Skip to main content Skip to main navigation menu Skip to site footer

Recent updates on g-C3N4/ZnO-based binary and ternary heterojunction photocatalysts toward environmental remediation and energy conversion

  • Parul Rana
  • Priya Dhull
  • Anita Sudhaik
  • Akshay Chawla
  • Van-Huy Nguyen
  • Savaş Kaya
  • Tansir Ahamad
  • Pardeep Singh
  • Chaudhery Mustansar Hussain
  • Pankaj Raizada


Background: The utilization of photocatalytic materials has garnered significant consideration due to their distinctive properties and diverse applications in environmental remediation and energy conversion. In photocatalysis, several wide and narrow band gap photocatalysts have been discovered. Amongst several photocatalysts, g-C3N4 photocatalyst is becoming the interest of the research community due to its unique properties. But as a single photocatalyst, it is inherited with certain confines for instance higher photocarrier recombination rate, lower quantum yield, low specific surface area, etc. However, the heterojunction formation of g-C3N4 with other wide band gap photocatalysts (ZnO) has improved its photocatalytic properties by overcoming its limitations.

Methods: The synergistic interaction amid g-C3N4 and ZnO photocatalysts enhanced optoelectrical properties superior mechanical strength and improved photocatalytic activity. The nanocomposite exhibits excellent stability, high surface area, efficient separation, and migration of photocarriers, which are advantageous for applications in photocatalytic energy conversion and environmental remediation. The g-C3N4-ZnO nanocomposite represents a material comprising g-C3N4 and ZnO photocatalysts which exhibit a broad absorption range, efficient electron-hole separation, and strong redox potential. The combination of these two distinct materials imparts enhanced properties to the resulting nanocomposite, making it suitable for various applications. Henceforth, current review, we have discussed the photocatalytic properties of g-C3N4 and ZnO photocatalysts and modification strategies to improve their photocatalytic properties.

Significant Findings: This article offers an inclusive overview of the g-C3N4-ZnO-based nanocomposite, highlighting its photocatalytic properties and potential applications in several pollutant degradation and energy conversion including hydrogen production and CO2 reduction.



  1. Abu-Sari, S. M., Ang, B. C., Daud, W. M. A. W., & Patah, M. F. A. (2023). Visible-light-driven photocatalytic hydrogen production on defective, sulfur self-doped g-C3N4 nanofiber fabricate via electrospinning method. Journal of Environmental Chemical Engineering, 11(2), 109318.
  2. Ahmad, I., Shukrullah, S., Naz, M. Y., Bhatti, H. N., Ahmad, M., Ahmed, E., Ullah, S., & Hussien, M. (2022). Recent progress in rare earth oxides and carbonaceous materials modified ZnO heterogeneous photocatalysts for environmental and energy applications. Journal of Environmental Chemical Engineering, 10(3), 107762.
  3. Ahmad, M., Ahmad, M., Nafarizal, N., Soon, C., Suriani, A., Mohamed, A., & Mamat, M. (2020). Chemisorbed CO2 molecules on ZnO nanowires (100 nm) surface leading towards enhanced piezoelectric voltage. Vacuum, 182, 109565.
  4. Alharthi, F. A., Ali Alghamdi, A., Alanazi, H. S., Alsyahi, A. A., & Ahmad, N. (2020). Photocatalytic degradation of the light-sensitive organic dyes: methylene blue and rose bengal by using urea derived g-C3N4/ZnO nanocomposites. Catalysts, 10(12), 1457.
  5. Ambaye, T. G., Vaccari, M., Prasad, S., van Hullebusch, E. D., & Rtimi, S. (2022). Preparation and applications of chitosan and cellulose composite materials. Journal of Environmental Management, 301, 113850.
  6. Ameta, R., Solanki, M. S., Benjamin, S., & Ameta, S. C. (2018). Photocatalysis. In Advanced oxidation processes for wastewater treatment (pp. 135-175). Elsevier.
  7. Arasu, M. V., Madankumar, A., Theerthagiri, J., Salla, S., Prabu, S., Kim, H.-S., Al-Dhabi, N. A., Arokiyaraj, S., & Duraipandiyan, V. (2019). Synthesis and characterization of ZnO nanoflakes anchored carbon nanoplates for antioxidant and anticancer activity in MCF7 cell lines. Materials Science and Engineering: C, 102, 536-540.
  8. Arif, U., Ali, F., Bahader, A., Ali, S., Zada, A., & Raziq, F. (2022). Efficient visible light activities of Ag-modified ZnO/g-C3N4 composite for CO2 conversion. Inorganic Chemistry Communications, 145, 109944.
  9. Azimi, E. B., Badiei, A., & Ghasemi, J. B. (2019). Efficient removal of malachite green from wastewater by using boron-doped mesoporous carbon nitride. Applied Surface Science, 469, 236-245.
  10. Badmus, K. O., Tijani, J. O., Massima, E., & Petrik, L. (2018). Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process. Environmental Science and Pollution Research, 25, 7299-7314.
  11. Bahiraei, H., Azarakhsh, S., & Ghasemi, S. (2023). Ternary CoFe2O4/g-C3N4/ZnO heterostructure as an efficient and magnetically separable visible-light photocatalyst: Characterization, dye purification, and mechanism. Ceramics International, 49(12), 21050-21059.
  12. Bai, S., Gao, C., Low, J., & Xiong, Y. (2019). Crystal phase engineering on photocatalytic materials for energy and environmental applications. Nano Research, 12, 2031-2054.
  13. Barman, S., & Basu, S. (2020). Complete removal of endocrine disrupting compound and toxic dye by visible light active porous g-C3N4/H-ZSM-5 nanocomposite. Chemosphere, 241, 124981.
  14. Barrio, J., Volokh, M., & Shalom, M. (2020). Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. Journal of Materials Chemistry A, 8(22), 11075-11116.
  15. Baruah, S., & Dutta, J. (2009). Hydrothermal growth of ZnO nanostructures. Science and technology of advanced materials.
  16. Batra, V., Kaur, I., Pathania, D., & Chaudhary, V. (2022). Efficient dye degradation strategies using green synthesized ZnO-based nanoplatforms: A review. Applied Surface Science Advances, 11, 100314.
  17. Belhassan, K. (2021). Water scarcity management. In Water Safety, Security and Sustainability: Threat Detection and Mitigation (pp. 443-462). Springer.
  18. Borbón, S., Lugo, S., & López, I. (2019). Fast synthesis of ZnO nanoflowers using a conductively heated sealed-vessel reactor without additives. Materials Science in Semiconductor Processing, 91, 310-315.
  19. Borthakur, S., Basyach, P., Kalita, L., Sonowal, K., Tiwari, A., Chetia, P., & Saikia, L. (2020). Sunlight-assisted degradation of a pollutant dye in water by a WO 3@ gC 3 N 4 nanocomposite catalyst. New Journal of Chemistry, 44(7), 2947-2960.
  20. Bulcha, B., Leta Tesfaye, J., Anatol, D., Shanmugam, R., Dwarampudi, L. P., Nagaprasad, N., Bhargavi, V. N., & Krishnaraj, R. (2021). Synthesis of zinc oxide nanoparticles by hydrothermal methods and spectroscopic investigation of ultraviolet radiation protective properties. Journal of Nanomaterials, 2021, 1-10.
  21. Cha, X., Yu, F., Fan, Y., Chen, J., Wang, L., Xiang, Q., Duan, Z., & Xu, J. (2018). Superhydrophilic ZnO nanoneedle array: Controllable in situ growth on QCM transducer and enhanced humidity sensing properties and mechanism. Sensors and Actuators B: Chemical, 263, 436-444.
  22. Chauhan, A., Negi, A., Kashyap, R., Sharma, B., Sharma, R. K., & Chaudhary, G. R. (2023). Cellulose/chitosan/g-C3N4 nano-architectured films for visible light induced photocatalytic removal of methylene blue and Cr (VI) from water. Industrial Crops and Products, 202, 117113.
  23. Chawla, A., Sudhaik, A., Raizada, P., Ahamad, T., Van Le, Q., Nguyen, V.-H., Thakur, S., Mishra, A. K., Selvasembian, R., & Singh, P. (2023). Bi-rich BixOyBrz-based photocatalysts for energy conversion and environmental remediation: A review. Coordination Chemistry Reviews, 491, 215246.
  24. Chegeni, M., & Dehghan, N. (2020). Preparation of phosphorus doped graphitic carbon nitride using a simple method and its application for removing methylene blue. Physical Chemistry Research, 8(1), 31-44.
  25. Chi, N., Yuan, X., & Sun, W. (2022). ZnO/gC 3N4 Nanostructured Photocatalyst for Enhancement of Photodegradation of Antibiotic Pollutant in Wastewater under Simulated solar Light Illumination. Int. J. Electrochem. Sci, 17(220935), 2.
  26. Choi, K.-S., & Chang, S.-P. (2018). Effect of structure morphologies on hydrogen gas sensing by ZnO nanotubes. Materials Letters, 230, 48-52.
  27. Coronado, J. M., Fresno, F., Hernández-Alonso, M. D., & Portela, R. (2013). Design of advanced photocatalytic materials for energy and environmental applications (Vol. 71). Springer.
  28. Cui, Y., Zhang, X., Zhang, H., Cheng, Q., & Cheng, X. (2019). Construction of BiOCOOH/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic degradation of amido black 10B. Separation and Purification Technology, 210, 125-134.
  29. Deonikar, V. G., Reddy, K. K., Chung, W.-J., & Kim, H. (2019). Facile synthesis of Ag3PO4/g-C3N4 composites in various solvent systems with tuned morphologies and their efficient photocatalytic activity for multi-dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, 368, 168-181.
  30. Devarayapalli, K., Vattikuti, S. P., Sreekanth, T., Yoo, K. S., Nagajyothi, P., & Shim, J. (2020). Hydrogen production and photocatalytic activity of g‐C3N4/Co‐MOF (ZIF‐67) nanocomposite under visible light irradiation. Applied Organometallic Chemistry, 34(3), e5376.
  31. Dhull, P., Sudhaik, A., Sharma, V., Raizada, P., Hasija, V., Gupta, N., Ahamad, T., Nguyen, V.-H., Kim, A., & Shokouhimehr, M. (2023). An overview on InVO4-based photocatalysts: Electronic properties, synthesis, enhancement strategies, and photocatalytic applications. Molecular Catalysis, 539, 113013.
  32. Dutta, V., Singh, P., Shandilya, P., Sharma, S., Raizada, P., Saini, A. K., Gupta, V. K., Hosseini-Bandegharaei, A., Agarwal, S., & Rahmani-Sani, A. (2019). Review on advances in photocatalytic water disinfection utilizing graphene and graphene derivatives-based nanocomposites. Journal of Environmental Chemical Engineering, 7(3), 103132.
  33. Dutta, V., Sudhaik, A., Khan, A. A. P., Ahamad, T., Raizada, P., Thakur, S., Asiri, A. M., & Singh, P. (2023). GCN/CuFe2O4/SiO2 photocatalyst for photo-Fenton assisted degradation of organic dyes. Materials Research Bulletin, 164, 112238.
  34. Fan, Y., Yang, Y.-n., Ding, C., & Wang, H.-j. (2022). Degradation of rhodamine B by g-C3N4/MoS2 composite photocatalyst. Ferroelectrics, 595(1), 146-155.
  35. Feng, S., Chen, T., Liu, Z., Shi, J., Yue, X., & Li, Y. (2020). Z-scheme CdS/CQDs/g-C3N4 composites with visible-near-infrared light response for efficient photocatalytic organic pollutant degradation. Science of the total environment, 704, 135404.
  36. Fronczak, M. (2020). Adsorption performance of graphitic carbon nitride-based materials: Current state of the art. Journal of Environmental Chemical Engineering, 8(5), 104411.
  37. Garg, T., Kaur, J., Kaur, P., Kumar, V., Tikoo, K., Kaushik, A., & Singhal, S. (2022). An innovative Z-scheme g-C3N4/ZnO/NiFe2O4 heterostructure for the concomitant photocatalytic removal and real-time monitoring of noxious fluoroquinolones. Chemical Engineering Journal, 443, 136441.
  38. Ge, W., Liu, K., Deng, S., Yang, P., & Shen, L. (2023). Z-scheme g-C3N4/ZnO heterojunction decorated by Au nanoparticles for enhanced photocatalytic hydrogen production. Applied Surface Science, 607, 155036.
  39. George, S., Pokhrel, S., Xia, T., Gilbert, B., Ji, Z., Schowalter, M., Rosenauer, A., Damoiseaux, R., Bradley, K. A., & Mädler, L. (2010). Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS nano, 4(1), 15-29.
  40. Gupta, N. M. (2017). Factors affecting the efficiency of a water splitting photocatalyst: a perspective. Renewable and Sustainable Energy Reviews, 71, 585-601.
  41. Hashem, E. M., Hamza, M. A., El-Shazly, A. N., Abd El-Rahman, S. A., El-Tanany, E. M., Mohamed, R. T., & Allam, N. K. (2021). Novel Z-Scheme/Type-II CdS@ ZnO/g-C3N4 ternary nanocomposites for the durable photodegradation of organics: kinetic and mechanistic insights. Chemosphere, 277, 128730.
  42. Hayat, A., Al-Sehemi, A. G., El-Nasser, K. S., Taha, T., Al-Ghamdi, A. A., Syed, J. A. S., Amin, M. A., Ali, T., Bashir, T., & Palamanit, A. (2022). Graphitic carbon nitride (g–C3N4)–based semiconductor as a beneficial candidate in photocatalysis diversity. International Journal of Hydrogen Energy, 47(8), 5142-5191.
  43. He, R., Zhou, J., Fu, H., Zhang, S., & Jiang, C. (2018). Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. Applied Surface Science, 430, 273-282.
  44. He, Y., Wang, Y., Zhang, L., Teng, B., & Fan, M. (2015). High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 168, 1-8.
  45. Huang, L., Bao, D., Li, J., Jiang, X., & Sun, X. (2021). Construction of Au modified direct Z-scheme g-C3N4/defective ZnO heterostructure with stable high-performance for tetracycline degradation. Applied Surface Science, 555, 149696.
  46. Hughes, W. L., & Wang, Z. L. (2004). Formation of piezoelectric single-crystal nanorings and nanobows. Journal of the American Chemical Society, 126(21), 6703-6709.
  47. Imran, M., Haider, S., Ahmad, K., Mahmood, A., & Al-masry, W. A. (2017). Fabrication and characterization of zinc oxide nanofibers for renewable energy applications. Arabian Journal of Chemistry, 10, S1067-S1072.
  48. Jang, E., Kim, D. W., Hong, S. H., Park, Y. M., & Park, T. J. (2019). Visible light-driven g-C3N4@ ZnO heterojunction photocatalyst synthesized via atomic layer deposition with a specially designed rotary reactor. Applied Surface Science, 487, 206-210.
  49. Jia, J., Wang, Y., Xu, M., Qi, M.-l., Wu, Y., & Zhao, G. (2020). MOF-derived the direct Z-scheme gC 3 N 4/TiO 2 with enhanced visible photocatalytic activity. Journal of Sol-Gel Science and Technology, 93, 123-130.
  50. Jiang, L., Yuan, X., Zeng, G., Liang, J., Chen, X., Yu, H., Wang, H., Wu, Z., Zhang, J., & Xiong, T. (2018). In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Applied Catalysis B: Environmental, 227, 376-385.
  51. Jiang, Z., Zhang, X., Chen, H. S., Hu, X., & Yang, P. (2019). Formation of g‐C3N4 nanotubes towards superior photocatalysis performance. ChemCatChem, 11(18), 4558-4567.
  52. Joseph, S., Abraham, S., Priyanka, R. N., Abraham, T., Suresh, A., & Mathew, B. (2019). In situ S-doped ultrathin gC 3 N 4 nanosheets coupled with mixed-dimensional (3D/1D) nanostructures of silver vanadates for enhanced photocatalytic degradation of organic pollutants. New Journal of Chemistry, 43(26), 10618-10630.
  53. Jourshabani, M., Shariatinia, Z., & Badiei, A. (2017). Facile one-pot synthesis of cerium oxide/sulfur-doped graphitic carbon nitride (g-C3N4) as efficient nanophotocatalysts under visible light irradiation. Journal of colloid and interface science, 507, 59-73.
  54. Jung, H., Pham, T.-T., & Shin, E. W. (2019). Effect of g-C3N4 precursors on the morphological structures of g-C3N4/ZnO composite photocatalysts. Journal of Alloys and Compounds, 788, 1084-1092.
  55. Kanaparthi, S., & Singh, S. G. (2020). Highly sensitive and ultra-fast responsive ammonia gas sensor based on 2D ZnO nanoflakes. Materials Science for Energy Technologies, 3, 91-96.
  56. Karri, R. R., Ravindran, G., & Dehghani, M. H. (2021). Wastewater—sources, toxicity, and their consequences to human health. In Soft computing techniques in solid waste and wastewater management (pp. 3-33). Elsevier.
  57. Kennedy, O. W., Coke, M. L., White, E. R., Shaffer, M. S., & Warburton, P. A. (2018). MBE growth and morphology control of ZnO nanobelts with polar axis perpendicular to growth direction. Materials Letters, 212, 51-53.
  58. Khera, S., & Chand, P. (2019). Influence of different solvents on the structural, optical, impedance and dielectric properties of ZnO nanoflakes. Chinese journal of physics, 57, 28-46.
  59. Kong, J.-Z., Zhai, H.-F., Zhang, W., Wang, S.-S., Zhao, X.-R., Li, M., Li, H., Li, A.-D., & Wu, D. (2017). Visible light-driven photocatalytic performance of N-doped ZnO/g-C3N4 nanocomposites. Nanoscale research letters, 12(1), 1-10.
  60. Kong, X., Wei, C., Zhu, Y., Cohen, P., & Dong, J. (2018). Characterization and modeling of catalyst-free carbon-assisted synthesis of ZnO nanowires. Journal of Manufacturing Processes, 32, 438-444.
  61. Kumar, B. (2021). Green synthesis of gold, silver, and iron nanoparticles for the degradation of organic pollutants in wastewater. Journal of Composites Science, 5(8), 219.
  62. Kumar, R., Sudhaik, A., Sonu, A., Raizada, P., Nguyen, V.-H., Van Le, Q., Ahamad, T., Thakur, S., Hussaind, C. M., & Singh, P. (2023). Integrating K and P co-doped g-C3N4 with ZnFe2O4 and graphene oxide for S-scheme-based enhanced absorption coupled photocatalytic real wastewater treatment. Chemosphere, 139267.
  63. Kumar, R., Tiwari, S., Thakur, V., & Pratap, R. (2020). Growth of ultrafast, super dense ZnO nanorods using microwaves for piezoelectric MEMS applications. Materials Chemistry and Physics, 255, 123607.
  64. Kumaresan, N., Sinthiya, M. M. A., Kumar, M. P., Ravichandran, S., Babu, R. R., Sethurman, K., & Ramamurthi, K. (2020). Investigation on the g-C3N4 encapsulated ZnO nanorods heterojunction coupled with GO for effective photocatalytic activity under visible light irradiation. Arabian Journal of Chemistry, 13(1), 2826-2843.
  65. Le, S., Zhu, C., Cao, Y., Wang, P., Liu, Q., Zhou, H., Chen, C., Wang, S., & Duan, X. (2022). V2O5 nanodot-decorated laminar C3N4 for sustainable photodegradation of amoxicillin under solar light. Applied Catalysis B: Environmental, 303, 120903.
  66. Lee, H.-Y., Cheng, C.-Y., & Lee, C.-T. (2020). Bottom gate thin-film transistors using parallelly lateral ZnO nanorods grown by hydrothermal method. Materials Science in Semiconductor Processing, 119, 105223.
  67. Lee, J.-T., Lee, S.-W., & Wey, M.-Y. (2022). S-scheme g-C3N4/ZnO heterojunction photocatalyst with enhanced photodegradation of azo dye. Journal of the Taiwan Institute of Chemical Engineers, 134, 104357.
  68. Leelavathi, H., Muralidharan, R., Abirami, N., Tamizharasan, S., Sankeetha, S., Kumarasamy, A., & Arulmozhi, R. (2023). Construction of step-scheme g-C3N4/Co/ZnO heterojunction photocatalyst for aerobic photocatalytic degradation of synthetic wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 656, 130449.
  69. Leonardi, S. G. (2017). Two-dimensional zinc oxide nanostructures for gas sensor applications. Chemosensors, 5(2), 17.
  70. Li, J., Wang, Y., Wang, Y., Guo, Y., Zhang, S., Song, H., Li, X., Gao, Q., Shang, W., & Hu, S. (2023). MXene Ti3C2 decorated g-C3N4/ZnO photocatalysts with improved photocatalytic performance for CO2 reduction. Nano Materials Science.
  71. Li, L., Zou, D., Xiao, Z., Zeng, X., Zhang, L., Jiang, L., Wang, A., Ge, D., Zhang, G., & Liu, F. (2019). Biochar as a sorbent for emerging contaminants enables improvements in waste management and sustainable resource use. Journal of Cleaner Production, 210, 1324-1342.
  72. Li, X., Zhang, H., Huang, J., Luo, J., Feng, Z., & Wang, X. (2017). Folded nano-porous graphene-like carbon nitride with significantly improved visible-light photocatalytic activity for dye degradation. Ceramics International, 43(17), 15785-15792.
  73. Liang, Q., Cui, S., Jin, J., Liu, C., Xu, S., Yao, C., & Li, Z. (2018). Fabrication of BiOI@ UIO-66 (NH2)@ g-C3N4 ternary Z-scheme heterojunction with enhanced visible-light photocatalytic activity. Applied Surface Science, 456, 899-907.
  74. Liu, B., Bie, C., Zhang, Y., Wang, L., Li, Y., & Yu, J. (2021). Hierarchically porous ZnO/g-C3N4 S-scheme heterojunction photocatalyst for efficient H2O2 production. Langmuir, 37(48), 14114-14124.
  75. Liu, C., Qiu, Y., Zhang, J., Liang, Q., Mitsuzaki, N., & Chen, Z. (2019). Construction of CdS quantum dots modified g-C3N4/ZnO heterostructured photoanode for efficient photoelectrochemical water splitting. Journal of Photochemistry and Photobiology A: Chemistry, 371, 109-117.
  76. Liu, J., Li, Y., Huang, L., Wang, C., Yang, L., Liu, J., Huang, C., & Song, Y. (2021). Fabrication of novel narrow/wide band gap Bi4O5I2/BiOCl heterojunction with high antibacterial and degradation efficiency under LED and sunlight. Applied Surface Science, 567, 150713.
  77. Liu, J., Yan, X.-T., Qin, X.-S., Wu, S.-J., Zhao, H., Yu, W.-B., Chen, L.-H., Li, Y., & Su, B.-L. (2020). Light-assisted preparation of heterostructured g-C3N4/ZnO nanorods arrays for enhanced photocatalytic hydrogen performance. Catalysis Today, 355, 932-936.
  78. Liu, L., Chen, Z., Zhang, J., Shan, D., Wu, Y., Bai, L., & Wang, B. (2021). Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review. Journal of Water Process Engineering, 42, 102122.
  79. Liu, L., Luo, X., Li, Y., Xu, F., Gao, Z., Zhang, X., Song, Y., Xu, H., & Li, H. (2018). Facile synthesis of few-layer g-C3N4/ZnO composite photocatalyst for enhancing visible light photocatalytic performance of pollutants removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 537, 516-523.
  80. Liu, N., Li, T., Zhao, Z., Liu, J., Luo, X., Yuan, X., Luo, K., He, J., Yu, D., & Zhao, Y. (2020). From triazine to heptazine: origin of graphitic carbon nitride as a photocatalyst. ACS Omega, 5(21), 12557-12567.
  81. Liu, R., Yang, W., He, G., Zheng, W., Li, M., Tao, W., & Tian, M. (2020). Ag-modified g-C3N4 prepared by a one-step calcination method for enhanced catalytic efficiency and stability. ACS omega, 5(31), 19615-19624.
  82. Liu, X., Liu, L., Yao, Z., Yang, Z., & Xu, H. (2020). Enhanced visible-light-driven photocatalytic hydrogen evolution and NO photo-oxidation capacity of ZnO/g-C3N4 with N dopant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 599, 124869.
  83. Low, J., Yu, J., Jaroniec, M., Wageh, S., & Al‐Ghamdi, A. A. (2017). Heterojunction photocatalysts. Advanced materials, 29(20), 1601694.
  84. Luu Thi, L. A., Neto, M. M., Van, T. P., Nguyen Ngoc, T., Nguyen Thi, T. M., Nguyen, X. S., & Nguyen, C. T. (2021). In situ g-C3N4@ Zno nanocomposite: one-pot hydrothermal synthesis and photocatalytic performance under visible light irradiation. Advances in Materials Science and Engineering, 2021, 1-10.
  85. Ma, S., Zhan, S., Xia, Y., Wang, P., Hou, Q., & Zhou, Q. (2019). Enhanced photocatalytic bactericidal performance and mechanism with novel Ag/ZnO/g-C3N4 composite under visible light. Catalysis Today, 330, 179-188.
  86. Malik, R., & Tomer, V. K. (2021). State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production. Renewable and Sustainable Energy Reviews, 135, 110235.
  87. Manjula, Y., Kumar, R. R., Raju, P. M. S., Kumar, G. A., Rao, T. V., Akshaykranth, A., & Supraja, P. (2020). Piezoelectric flexible nanogenerator based on ZnO nanosheet networks for mechanical energy harvesting. Chemical Physics, 533, 110699.
  88. Mishra, Y. K., & Adelung, R. (2018). ZnO tetrapod materials for functional applications. Materials Today, 21(6), 631-651.
  89. Mohanty, L., Pattanayak, D. S., & Dash, S. K. (2021). An efficient ternary photocatalyst Ag/ZnO/g-C3N4 for degradation of RhB and MG under solar radiation. Journal of the Indian Chemical Society, 98(11), 100180.
  90. Moore, D., & Wang, Z. L. (2006). Growth of anisotropic one-dimensional ZnS nanostructures. Journal of Materials Chemistry, 16(40), 3898-3905.
  91. Morkoç, H., & Özgür, Ü. (2008). Zinc oxide: fundamentals, materials and device technology. John Wiley & Sons.
  92. Nemiwal, M., Zhang, T. C., & Kumar, D. (2021). Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity. Science of the total environment, 767, 144896.
  93. Nidheesh, P. V., Couras, C., Karim, A. V., & Nadais, H. (2022). A review of integrated advanced oxidation processes and biological processes for organic pollutant removal. Chemical Engineering Communications, 209(3), 390-432.
  94. Özgür, Ü., Avrutin, V., & Morkoç, H. (2013). Chapter 16-zinc oxide materials and devices grown by mbe. Molecular Beam Epitaxy, 369-416.
  95. Pandey, A., Kumar, R. R., Kalidasan, B., Laghari, I. A., Samykano, M., Kothari, R., Abusorrah, A. M., Sharma, K., & Tyagi, V. (2021). Utilization of solar energy for wastewater treatment: Challenges and progressive research trends. Journal of environmental management, 297, 113300.
  96. Pant, B., Park, M., & Park, S.-J. (2019). Recent advances in TiO2 films prepared by sol-gel methods for photocatalytic degradation of organic pollutants and antibacterial activities. Coatings, 9(10), 613.
  97. Pathania, D., Sharma, M., Kumar, S., Thakur, P., Torino, E., Janas, D., & Thakur, S. (2021). Essential oil derived biosynthesis of metallic nano-particles: Implementations above essence. Sustainable Materials and Technologies, 30, e00352.
  98. Pattanayak, D. S., Pal, D., Mishra, J., Thakur, C., & Wasewar, K. L. (2023). Doped graphitic carbon nitride (g-C3N4) catalysts for efficient photodegradation of tetracycline antibiotics in aquatic environments. Environmental Science and Pollution Research, 30(10), 24919-24926.
  99. Paul, D. R., Gautam, S., Panchal, P., Nehra, S. P., Choudhary, P., & Sharma, A. (2020). ZnO-modified g-C3N4: a potential photocatalyst for environmental application. ACS omega, 5(8), 3828-3838.
  100. Pham, T. H., Tran, M. H., Chu, T. T. H., Myung, Y., Jung, S. H., Mapari, M. G., & Taeyoung, K. (2023). Enhanced photodegradation of tetracycline in wastewater and conversion of CO2 by solar light assisted ZnO/g-C3N4. Environmental Research, 217, 114825.
  101. Qamar, M. A., Shahid, S., Javed, M., Shariq, M., Fadhali, M. M., Madkhali, O., Ali, S. K., Syed, I. S., Awaji, M. Y., & Shakir Khan, M. (2022). Accelerated Decoloration of organic dyes from wastewater using ternary Metal/g-C3N4/ZnO nanocomposites: an investigation of impact of g-C3N4 concentration and Ni and Mn doping. Catalysts, 12(11), 1388.
  102. Qu, Y., Huang, R., Qi, W., Shi, M., Su, R., & He, Z. (2020). Controllable synthesis of ZnO nanoflowers with structure-dependent photocatalytic activity. Catalysis Today, 355, 397-407.
  103. Raizada, P., Sudhaik, A., Saini, A.K., Singh, P., Synthesis Of Magnetically Separable Graphitic Carbon Nitride Based Photocatalyst And Methods Thereof, Application Number: 201811018238, Shoolini University Solan.
  104. Raizada, P., Sudhaik, A., Saini, A.K., Singh, P., Ag3vo4 Modified Phosphorus And Sulphur Co-Doped Graphitic Carbon Nitride As High-Dispersed Photocatalyst For Phenol Mineralization And E. Coli Disinfection, Application Number: 201811033392, Shoolini University Solan.
  105. Rajeshwari, M. R., Kokilavani, S., & Khan, S. S. (2022). Recent developments in architecturing the g-C3N4 based nanostructured photocatalysts: Synthesis, modifications and applications in water treatment. Chemosphere, 291, 132735.
  106. Rao, K. M., Suneetha, M., Zo, S., Duck, K. H., & Han, S. S. (2019). One-pot synthesis of ZnO nanobelt-like structures in hyaluronan hydrogels for wound dressing applications. Carbohydrate polymers, 223, 115124.
  107. Ren, B., Xu, Y., Zhang, L., & Liu, Z. (2018). Carbon-doped graphitic carbon nitride as environment-benign adsorbent for methylene blue adsorption: Kinetics, isotherm and thermodynamics study. Journal of the Taiwan Institute of Chemical Engineers, 88, 114-120.
  108. Saleh, S. M. (2019). ZnO nanospheres based simple hydrothermal route for photocatalytic degradation of azo dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 211, 141-147.
  109. Sayed, M., Zhu, B., Kuang, P., Liu, X., Cheng, B., Ghamdi, A. A. A., Wageh, S., Zhang, L., & Yu, J. (2022). EPR investigation on electron transfer of 2D/3D g‐C3N4/ZnO S‐scheme heterojunction for enhanced CO2 photoreduction. Advanced Sustainable Systems, 6(1), 2100264.
  110. Sharma, R., Almáši, M., Nehra, S. P., Rao, V. S., Panchal, P., Paul, D. R., Jain, I. P., & Sharma, A. (2022). Photocatalytic hydrogen production using graphitic carbon nitride (GCN): A precise review. Renewable and Sustainable Energy Reviews, 168, 112776.
  111. Sheikh, M., Pazirofteh, M., Dehghani, M., Asghari, M., Rezakazemi, M., Valderrama, C., & Cortina, J.-L. (2020). Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review. Chemical Engineering Journal, 391, 123475.
  112. Shi, L., He, Z., & Liu, S. (2018). MoS2 quantum dots embedded in g-C3N4 frameworks: A hybrid 0D-2D heterojunction as an efficient visible-light driven photocatalyst. Applied Surface Science, 457, 30-40.
  113. Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., Kim, H. Y., & Joshi, M. K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4), 105688.
  114. Sivaprakash, K., Induja, M., Gomathipriya, P., Karthikeyan, S., & Umabharathi, S. (2021). Single-step synthesis of efficient nanometric boron carbon nitride semiconductor for photocatalysis. Materials Research Bulletin, 134, 111106.
  115. Sudhaik, A., Hasija, V., Selvasembian, R., Ahamad, T., Singh, A., Khan, A. A. P., Raizada, P., & Singh, P. (2023). Applications of graphitic carbon nitride-based S-scheme heterojunctions for environmental remediation and energy conversion. Nanofabrication, 8.
  116. Sun, M., Chen, Z., Jiang, X., Feng, C., & Zeng, R. (2019). Optimized preparation of Co-Pi decorated g-C3N4@ ZnO shell-core nanorod array for its improved photoelectrochemical performance and stability. Journal of Alloys and Compounds, 780, 540-551.
  117. Sun, M., Wang, Y., Shao, Y., He, Y., Zeng, Q., Liang, H., Yan, T., & Du, B. (2017). Fabrication of a novel Z-scheme g-C3N4/Bi4O7 heterojunction photocatalyst with enhanced visible light-driven activity toward organic pollutants. Journal of colloid and interface science, 501, 123-132.
  118. Sun, Q., Sun, Y., Zhou, M., Cheng, H., Chen, H., Dorus, B., Lu, M., & Le, T. (2022). A 2D/3D g-C3N4/ZnO heterojunction enhanced visible-light driven photocatalytic activity for sulfonamides degradation. Ceramics International, 48(5), 7283-7290.
  119. Sun, Y., Yang, H., Zhao, Z., Suematsu, K., Li, P., Yu, Z., Zhang, W., & Hu, J. (2020). Fabrication of ZnO quantum dots@ SnO2 hollow nanospheres hybrid hierarchical structures for effectively detecting formaldehyde. Sensors and Actuators B: Chemical, 318, 128222.
  120. Thakur, S., Kaur, M., Lim, W. F., & Lal, M. (2020). Fabrication and characterization of electrospun ZnO nanofibers; antimicrobial assessment. Materials Letters, 264, 127279.
  121. Titchou, F. E., Zazou, H., Afanga, H., El Gaayda, J., Akbour, R. A., Nidheesh, P. V., & Hamdani, M. (2021). An overview on the elimination of organic contaminants from aqueous systems using electrochemical advanced oxidation processes. Journal of Water Process Engineering, 41, 102040.
  122. Tudose, I. V., Vrinceanu, N., Pachiu, C., Bucur, S., Pascariu, P., Rusen, L., Koudoumas, E., & Suchea, M. P. (2019). Nanostructured ZnO-based materials for biomedical and environmental applications. In Functional Nanostructured Interfaces for Environmental and Biomedical Applications (pp. 285-305). Elsevier.
  123. Van Thuan, D., Nguyen, T. B., Pham, T. H., Kim, J., Chu, T. T. H., Nguyen, M. V., Nguyen, K. D., Al-Onazi, W. A., & Elshikh, M. S. (2022). Photodegradation of ciprofloxacin antibiotic in water by using ZnO-doped g-C3N4 photocatalyst. Chemosphere, 308, 136408.
  124. Vinayagam, V., Murugan, S., Kumaresan, R., Narayanan, M., Sillanpää, M., Dai Viet, N. V., Kushwaha, O. S., Jenis, P., Potdar, P., & Gadiya, S. (2022). Sustainable adsorbents for the removal of pharmaceuticals from wastewater: A review. Chemosphere, 300, 134597.
  125. Wang, F., Li, W., Gu, S., Li, H., Liu, X., & Ren, C. (2017). Visible-light-driven heterojunction photocatalysts based on g-C3N4 decorated La2Ti2O7: Effective transportation of photogenerated carriers in this heterostructure. Catalysis Communications, 96, 50-53.
  126. Wang, J. (2023). Construction of ternary heterostructured Ag/Ag2O@ ZnO@ g-C3N4 nanocomposite as an widened visible light photocatalyst for the organic oxidation. Journal of Physics and Chemistry of Solids, 180, 111389.
  127. Wang, J., Xia, Y., Zhao, H., Wang, G., Xiang, L., Xu, J., & Komarneni, S. (2017). Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Applied Catalysis B: Environmental, 206, 406-416.
  128. Wang, J., Yang, Y., & Sun, X. (2016). ZnO disk-like structures and their application in dye sensitized solar cell. Solid State Communications, 240, 46-52.
  129. Wang, N., Chen, X., Jin, J., Zhang, P., Qiao, X., & Cui, L. (2020). Tungsten nitride atomic clusters embedded two-dimensional g-C3N4 as efficient electrocatalysts for oxygen reduction reaction. Carbon, 169, 82-91.
  130. Wang, P., Yang, M., Tang, S., Li, Y., Lin, X., Zhang, H., Zhu, Z., & Chen, F. (2022). Z-scheme heterojunctions composed of 3D graphene aerogel/g-C3N4 nanosheets/porous ZnO nanospheres for the efficient photocatalytic reduction of CO2 with H2O under visible light irradiation. Journal of Alloys and Compounds, 918, 165607.
  131. Wang, Y., Wang, X., & Antonietti, M. (2012). Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angewandte Chemie International Edition, 51(1), 68-89.
  132. Wang, Y., Yang, J., Jia, H., Yu, M., & Jin, H. (2016). Self-assembled urchin-like ZnO nanostructures fabricated by electrodeposition-hydrothermal method. Journal of Alloys and Compounds, 665, 62-68.
  133. Wei, R., Tang, N., Jiang, L., Yang, J., Guo, J., Yuan, X., Liang, J., Zhu, Y., Wu, Z., & Li, H. (2022). Bimetallic nanoparticles meet polymeric carbon nitride: Fabrications, catalytic applications and perspectives. Coordination Chemistry Reviews, 462, 214500.
  134. Wu, Y., Wang, H., Tu, W., Liu, Y., Tan, Y. Z., Yuan, X., & Chew, J. W. (2018). Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid pn heterojunction interfacial effect. Journal of Hazardous Materials, 347, 412-422.
  135. Xu, C., Anusuyadevi, P. R., Aymonier, C., Luque, R., & Marre, S. (2019). Nanostructured materials for photocatalysis. Chemical Society Reviews, 48(14), 3868-3902.
  136. Yan, K., & Wu, G. (2015). Titanium dioxide microsphere-derived materials for solar fuel hydrogen generation. ACS Sustainable Chemistry & Engineering, 3(5), 779-791.
  137. Yang, Y., & Bian, Z. (2021). Oxygen doping through oxidation causes the main active substance in g-C3N4 photocatalysis to change from holes to singlet oxygen. Science of the total environment, 753, 141908.
  138. Younas, F., Mustafa, A., Farooqi, Z. U. R., Wang, X., Younas, S., Mohy-Ud-Din, W., Ashir Hameed, M., Mohsin Abrar, M., Maitlo, A. A., & Noreen, S. (2021). Current and emerging adsorbent technologies for wastewater treatment: trends, limitations, and environmental implications. Water, 13(2), 215.
  139. Yu, B., Miao, C., Wang, D., Li, H., Sun, D., Jiang, W., Liu, C., & Che, G. (2022). Preparation of visible light responsive g-C3N4/H-TiO2 Z-scheme heterojunction with enhanced photocatalytic activity for RhB degradation. Journal of Materials Science: Materials in Electronics, 33(22), 17587-17598.
  140. Yu, T., Liu, Q., Chen, G., Liu, L., Zhang, J., Gao, C., & Yang, T. (2022). Microbial coupled photocatalytic fuel cell with a double Z-scheme g-C3N4/ZnO/Bi4O5Br2 cathode for the degradation of different organic pollutants. International Journal of Hydrogen Energy, 47(6), 3781-3790.
  141. Yuan, Y., Huang, G.-F., Hu, W.-Y., Xiong, D.-N., Zhou, B.-X., Chang, S., & Huang, W.-Q. (2017). Construction of g-C3N4/CeO2/ZnO ternary photocatalysts with enhanced photocatalytic performance. Journal of Physics and Chemistry of Solids, 106, 1-9.
  142. Zhang, C., Jia, M., Xu, Z., Xiong, W., Yang, Z., Cao, J., Peng, H., Xu, H., Xiang, Y., & Jing, Y. (2022). Constructing 2D/2D N-ZnO/g-C3N4 S-scheme heterojunction: efficient photocatalytic performance for norfloxacin degradation. Chemical Engineering Journal, 430, 132652.
  143. Zhang, J.-Y., Mei, J.-Y., Yi, S.-S., & Guan, X.-X. (2019). Constructing of Z-scheme 3D g-C3N4-ZnO@ graphene aerogel heterojunctions for high-efficient adsorption and photodegradation of organic pollutants. Applied Surface Science, 492, 808-817.
  144. Zhang, L., Zhang, J., Yu, H., & Yu, J. (2022). Emerging S‐scheme photocatalyst. Advanced materials, 34(11), 2107668.
  145. Zhang, S., Su, C., Ren, H., Li, M., Zhu, L., Ge, S., Wang, M., Zhang, Z., Li, L., & Cao, X. (2019). In-situ fabrication of g-C3N4/ZnO nanocomposites for photocatalytic degradation of methylene blue: synthesis procedure does matter. Nanomaterials, 9(2), 215.
  146. Zhang, W., Zhou, L., Shi, J., & Deng, H. (2018). Synthesis of Ag3PO4/G-C3N4 composite with enhanced photocatalytic performance for the photodegradation of diclofenac under visible light irradiation. Catalysts, 8(2), 45.
  147. Zheng, A. L. T., Sabidi, S., Ohno, T., Maeda, T., & Andou, Y. (2022). Cu2O/TiO2 decorated on cellulose nanofiber/reduced graphene hydrogel for enhanced photocatalytic activity and its antibacterial applications. Chemosphere, 286, 131731.
  148. Zhong, Q., Lan, H., Zhang, M., Zhu, H., & Bu, M. (2020). Preparation of heterostructure g-C3N4/ZnO nanorods for high photocatalytic activity on different pollutants (MB, RhB, Cr (VI) and eosin). Ceramics International, 46(8), 12192-12199.
  149. Zhu, C., Xian, Q., Yao, H., Chen, C., Zou, W., Duan, X., Jiang, Z., & Wong, P. K. (2022a). All-solid-state Z-scheme heterostructures of 1T/2H-MoS2 nanosheets coupled V-doped hierarchical TiO2 spheres for enhanced photocatalytic activity. Materials Today Energy, 23, 100901.
  150. Zhu, C., Yao, H., Le, S., Yin, Y., Chen, C., Xu, H., Wang, S., & Duan, X. (2022b). S-scheme photocatalysis induced by ultrathin TiO2 (B) nanosheets-anchored hierarchical In2S3 spheres for boosted photocatalytic activity. Composites Part B: Engineering, 242, 110082.
  151. Zhu, L., Li, H., Liu, Z., Xia, P., Xie, Y., & Xiong, D. (2018). Synthesis of the 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity. The Journal of Physical Chemistry C, 122(17), 9531-9539.
  152. Zhu, Q., Shen, X., Wang, L., Zhu, L., Wang, L., & Liao, G. (2018). Polyvinylpyrrolidone-assisted growth and optical properties of ZnO hexagonal bilayer disk-like microstructures. Chinese Chemical Letters, 29(8), 1310-1312.
  153. Zhu, Y., Wang, L., Xu, W., Xu, Z., Yuan, J., & Zhang, G. (2022). ZnO/Cu2O/g-C3N4 heterojunctions with enhanced photocatalytic activity for removal of hazardous antibiotics. Heliyon, e12644.

How to Cite

Rana, P., Dhull, P., Sudhaik, A., Chawla, A., Nguyen, V.-H., Kaya, S., … Raizada, P. (2023). Recent updates on g-C3N4/ZnO-based binary and ternary heterojunction photocatalysts toward environmental remediation and energy conversion. Nanofabrication, 8.





Article Details

Most Read This Month


Copyright (c) 2023 Parul Rana, Priya Dhull, Anita Sudhaik, Akshay Chawla, Van-Huy Nguyen, Savaş Kaya, Tansir Ahamad, Pardeep Singh, Chaudhery Mustansar Hussain, Pankaj Raizada

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.