering, 2(4), 564-585.
  6. Alwin, E., Kočí, K., Wojcieszak, R., Zieliński, M., Edelmannová, M., & Pietrowski, M. (2020a). Influence of high temperature synthesis on the structure of graphitic carbon nitride and its hydrogen generation ability. Materials, 13(12), 2756.
  7. Alwin, E., Nowicki, W., Wojcieszak, R., Zieliński, M., & Pietrowski, M. (2020b). Elucidating the structure of the graphitic carbon nitride nanomaterials via X-ray photoelectron spectroscopy and X-ray powder diffraction techniques. Dalton Transactions, 49(36), 12805-12813.
  8. Ameta, R., Solanki, M. S., Benjamin, S., & Ameta, S. C. (2018). Photocatalysis. In Advanced oxidation processes for waste water treatment (pp. 135-175). Elsevier.
  9. Amin, M., Shah, H. H., Fareed, A. G., Khan, W. U., Chung, E., Zia, A., Farooqi, Z. U. R., & Lee, C. (2022). Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. International Journal of Hydrogen Energy.
  10. Andersson, D. I. (2003). Persistence of antibiotic resistant bacteria. Current opinion in microbiology, 6(5), 452-456.
  11. Ao, C., Feng, B., Qian, S., Wang, L., Zhao, W., Zhai, Y., & Zhang, L. (2020). Theoretical study of transition metals supported on g-C3N4 as electrochemical catalysts for CO2 reduction to CH3OH and CH4. Journal of CO2 Utilization, 36, 116-123.
  12. Bai, J., Shen, R., Chen, W., Xie, J., Zhang, P., Jiang, Z., & Li, X. (2022). Enhanced photocatalytic H2 evolution based on a Ti3C2/Zn0. 7Cd0. 3S/Fe2O3 Ohmic/S-scheme hybrid heterojunction with cascade 2D coupling interfaces. Chemical Engineering Journal, 429, 132587.
  13. Baniasadi, E., Dincer, I., & Naterer, G. (2013). Hybrid photocatalytic water splitting for an expanded range of the solar spectrum with cadmium sulfide and zinc sulfide catalysts. Applied Catalysis A: General, 455, 25-31.
  14. Bao, Y., Song, S., Yao, G., & Jiang, S. (2021). S‐Scheme Photocatalytic Systems. Solar RRL, 5(7), 2100118.
  15. Bard, A. J. (1979). Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. Journal of Photochemistry, 10(1), 59-75.
  16. Bie, C., Cheng, B., Fan, J., Ho, W., & Yu, J. (2021a). Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts. EnergyChem, 3(2), 100051.
  17. Bie, C., Yu, H., Cheng, B., Ho, W., Fan, J., & Yu, J. (2021b). Design, fabrication, and mechanism of nitrogen‐doped graphene‐based photocatalyst. Advanced Materials, 33(9), 2003521.
  18. Borthakur, S., & Saikia, L. (2019). ZnFe2O4@ g-C3N4 nanocomposites: An efficient catalyst for Fenton-like photodegradation of environmentally pollutant Rhodamine B. Journal of Environmental Chemical Engineering, 7(2), 103035.
  19. Brillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166, 603-643.
  20. Cai, Z., Zhou, Y., Ma, S., Li, S., Yang, H., Zhao, S., Zhong, X., & Wu, W. (2017). Enhanced visible light photocatalytic performance of g-C3N4/CuS pn heterojunctions for degradation of organic dyes. Journal of Photochemistry and Photobiology A: Chemistry, 348, 168-178.
  21. Cao, S., Low, J., Yu, J., & Jaroniec, M. (2015). Polymeric photocatalysts based on graphitic carbon nitride. Advanced Materials, 27(13), 2150-2176.
  22. Cao, S., Piao, L., & Chen, X. (2020). Emerging photocatalysts for hydrogen evolution. Trends in Chemistry, 2(1), 57-70.
  23. Cervantes-Avilés, P., & Keller, A. A. (2021). Incidence of metal-based nanoparticles in the conventional wastewater treatment process. water research, 189, 116603.
  24. Chavoshani, A., Hashemi, M., Amin, M. M., & Ameta, S. C. (2020). Pharmaceuticals as emerging micropollutants in. Micropollutants and Challenges: Emerging in the Aquatic Environments and Treatment Processes, 35.
  25. Chen, B., Lin, L., Fang, L., Yang, Y., Chen, E., Yuan, K., Zou, S., Wang, X., & Luan, T. (2018). Complex pollution of antibiotic resistance genes due to beta-lactam and aminoglycoside use in aquaculture arming. water research, 134, 200-208.
  26. Chen, F., Liu, H., Bagwasi, S., Shen, X., & Zhang, J. (2010). Photocatalytic study of BiOCl for degradation of organic pollutants under UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 215(1), 76-80.
  27. Chen, H., & Wang, J. (2021). MOF-derived Co3O4-C@ FeOOH as an efficient catalyst for catalytic ozonation of norfloxacin. Journal of Hazardous Materials, 403, 123697.
  28. Chen, X., Zhang, J., Fu, X., Antonietti, M., & Wang, X. (2009). Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. Journal of the American Chemical Society, 131(33), 11658-11659.
  29. Chen, Y., Gu, W., Tan, L., Ao, Z., An, T., & Wang, S. (2021). Photocatalytic H2O2 production using Ti3C2 MXene as a non-noble metal cocatalyst. Applied Catalysis A: General, 618, 118127.
  30. Cheng, C., He, B., Fan, J., Cheng, B., Cao, S., & Yu, J. (2021). An inorganic/organic S‐scheme heterojunction H2‐production photocatalyst and its charge transfer mechanism. Advanced Materials, 33(22), 2100317.
  31. Cheng, L., Xiang, Q., Liao, Y., & Zhang, H. (2018). CdS-based photocatalysts. Energy & Environmental Science, 11(6), 1362-1391.
  32. Cheng, L., Zhang, H., Li, X., Fan, J., & Xiang, Q. (2021). Carbon–graphitic carbon nitride hybrids for heterogeneous photocatalysis. Small, 17(1), 2005231.
  33. Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145-155.
  34. Dai, B., Chen, X., Yang, X., Yang, G., Li, S., Zhang, L., Mu, F., Zhao, W., & Leung, D. Y. (2022a). Designing S-scheme Au/g-C3N4/BiO1. 2I0. 6 plasmonic heterojunction for efficient visible-light photocatalysis. Separation and Purification Technology, 287, 120531.
  35. Dai, B., Zhao, W., Wei, W., Cao, J., Yang, G., Li, S., Sun, C., & Leung, D. Y. (2022b). Photocatalytic reduction of CO2 and degradation of Bisphenol-S by g-C3N4/Cu2O@ Cu S-scheme heterojunction: Study on the photocatalytic performance and mechanism insight. Carbon, 193, 272-284.
  36. Dai, Z., Zhen, Y., Sun, Y., Li, L., & Ding, D. (2021). ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium (VI) removal. Chemical Engineering Journal, 415, 129002.
  37. Davies, K. R., Cherif, Y., Pazhani, G. P., Anantharaj, S., Azzi, H., Terashima, C., Fujishima, A., & Pitchaimuthu, S. (2021). The upsurge of photocatalysts in antibiotic micropollutants treatment: Materials design, recovery, toxicity and bioanalysis. Journal of photochemistry and photobiology C: Photochemistry Reviews, 48, 100437.
  38. Deng, X., Wang, D., Li, H., Jiang, W., Zhou, T., Wen, Y., Yu, B., Che, G., & Wang, L. (2022). Boosting interfacial charge separation and photocatalytic activity of 2D/2D g-C3N4/ZnIn2S4 S-scheme heterojunction under visible light irradiation. Journal of Alloys and Compounds, 894, 162209.
  39. Dey, G. (2007). Chemical reduction of CO2 to different products during photo catalytic reaction on TiO2 under diverse conditions: an overview. Journal of natural gas chemistry, 16(3), 217-226.
  40. Diao, W., He, J., Wang, Q., Rao, X., & Zhang, Y. (2021). K, Na and Cl co-doped TiO 2 nanorod arrays on carbon cloth for efficient photocatalytic degradation of formaldehyde under UV/visible LED irradiation. Catalysis Science & Technology, 11(1), 230-238.
  41. Du, J., Zhao, H., Liu, S., Xie, H., Wang, Y., & Chen, J. (2017). Antibiotics in the coastal water of the South Yellow Sea in China: occurrence, distribution and ecological risks. Science of The Total Environment, 595, 521-527.
  42. Freeman, H., Harten, T., Springer, J., Randall, P., Curran, M. A., & Stone, K. (1992). Industrial pollution prevention! A critical review. Journal of the Air & Waste Management Association, 42(5), 618-656.
  43. Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 92(3), 407-418.
  44. Fu, J., Xu, Q., Low, J., Jiang, C., & Yu, J. (2019). Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Applied Catalysis B: Environmental, 243, 556-565.
  45. Fu, J., Yu, J., Jiang, C., & Cheng, B. (2018). g‐C3N4‐Based heterostructured photocatalysts. Advanced Energy Materials, 8(3), 1701503.
  46. Ge, H., Xu, F., Cheng, B., Yu, J., & Ho, W. (2019). S‐scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2‐production photocatalyst. ChemCatChem, 11(24), 6301-6309.
  47. González-Pleiter, M., Gonzalo, S., Rodea-Palomares, I., Leganés, F., Rosal, R., Boltes, K., Marco, E., & Fernández-Piñas, F. (2013). Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. water research, 47(6), 2050-2064.
  48. Gordanshekan, A., Arabian, S., Nazar, A. R. S., Farhadian, M., & Tangestaninejad, S. (2023). A comprehensive comparison of green Bi2WO6/g-C3N4 and Bi2WO6/TiO2 S-scheme heterojunctions for photocatalytic adsorption/degradation of Cefixime: Artificial neural network, degradation pathway, and toxicity estimation. Chemical Engineering Journal, 451, 139067.
  49. Gu, X., Chen, T., Lei, J., Yang, Y., Zheng, X., Zhang, S., Zhu, Q., Fu, X., Meng, S., & Chen, S. (2022). Self-assembly synthesis of S-scheme g-C3N4/Bi8 (CrO4) O11 for photocatalytic degradation of norfloxacin and bisphenol A. Chinese journal of catalysis, 43(10), 2569-2580.
  50. Gu, X., Li, C., Yuan, S., Ma, M., Qiang, Y., & Zhu, J. (2016). ZnO based heterojunctions and their application in environmental photocatalysis. Nanotechnology, 27(40), 402001.
  51. Guo, Q., Zhou, C., Ma, Z., & Yang, X. (2019). Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Advanced Materials, 31(50), 1901997.
  52. Gupta, S., Mittal, Y., Panja, R., Prajapati, K. B., & Yadav, A. K. (2021). Conventional wastewater treatment technologies. Current Developments in Biotechnology and Bioengineering, 47-75.
  53. Hafeez, H. Y., Mohammed, J., Ndikilar, C. E., Suleiman, A. B., Sa’id, R. S., & Muhammad, I. (2022). Synergistic utilization of magnetic rGO/NiFe2O4-g-C3N4 S-Scheme heterostructure photocatalyst with enhanced charge carrier separation and transfer: A highly stable and robust photocatalyst for efficient solar fuel (hydrogen) generation. Ceramics International.
  54. He, F., Zhu, B., Cheng, B., Yu, J., Ho, W., & Macyk, W. (2020). 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Applied Catalysis B: Environmental, 272, 119006.
  55. He, Y., Wang, Y., Zhang, L., Teng, B., & Fan, M. (2015). High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 168, 1-8.
  56. Hou, H., & Zhang, X. (2020). Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. Chemical Engineering Journal, 395, 125030.
  57. Hu, S., Yuan, J., Tang, S., Luo, D., Shen, Q., Qin, Y., Zhou, J., Tang, Q., Chen, S., & Luo, X. (2022). Perovskite-type SrFeO3/g-C3N4 S-scheme photocatalyst for enhanced degradation of Acid Red B. Optical Materials, 132, 112760.
  58. Hu, X., & Hu, C. (2007). Preparation and visible-light photocatalytic activity of Ag3VO4 powders. Journal of Solid State Chemistry, 180(2), 725-732.
  59. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of Hazardous Materials, 211, 317-331.
  60. Huang, H., Liu, C., Ou, H., Ma, T., & Zhang, Y. (2019). Self-sacrifice transformation for fabrication of type-I and type-II heterojunctions in hierarchical BixOyIz/g-C3N4 for efficient visible-light photocatalysis. Applied Surface Science, 470, 1101-1110.
  61. Iwuozor, K. O., Abdullahi, T. A., Ogunfowora, L. A., Emenike, E. C., Oyekunle, I. P., Gbadamosi, F. A., & Ighalo, J. O. (2021). Mitigation of levofloxacin from aqueous media by adsorption: a review. Sustainable Water Resources Management, 7(6), 1-18.
  62. Khachatourians, G. G. (1998). Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. Cmaj, 159(9), 1129-1136.
  63. König, R., Spaggiari, M., Santoliquido, O., Principi, P., Bianchi, G., & Ortona, A. (2020). Micropollutant adsorption from water with engineered porous ceramic architectures produced by additive manufacturing and coated with natural zeolite. Journal of Cleaner Production, 258, 120500.
  64. Kudo, A., Ueda, K., Kato, H., & Mikami, I. (1998). Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catalysis Letters, 53(3), 229-230.
  65. Kumar, A. (2022). Impact of Textile Wastewater on Water Quality. Central Asian Journal of Medical and Natural Science, 3(3), 449-459.
  66. Kumar, R., Sudhaik, A., Khan, A. A. P., Raizada, P., Asiri, A. M., Mohapatra, S., Thakur, S., Thakur, V. K., & Singh, P. (2021). Current status on designing of dual Z-scheme photocatalysts for energy and environmental applications. Journal of Industrial and Engineering Chemistry.
  67. Kumar, S., Karthikeyan, S., & Lee, A. F. (2018). g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts, 8(2), 74.
  68. Kumari, P., Bahadur, N., Kong, L., O'Dell, L. A., Merenda, A., & Dumee, L. (2022). Engineering Schottky-like and heterojunction material for enhanced photocatalysis performance-a review. Materials Advances.
  69. Lee, J. S. (2005). Photocatalytic water splitting under visible light with particulate semiconductor catalysts. Catalysis Surveys from Asia, 9(4), 217-227.
  70. Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275-290.
  71. Li, B., Zhang, B., Zhang, Y., Zhang, M., Huang, W., Yu, C., Sun, J., Feng, J., Dong, S., & Sun, J. (2021). Porous g-C3N4/TiO2 S-scheme heterojunction photocatalyst for visible-light driven H2-production and simultaneous wastewater purification. International Journal of Hydrogen Energy, 46(64), 32413-32424.
  72. Li, J., See, K. F., & Chi, J. (2019). Water resources and water pollution emissions in China's industrial sector: A green-biased technological progress analysis. Journal of Cleaner Production, 229, 1412-1426.
  73. Li, L., Ma, D., Xu, Q., & Huang, S. (2022). Constructing hierarchical ZnIn2S4/g-C3N4 S-scheme heterojunction for boosted CO2 photoreduction performance. Chemical Engineering Journal, 437, 135153.
  74. Li, Q., Zhao, W., Zhai, Z., Ren, K., Wang, T., Guan, H., & Shi, H. (2020). 2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading. Journal of Materials Science & Technology, 56, 216-226.
  75. Li, X., Garlisi, C., Guan, Q., Anwer, S., Al-Ali, K., Palmisano, G., & Zheng, L. (2021). A review of material aspects in developing direct Z-scheme photocatalysts. Materials Today, 47, 75-107.
  76. Li, Y., Jin, R., Xing, Y., Li, J., Song, S., Liu, X., Li, M., & Jin, R. (2016). Macroscopic foam‐like holey ultrathin g‐C3N4 nanosheets for drastic improvement of visible‐light photocatalytic activity. Advanced Energy Materials, 6(24), 1601273.
  77. Li, Y., Li, X., Zhang, H., Fan, J., & Xiang, Q. (2020). Design and application of active sites in g-C3N4-based photocatalysts. Journal of Materials Science & Technology, 56, 69-88.
  78. Li, Y., Meng, J., Zhu, Y., Yang, Y., Zhang, X., & Zheng, X. (2022). Ultrafine Ru nanoparticles confined in graphene-doped porous g-C3N4 for effectively boosting ammonia borane hydrolysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 649, 129513.
  79. Li, Y., Wang, G., Zhang, H., Qian, W., Li, D., Guo, Z., Zhou, R., & Xu, J. (2022). Hierarchical flower-like 0D/3D g-C3N4/TiO2 S-scheme heterojunction with enhanced photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 646, 128942.
  80. Li, Y., Xia, Z., Yang, Q., Wang, L., & Xing, Y. (2022). Review on g-C3N4-based S-scheme Heterojunction Photocatalysts. Journal of Materials Science & Technology.
  81. Li, Y., Zhang, M., Zhou, L., Yang, S., Wu, Z., & Ma, Y. (2021). Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H-2 Production and CO2 Reduction. Acta Physico-Chimica Sinica, 37(6).
  82. Li, Y., Zhou, M., Cheng, B., & Shao, Y. (2020). Recent advances in g-C3N4-based heterojunction photocatalysts. Journal of Materials Science & Technology, 56, 1-17.
  83. Li, Z., Meng, X., & Zhang, Z. (2018). Recent development on MoS2-based photocatalysis: A review. Journal of photochemistry and photobiology C: Photochemistry Reviews, 35, 39-55.
  84. Lian, X., Xue, W., Dong, S., Liu, E., Li, H., & Xu, K. (2021). Construction of S-scheme Bi2WO6/g-C3N4 heterostructure nanosheets with enhanced visible-light photocatalytic degradation for ammonium dinitramide. Journal of Hazardous Materials, 412, 125217.
  85. Liao, G., Gong, Y., Zhang, L., Gao, H., Yang, G.-J., & Fang, B. (2019). Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy & Environmental Science, 12(7), 2080-2147.
  86. Liu, D., Chen, S., Li, R., & Peng, T. (2021). Review of Z-scheme heterojunctions for photocatalytic energy conversion. Acta Phys.-Chim. Sin, 37, 2010017.
  87. Liu, J., Ma, N., Wu, W., & He, Q. (2020). Recent progress on photocatalytic heterostructures with full solar spectral responses. Chemical Engineering Journal, 393, 124719.
  88. Liu, J., Wei, X., Sun, W., Guan, X., Zheng, X., & Li, J. (2021). Fabrication of S-scheme CdS-g-C3N4-graphene aerogel heterojunction for enhanced visible light driven photocatalysis. Environmental Research, 197, 111136.
  89. Liu, X., Ma, R., Zhuang, L., Hu, B., Chen, J., Liu, X., & Wang, X. (2021). Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Critical Reviews in Environmental Science and Technology, 51(8), 751-790.
  90. Low, J., Jiang, C., Cheng, B., Wageh, S., Al‐Ghamdi, A. A., & Yu, J. (2017a). A review of direct Z‐scheme photocatalysts. Small Methods, 1(5), 1700080.
  91. Low, J., Yu, J., Jaroniec, M., Wageh, S., & Al‐Ghamdi, A. A. (2017b). Heterojunction photocatalysts. Advanced Materials, 29(20), 1601694.
  92. Lu, Z., & Wang, Z. (2023). S-scheme CuWO4@ g-C3N4 core-shell microsphere for CO2 photoreduction. Materials Science in Semiconductor Processing, 153, 107177.
  93. Maeda, K., & Domen, K. (2010). Photocatalytic water splitting: recent progress and future challenges. The journal of physical chemistry letters, 1(18), 2655-2661.
  94. Maheshwari, K., Agrawal, M., & Gupta, A. (2021). Dye Pollution in Water and Wastewater. In Novel Materials for Dye-containing Wastewater Treatment (pp. 1-25). Springer.
  95. Maihemllti, M., Okitsu, K., Talifur, D., Tursun, Y., & Abulizi, A. (2021). In situ self-assembled S-scheme BiOBr/pCN hybrid with enhanced photocatalytic activity for organic pollutant degradation and CO2 reduction. Applied Surface Science, 556, 149828.
  96. Malik, L. A., Bashir, A., Qureashi, A., & Pandith, A. H. (2019). Detection and removal of heavy metal ions: a review. Environmental Chemistry Letters, 17(4), 1495-1521.
  97. Mani, S., Chowdhary, P., & Bharagava, R. N. (2019). Textile wastewater dyes: toxicity profile and treatment approaches. In Emerging and eco-friendly approaches for waste management (pp. 219-244). Springer.
  98. Mei, F., Zhang, J., Liang, C., & Dai, K. (2021). Fabrication of novel CoO/porous graphitic carbon nitride S-scheme heterojunction for efficient CO2 photoreduction. Materials Letters, 282, 128722.
  99. Meng, A., Zhou, S., Wen, D., Han, P., & Su, Y. (2022). g-C3N4/CoTiO3 S-scheme heterojunction for enhanced visible light hydrogen production through photocatalytic pure water splitting. Chinese journal of catalysis, 43(10), 2548-2557.
  100. Meng, S., Zhang, J., Chen, S., Zhang, S., & Huang, W. (2019). Perspective on construction of heterojunction photocatalysts and the complete utilization of photogenerated charge carriers. Applied Surface Science, 476, 982-992.
  101. Mishra, M., & Chun, D.-M. (2015). α-Fe2O3 as a photocatalytic material: A review. Applied Catalysis A: General, 498, 126-141.
  102. Mpatani, F. M., Han, R., Aryee, A. A., Kani, A. N., Li, Z., & Qu, L. (2021). Adsorption performance of modified agricultural waste materials for removal of emerging micro-contaminant bisphenol A: a comprehensive review. Science of The Total Environment, 780, 146629.
  103. Naveira, C., Rodrigues, N., Santos, F. S., Santos, L. N., & Neves, R. A. (2021). Acute toxicity of Bisphenol A (BPA) to tropical marine and estuarine species from different trophic groups. Environmental pollution, 268, 115911.
  104. Nguyen, T. D., Nguyen, V.-H., Nanda, S., Vo, D.-V. N., Nguyen, V. H., Van Tran, T., Nong, L. X., Nguyen, T. T., Bach, L.-G., & Abdullah, B. (2020). BiVO4 photocatalysis design and applications to oxygen production and degradation of organic compounds: a review. Environmental Chemistry Letters, 18(6), 1779-1801.
  105. Niu, J., Ding, S., Zhang, L., Zhao, J., & Feng, C. (2013). Visible-light-mediated Sr-Bi2O3 photocatalysis of tetracycline: kinetics, mechanisms and toxicity assessment. Chemosphere, 93(1), 1-8.
  106. Niu, P., Pan, Z., Wang, S., & Wang, X. (2021). Cobalt Phosphide Cocatalysts Coated with Porous N‐doped Carbon Layers for Photocatalytic CO2 Reduction. ChemCatChem, 13(16), 3581-3587.
  107. Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman Jr, C. U., & Mohan, D. (2019). Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chemical reviews, 119(6), 3510-3673.
  108. Paul, T., Das, D., Das, B. K., Sarkar, S., Maiti, S., & Chattopadhyay, K. K. (2019). CsPbBrCl2/g-C3N4 type II heterojunction as efficient visible range photocatalyst. Journal of Hazardous Materials, 380, 120855.
  109. Pirhashemi, M., Habibi-Yangjeh, A., & Pouran, S. R. (2018). Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. Journal of Industrial and Engineering Chemistry, 62, 1-25.
  110. Preeyanghaa, M., Vinesh, V., & Neppolian, B. (2022). Construction of S-scheme 1D/2D rod-like g-C3N4/V2O5 heterostructure with enhanced sonophotocatalytic degradation for Tetracycline antibiotics. Chemosphere, 287, 132380.
  111. Qaraah, F. A., Mahyoub, S. A., Hezam, A., Qaraah, A., Xin, F., & Xiu, G. (2022). Synergistic effect of hierarchical structure and S-scheme heterojunction over O-doped g-C3N4/N-doped Nb2O5 for highly efficient Photocatalytic CO2 Reduction. Applied Catalysis B: Environmental, 121585.
  112. Qiao, M., Ying, G.-G., Singer, A. C., & Zhu, Y.-G. (2018). Review of antibiotic resistance in China and its environment. Environment international, 110, 160-172.
  113. Rajalakshmi, N., Barathi, D., Meyvel, S., & Sathya, P. (2021). S-scheme Ag2CrO4/g-C3N4 photocatalyst for effective degradation of organic pollutants under visible light. Inorganic Chemistry Communications, 132, 108849.
  114. Ran, J., Jaroniec, M., & Qiao, S. Z. (2018). Cocatalysts in semiconductor‐based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Advanced Materials, 30(7), 1704649.
  115. Reddy, P. A. K., Reddy, P. V. L., Kwon, E., Kim, K.-H., Akter, T., & Kalagara, S. (2016). Recent advances in photocatalytic treatment of pollutants in aqueous media. Environment international, 91, 94-103.
  116. Ren, Y., Zeng, D., & Ong, W.-J. (2019). Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: a review. Chinese journal of catalysis, 40(3), 289-319.
  117. Rodríguez-Llorente, D., Navarro, P., Santiago, R., Águeda, V. I., Álvarez-Torrellas, S., García, J., & Larriba, M. (2021). Extractive removal and recovery of bisphenol A from aqueous solutions using terpenoids and hydrophobic eutectic solvents. Journal of Environmental Chemical Engineering, 9(5), 106128.
  118. Sabri, M., Habibi-Yangjeh, A., Rahim Pouran, S., & Wang, C. (2021). Titania-activated persulfate for environmental remediation: the-state-of-the-art. Catalysis Reviews, 1-56.
  119. Sah, C.-T., Noyce, R. N., & Shockley, W. (1957). Carrier generation and recombination in pn junctions and pn junction characteristics. Proceedings of the IRE, 45(9), 1228-1243.
  120. Sahara, G., & Ishitani, O. (2015). Efficient photocatalysts for CO2 reduction. Inorganic chemistry, 54(11), 5096-5104.
  121. Sasi, S., Rayaroth, M. P., Aravindakumar, C. T., & Aravind, U. K. (2020). Occurrence, distribution and removal of organic micro-pollutants in a low saline water body. Science of The Total Environment, 749, 141319.
  122. Serpone, N. (2000). Photocatalysis. Kirk‐Othmer Encyclopedia of Chemical Technology.
  123. Shang, Y., Fan, H., Chen, Y., Dong, W., & Wang, W. (2022). Synergism between nitrogen vacancies and a unique electrons transfer pathway of Ag modified S-scheme g-C3N4/CdS heterojunction for efficient H2 evolution. Journal of Alloys and Compounds, 167620.
  124. Sharma, S., & Bhattacharya, A. (2017). Drinking water contamination and treatment techniques. Applied water science, 7(3), 1043-1067.
  125. Shawky, A., & Mohamed, R. (2022). S-scheme heterojunctions: emerging designed photocatalysts toward green energy and environmental remediation redox reactions. Journal of Environmental Chemical Engineering, 108249.
  126. Shen, R., Xie, J., Guo, P., Chen, L., Chen, X., & Li, X. (2018). Bridging the g-C3N4 nanosheets and robust CuS cocatalysts by metallic acetylene black interface mediators for active and durable photocatalytic H2 production. ACS Applied Energy Materials, 1(5), 2232-2241.
  127. Sudhaik, A., Raizada, P., Khan, A. A. P., Singh, A., & Singh, P. (2022). Graphitic carbon nitride-based upconversion photocatalyst for hydrogen production and water purification. Nanofabrication, 7.
  128. Sudhaik, A., Raizada, P., Thakur, S., Saini, A. K., Singh, P., & Hosseini-Bandegharaei, A. (2020). Metal-free photo-activation of peroxymonosulfate using graphene supported graphitic carbon nitride for enhancing photocatalytic activity. Materials Letters, 277, 128277.
  129. Sun, J.-X., Yuan, Y.-P., Qiu, L.-G., Jiang, X., Xie, A.-J., Shen, Y.-H., & Zhu, J.-F. (2012). Fabrication of composite photocatalyst gC 3 N 4–ZnO and enhancement of photocatalytic activity under visible light. Dalton Transactions, 41(22), 6756-6763.
  130. Tahir, M. B., Nabi, G., Rafique, M., & Khalid, N. (2017). Nanostructured-based WO3 photocatalysts: recent development, activity enhancement, perspectives and applications for wastewater treatment. International Journal of Environmental Science and Technology, 14(11), 2519-2542.
  131. Tang, H., Li, R., Fan, X., Xu, Y., Lin, H., & Zhang, H. (2022). A novel S-scheme heterojunction in spent battery-derived ZnFe2O4/g-C3N4 photocatalyst for enhancing peroxymonosulfate activation and visible light degradation of organic pollutant. Journal of Environmental Chemical Engineering, 10(3), 107797.
  132. Thornton, J. W., McCally, M., & Houlihan, J. (2002). Biomonitoring of industrial pollutants: health and policy implications of the chemical body burden. Public Health Reports, 117(4), 315.
  133. Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of The Total Environment, 717, 137222.
  134. Tung, R. T. (2001). Recent advances in Schottky barrier concepts. Materials Science and Engineering: R: Reports, 35(1-3), 1-138.
  135. Van, K. N., Huu, H. T., Thi, V. N. N., Le, T.-L. T., Hoang, Q. D., Dinh, Q. V., Vo, V., & Vasseghian, Y. (2022). Construction of S-scheme CdS/g-C3N4 nanocomposite with improved visible-light photocatalytic degradation of methylene blue. Environmental Research, 206, 112556.
  136. Vedula, R. K., Dalal, S., & Majumder, C. (2013). Bioremoval of cyanide and phenol from industrial wastewater: an update. Bioremediation journal, 17(4), 278-293.
  137. Vieno, N., & Sillanpää, M. (2014). Fate of diclofenac in municipal wastewater treatment plant—A review. Environment international, 69, 28-39.
  138. Vinesh, V., Ashokkumar, M., & Neppolian, B. (2020). rGO supported self-assembly of 2D nano sheet of (g-C3N4) into rod-like nano structure and its application in sonophotocatalytic degradation of an antibiotic. Ultrasonics sonochemistry, 68, 105218.
  139. Wammer, K. H., Korte, A. R., Lundeen, R. A., Sundberg, J. E., McNeill, K., & Arnold, W. A. (2013). Direct photochemistry of three fluoroquinolone antibacterials: norfloxacin, ofloxacin, and enrofloxacin. water research, 47(1), 439-448.
  140. Wang, D., Yin, F.-X., Cheng, B., Xia, Y., Yu, J.-G., & Ho, W.-K. (2021). Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Rare Metals, 40(9), 2369-2380.
  141. Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., Liu, J., & Wang, X. (2014). Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 43(15), 5234-5244.
  142. Wang, J., Sun, Y., Fu, L., Sun, Z., Ou, M., Zhao, S., Chen, Y., Yu, F., & Wu, Y. (2020). A defective gC 3 N 4/RGO/TiO 2 composite from hydrogen treatment for enhanced visible-light photocatalytic H 2 production. Nanoscale, 12(43), 22030-22035.
  143. Wang, J., Wang, G., Cheng, B., Yu, J., & Fan, J. (2021). Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chinese journal of catalysis, 42(1), 56-68.
  144. Wang, J., & Wang, S. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. Journal of environmental management, 182, 620-640.
  145. Wang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X., Zhang, X., & Dai, Y. (2012). Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS applied materials & interfaces, 4(8), 4024-4030.
  146. Wang, K., Feng, X., Shangguan, Y., Wu, X., & Chen, H. (2022). Selective CO2 photoreduction to CH4 mediated by dimension-matched 2D/2D Bi3NbO7/g-C3N4 S-scheme heterojunction. Chinese journal of catalysis, 43(2), 246-254.
  147. Wang, L., Cheng, B., Zhang, L., & Yu, J. (2021). In situ irradiated XPS investigation on S‐scheme TiO2@ ZnIn2S4 Photocatalyst for efficient Photocatalytic CO2 reduction. Small, 17(41), 2103447.
  148. Wang, S., Huang, C.-Y., Pan, L., Chen, Y., Zhang, X., & Zou, J.-J. (2019). Controllable fabrication of homogeneous ZnO pn junction with enhanced charge separation for efficient photocatalysis. Catalysis Today, 335, 151-159.
  149. Wang, S., Li, D., Sun, C., Yang, S., Guan, Y., & He, H. (2014). Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Applied Catalysis B: Environmental, 144, 885-892.
  150. Wang, W., Zhao, W., Zhang, H., Dou, X., & Shi, H. (2021). 2D/2D step-scheme α-Fe2O3/Bi2WO6 photocatalyst with efficient charge transfer for enhanced photo-Fenton catalytic activity. Chinese journal of catalysis, 42(1), 97-106.
  151. Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., Domen, K., & Antonietti, M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature materials, 8(1), 76-80.
  152. Wang, X., Sayed, M., Ruzimuradov, O., Zhang, J., Fan, Y., Li, X., Bai, X., & Low, J. (2022). A review of step-scheme photocatalysts. Applied Materials Today, 29, 101609.
  153. Wang, Y., Wang, Q., Zhan, X., Wang, F., Safdar, M., & He, J. (2013). Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 5(18), 8326-8339.
  154. Wei, C., Zhang, W., Wang, X., Li, A., Guo, J., & Liu, B. (2021). MOF-derived mesoporous g-C3N4/TiO2 heterojunction with enhanced photocatalytic activity. Catalysis Letters, 151(7), 1961-1975.
  155. Wen, J., Xie, J., Chen, X., & Li, X. (2017). A review on g-C3N4-based photocatalysts. Applied Surface Science, 391, 72-123.
  156. Wu, F., Li, X., Liu, W., & Zhang, S. (2017). Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Applied Surface Science, 405, 60-70.
  157. Wu, J., Huang, Y., Ye, W., & Li, Y. (2017). CO2 reduction: from the electrochemical to photochemical approach. Advanced Science, 4(11), 1700194.
  158. Wu, Y., Meng, D., Guo, Q., Gao, D., & Wang, L. (2022). Study on TiO2/g-C3N4 S-Scheme heterojunction photocatalyst for enhanced formaldehyde decomposition. Optical Materials, 126, 112213.
  159. Xia, C., Huang, H., Liang, D., Xie, Y., Kong, F., Yang, Q., Fu, J., Dou, Z., Zhang, Q., & Meng, Z. (2022). Adsorption of tetracycline hydrochloride on layered double hydroxide loaded carbon nanotubes and site energy distribution analysis. Chemical Engineering Journal, 443, 136398.
  160. Xiao, C., Wang, L., Zhou, Q., & Huang, X. (2020). Hazards of bisphenol A (BPA) exposure: A systematic review of plant toxicology studies. Journal of Hazardous Materials, 384, 121488.
  161. Xiao, J., Liu, X., Pan, L., Shi, C., Zhang, X., & Zou, J.-J. (2020). Heterogeneous photocatalytic organic transformation reactions using conjugated polymers-based materials. ACS Catalysis, 10(20), 12256-12283.
  162. Xu, H., Wu, L., Jin, L., & Wu, K. (2017). Combination mechanism and enhanced visible-light photocatalytic activity and stability of CdS/g-C3N4 heterojunctions. Journal of Materials Science & Technology, 33(1), 30-38.
  163. Xu, J., Wang, W., Sun, S., & Wang, L. (2012). Enhancing visible-light-induced photocatalytic activity by coupling with wide-band-gap semiconductor: A case study on Bi2WO6/TiO2. Applied Catalysis B: Environmental, 111, 126-132.
  164. Xu, L., Zhang, H., Xiong, P., Zhu, Q., Liao, C., & Jiang, G. (2021). Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Science of The Total Environment, 753, 141975.
  165. Xu, Q., Zhang, L., Cheng, B., Fan, J., & Yu, J. (2020). S-scheme heterojunction photocatalyst. Chem, 6(7), 1543-1559.
  166. Xu, T., Liang, J., Li, S., Xu, Z., Yue, L., Li, T., Luo, Y., Liu, Q., Shi, X., & Asiri, A. M. (2021). Recent advances in nonprecious metal oxide electrocatalysts and photocatalysts for N2 reduction reaction under ambient condition. Small Science, 1(5), 2000069.
  167. Yan, S., Li, Z., & Zou, Z. (2009). Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir, 25(17), 10397-10401.
  168. Yang, J., Zhang, X., Xie, C., Long, J., Wang, Y., Wei, L., & Yang, X. (2021). Preparation of g-C3N4 with high specific surface area and photocatalytic stability. Journal of Electronic Materials, 50(3), 1067-1074.
  169. Yang, K., Zhang, H., Liu, T., Xiang, D., Li, Y., & Jin, Z. (2022). Tailoring of efficient electron-extracting system: S-scheme g-C3N4/CoTiO3 heterojunction modified with Co3O4 quantum dots for photocatalytic hydrogen evolution. Journal of Electroanalytical Chemistry, 922, 116749.
  170. Yang, X., Hesami, M. D., Nazemipool, E., Bahadoran, A., Al-Bahrani, M., & Azizi, B. (2022). Fabrication of CuCo2S4 yolk-shell spheres embedded with S-scheme V2O5-deposited on wrinkled g-C3N4 for effective promotion of levofloxacin photodegradation. Separation and Purification Technology, 301, 122005.
  171. Yang, X., Tian, L., Zhao, X., Tang, H., Liu, Q., & Li, G. (2019). Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution. Applied Catalysis B: Environmental, 244, 240-249.
  172. Yang, Y., Liu, Z., Demeestere, K., & Van Hulle, S. (2021). Ozonation in view of micropollutant removal from biologically treated landfill leachate: Removal efficiency, OH exposure, and surrogate-based monitoring. Chemical Engineering Journal, 410, 128413.
  173. Yu, J., Wang, S., Low, J., & Xiao, W. (2013). Enhanced photocatalytic performance of direct Z-scheme gC 3 N 4–TiO 2 photocatalysts for the decomposition of formaldehyde in air. Physical Chemistry Chemical Physics, 15(39), 16883-16890.
  174. Yuan, F., Zheng, Y., Gao, D., Wang, L., & Hu, X. (2022). Facile assembly and enhanced visible-light-driven photocatalytic activity of S-scheme BiOBr/g-C3N4 heterojunction for degrading xanthate in wastewater. Journal of Molecular Liquids, 366, 120279.
  175. Yuan, Y., Guo, R.-t., Hong, L.-f., Lin, Z.-d., Ji, X.-y., & Pan, W.-g. (2022). Fabrication of a dual S-scheme Bi7O9I3/g-C3N4/Bi3O4Cl heterojunction with enhanced visible-light-driven performance for phenol degradation. Chemosphere, 287, 132241.
  176. Zhang, B., Shi, H., Yan, Y., Liu, C., Hu, X., Liu, E., & Fan, J. (2021). A novel S-scheme 1D/2D Bi2S3/g-C3N4 heterojunctions with enhanced H2 evolution activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 608, 125598.
  177. Zhang, C., Jia, M., Xu, Z., Xiong, W., Yang, Z., Cao, J., Peng, H., Xu, H., Xiang, Y., & Jing, Y. (2022). Constructing 2D/2D N-ZnO/g-C3N4 S-scheme heterojunction: efficient photocatalytic performance for norfloxacin degradation. Chemical Engineering Journal, 430, 132652.
  178. Zhang, G., Xue, Y., Wang, Q., Wang, P., Yao, H., Zhang, W., Zhao, J., & Li, Y. (2019). Photocatalytic oxidation of norfloxacin by Zn0. 9Fe0. 1S supported on Ni-foam under visible light irradiation. Chemosphere, 230, 406-415.
  179. Zhang, L., Zhang, J., Yu, H., & Yu, J. (2022). Emerging S‐scheme photocatalyst. Advanced Materials, 34(11), 2107668.
  180. Zhang, M., Yang, Y., An, X., & Hou, L.-a. (2021). A critical review of g-C3N4-based photocatalytic membrane for water purification. Chemical Engineering Journal, 412, 128663.
  181. Zhang, Q., Bai, X., Hu, X., Fan, J., & Liu, E. (2022). Efficient photocatalytic H2 evolution over 2D/2D S-scheme NiTe2/g-C3N4 heterojunction with superhydrophilic surface. Applied Surface Science, 579, 152224.
  182. Zhang, S., Fan, Q., Xia, R., & Meyer, T. J. (2020). CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Accounts of chemical research, 53(1), 255-264.
  183. Zhang, W., Mohamed, A. R., & Ong, W. J. (2020). Z‐Scheme photocatalytic systems for carbon dioxide reduction: where are we now? Angewandte Chemie International Edition, 59(51), 22894-22915.
  184. Zheng, D., Pang, C., & Wang, X. (2015). The function-led design of Z-scheme photocatalytic systems based on hollow carbon nitride semiconductors. Chemical Communications, 51(98), 17467-17470.
  185. Zhou, P., Yu, J., & Jaroniec, M. (2014). All‐solid‐state Z‐scheme photocatalytic systems. Advanced Materials, 26(29), 4920-4935.
  186. Zhou, Y., Wang, Z., Huang, L., Zaman, S., Lei, K., Yue, T., Li, Z. a., You, B., & Xia, B. Y. (2021). Engineering 2D photocatalysts toward carbon dioxide reduction. Advanced Energy Materials, 11(8), 2003159.
  187. Zhu, B., Xia, P., Li, Y., Ho, W., & Yu, J. (2017). Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Applied Surface Science, 391, 175-183.
  188. Zhu, B., Zhang, L., Cheng, B., Yu, Y., & Yu, J. (2021). H2O molecule adsorption on s-triazine-based g-C3N4. Chinese journal of catalysis, 42(1), 115-122.
  189. Zhu, Q., Xu, Z., Qiu, B., Xing, M., & Zhang, J. (2021). Emerging cocatalysts on g‐C3N4 for photocatalytic hydrogen evolution. Small, 17(40), 2101070.
  190. Zhu, X., Wang, Y., Guo, Y., Wan, J., Yan, Y., Zhou, Y., & Sun, C. (2021). Environmental-friendly synthesis of heterojunction photocatalysts g-C3N4/BiPO4 with enhanced photocatalytic performance. Applied Surface Science, 544, 148872.

How to Cite

Applications of graphitic carbon nitride-based S-scheme heterojunctions for environmental remediation and energy conversion. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.008.292

How to Cite

Applications of graphitic carbon nitride-based S-scheme heterojunctions for environmental remediation and energy conversion. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.008.292

HTML
707

Total
1376 40

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Anita Sudhaik, Sonu, Vasudha Hasija, Rangabhashiyam Selvasembian, Tansir Ahamad, Arachana Singh, Aftab Aslam Parwaz Khan, Pankaj Raizada, Pardeep Singh

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Most read articles by the same author(s)