Recent Updates on Metal-Polymer Nanocomposites in 3D Bioprinting for Tissue Engineering Applications
Abstract
Rapid tooling using additive manufacturing, or 3D printing, is an emerging manufacturing technology that has the potential to revolutionize the production of complex parts using only a computer and a design program. Lightweight structures with excellent dimensional precision and lower cost for customizable geometries are possible with these printed parts. In recent years, inherent constraints of polymers, metals, and ceramics have pushed researchers toward superior alternative composite materials to boost mechanical and other critical features; current 3D printing research follows this route from neat to composite materials. The characteristics, performance, and future uses of composite materials produced using additive manufacturing methods are discussed in this review. In addition, to discuss the state of the art in additive manufacturing, this article also fabricated many technologies, including robotics, machine learning, organ-on-a-chip, and 4D bioprinting.
References
- Abdal-hay, A., Raveendran, N. T., Fournier, B., & Ivanovski, S. (2020). Fabrication of biocompatible and bioabsorbable polycaprolactone/ magnesium hydroxide 3D printed scaffolds: Degradation and in vitro osteoblasts interactions. Composites Part B: Engineering, 197, 108158. https://doi.org/10.1016/j.compositesb.2020.108158
- Adesina, O. T., Sadiku, E. R., Jamiru, T., Adesina, O. S., Ogunbiyi, O. F., Obadele, B. A., & Salifu, S. (2020). Polylactic acid/graphene nanocomposite consolidated by SPS technique. Journal of Materials Research and Technology, 9(5), 11801–11812. https://doi.org/10.1016/j.jmrt.2020.08.064
- Afghah, F., Ullah, M., Seyyed Monfared Zanjani, J., Akkuş Süt, P., Sen, O., Emanet, M., Saner Okan, B., Culha, M., Menceloglu, Y., Yildiz, M., & Koc, B. (2020). 3D printing of silver-doped polycaprolactone-poly propylene succinate composite scaffolds for skin tissue engineering. Biomedical Materials. https://doi.org/10.1088/1748-605X/ab7417
- Ahmed, M. K., Menazea, A. A., & Abdelghany, A. M. (2020). Blend biopolymeric nanofibrous scaffolds of cellulose acetate/ε-polycaprolactone containing metallic nanoparticles prepared by laser ablation for wound disinfection applications. International Journal of Biological Macromolecules, 155, 636–644. https://doi.org/10.1016/j.ijbiomac.2020.03.257
- An, J., Chua, C. K., & Mironov, V. (2021). Application of Machine Learning in 3D Bioprinting: Focus on Development of Big Data and Digital Twin. International Journal of Bioprinting, 7(1), 342. https://doi.org/10.18063/ijb.v7i1.342
- Andorko, J. I., & Jewell, C. M. (2017). Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine. Bioengineering & Translational Medicine, 2(2), 139–155. https://doi.org/10.1002/btm2.10063
- Aoyagi, K., Wang, H., Sudo, H., & Chiba, A. (2019). Simple method to construct process maps for additive manufacturing using a support vector machine. Additive Manufacturing, 27, 353–362. https://doi.org/10.1016/j.addma.2019.03.013
- Ashammakhi, N., Ahadian, S., Zengjie, F., Suthiwanich, K., Lorestani, F., Orive, G., Ostrovidov, S., & Khademhosseini, A. (2018). Advances and Future Perspectives in 4D Bioprinting. Biotechnology Journal, 13(12), 1800148. https://doi.org/10.1002/biot.201800148
- Augustine, A., Augustine, R., Hasan, A., Raghuveeran, V., Rouxel, D., Kalarikkal, N., & Thomas, S. (2019). Development of titanium dioxide nanowire incorporated poly(vinylidene fluoride–trifluoroethylene) scaffolds for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine, 30(8), 96. https://doi.org/10.1007/s10856-019-6300-4
- Basara, G., Saeidi-Javash, M., Ren, X., Bahcecioglu, G., Wyatt, B. C., Anasori, B., Zhang, Y., & Zorlutuna, P. (2020). Electrically conductive 3D printed Ti3C2T MXene-PEG composite constructs for cardiac tissue engineering. Acta Biomaterialia, S1742706120307479. https://doi.org/10.1016/j.actbio.2020.12.033
- Baumann, F. W., Sekulla, A., Hassler, M., Himpel, B., & Pfeil, M. (n.d.). Trends of machine learning in additive manufacturing. 27.
- Bayraktar, I., Doganay, D., Coskun, S., Kaynak, C., Akca, G., & Unalan, H. E. (2019). 3D printed antibacterial silver nanowire/polylactide nanocomposites. Composites Part B: Engineering, 172, 671–678. https://doi.org/10.1016/j.compositesb.2019.05.059
- Beaurivage, C., Kanapeckaite, A., Loomans, C., Erdmann, K. S., Stallen, J., & Janssen, R. A. J. (2020). Development of a human primary gut-on-a-chip to model inflammatory processes. Scientific Reports, 10(1), 21475. https://doi.org/10.1038/s41598-020-78359-2
- Bhatia, S. N., & Ingber, D. E. (2014). Microfluidic organs-on-chips. Nature Biotechnology, 32(8), 760–772. https://doi.org/10.1038/nbt.2989
- Caggiano, A., Zhang, J., Alfieri, V., Caiazzo, F., Gao, R., & Teti, R. (2019). Machine learning-based image processing for on-line defect recognition in additive manufacturing. CIRP Annals, 68(1), 451–454. https://doi.org/10.1016/j.cirp.2019.03.021
- Cho, Y. S., Kim, H.-K., Ghim, M.-S., Hong, M. W., Kim, Y. Y., & Cho, Y.-S. (2020). Evaluation of the Antibacterial Activity and Cell Response for 3D-Printed Polycaprolactone/Nanohydroxyapatite Scaffold with Zinc Oxide Coating. Polymers, 12(10), 2193. https://doi.org/10.3390/polym12102193
- Comber, E. M., Palchesko, R. N., Ng, W. H., Ren, X., & Cook, K. E. (2019). De novo lung biofabrication: Clinical need, construction methods, and design strategy. Translational Research, 211, 1–18. https://doi.org/10.1016/j.trsl.2019.04.008
- Cristache, C. M., Totu, E. E., Iorgulescu, G., Pantazi, A., Dorobantu, D., Nechifor, A. C., Isildak, I., Burlibasa, M., Nechifor, G., & Enachescu, M. (2020). Eighteen Months Follow-Up with Patient-Centered Outcomes Assessment of Complete Dentures Manufactured Using a Hybrid Nanocomposite and Additive CAD/CAM Protocol. Journal of Clinical Medicine, 9(2), 324. https://doi.org/10.3390/jcm9020324
- de Carvalho, J. G., Zanini, N. C., Claro, A. M., do Amaral, N. C., Barud, H. S., & Mulinari, D. R. (2021). Composite filaments OF PHBV reinforced with ZrO2·nH2O particles for 3D printing. Polymer Bulletin. https://doi.org/10.1007/s00289-021-03610-3
- Dolcimascolo, A., Calabrese, G., Conoci, S., & Parenti, R. (2019). Innovative Biomaterials for Tissue Engineering. In M. Barbeck, O. Jung, R. Smeets, & T. Koržinskas (Eds.), Biomaterial-supported Tissue Reconstruction or Regeneration. IntechOpen. https://doi.org/10.5772/intechopen.83839
- e Silva, E. P., Huang, B., Helaehil, J. V., Nalesso, P. R. L., Bagne, L., de Oliveira, M. A., Albiazetti, G. C. C., Aldalbahi, A., El-Newehy, M., Santamaria-Jr, M., Mendonça, F. A. S., Bártolo, P., & Caetano, G. F. (2021). In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering. Bio-Design and Manufacturing, 4(2), 190–202. https://doi.org/10.1007/s42242-020-00116-1
- El-Bana, M. S., Mohammed, Gh., El Sayed, A. M., & El-Gamal, S. (2018). Preparation and characterization of PbO/carboxymethyl cellulose/polyvinylpyrrolidone nanocomposite films. Polymer Composites, 39(10), 3712–3725. https://doi.org/10.1002/pc.24402
- El-Lateef, H. M. A., Albokheet, W. A., & Gouda, M. (2020). Carboxymethyl cellulose/metal (Fe, Cu and Ni) nanocomposites as non-precious inhibitors of C-steel corrosion in HCl solutions: Synthesis, characterization, electrochemical and surface morphology studies. Cellulose, 27(14), 8039–8057. https://doi.org/10.1007/s10570-020-03292-6
- Eslami, H., Azimi Lisar, H., Jafarzadeh Kashi, T. S., Tahriri, M., Ansari, M., Rafiei, T., Bastami, F., Shahin-Shamsabadi, A., Mashhadi Abbas, F., & Tayebi, L. (2018). Poly(lactic-co-glycolic acid)(PLGA)/TiO 2 nanotube bioactive composite as a novel scaffold for bone tissue engineering: In vitro and in vivo studies. Biologicals, 53, 51–62. https://doi.org/10.1016/j.biologicals.2018.02.004
- Faramarzi, N., Yazdi, I. K., Nabavinia, M., Gemma, A., Fanelli, A., Caizzone, A., Ptaszek, L. M., Sinha, I., Khademhosseini, A., Ruskin, J. N., & Tamayol, A. (2018). Patient-Specific Bioinks for 3D Bioprinting of Tissue Engineering Scaffolds. Advanced Healthcare Materials, 7(11), 1701347. https://doi.org/10.1002/adhm.201701347
- Francis, J., & Bian, L. (2019). Deep Learning for Distortion Prediction in Laser-Based Additive Manufacturing using Big Data. Manufacturing Letters, 20, 10–14. https://doi.org/10.1016/j.mfglet.2019.02.001
- Galie, P. A., Nguyen, D.-H. T., Choi, C. K., Cohen, D. M., Janmey, P. A., & Chen, C. S. (2014). Fluid shear stress threshold regulates angiogenic sprouting. Proceedings of the National Academy of Sciences, 111(22), 7968–7973. https://doi.org/10.1073/pnas.1310842111
- Gao, G., Kim, B. S., Jang, J., & Cho, D.-W. (2019). Recent Strategies in Extrusion-Based Three-Dimensional Cell Printing toward Organ Biofabrication. ACS Biomaterials Science & Engineering, 5(3), 1150–1169. https://doi.org/10.1021/acsbiomaterials.8b00691
- Goodarzi, H., Hashemi-Najafabadi, S., Baheiraei, N., & Bagheri, F. (2019). Preparation and Characterization of Nanocomposite Scaffolds (Collagen/β-TCP/SrO) for Bone Tissue Engineering. Tissue Engineering and Regenerative Medicine, 16(3), 237–251. https://doi.org/10.1007/s13770-019-00184-0
- Grierson, D., Rennie, A. E. W., & Quayle, S. D. (2021). Machine Learning for Additive Manufacturing. Encyclopedia, 1(3), 576–588. https://doi.org/10.3390/encyclopedia1030048
- Gu, Z., Fu, J., Lin, H., & He, Y. (2019). Development of 3D bioprinting: From printing methods to biomedical applications. Asian Journal of Pharmaceutical Sciences, S1818087619311869. https://doi.org/10.1016/j.ajps.2019.11.003
- Guan, X.-N., Xu, X.-N., Kuniyoshi, R., Zhou, H.-H., & Zhu, Y.-F. (2018). Electromagnetic and mechanical properties of carbonyl iron powders-PLA composites fabricated by fused deposition modeling. Materials Research Express, 5(11), 115303. https://doi.org/10.1088/2053-1591/aadce4
- Harikrishnan, P., & Sivasamy, A. (2020). Preparation, characterization of Electrospun Polycaprolactone-nano Zinc oxide composite scaffolds for Osteogenic applications. Nano-Structures & Nano-Objects, 23, 100518. https://doi.org/10.1016/j.nanoso.2020.100518
- Haring, A. P., & Johnson, B. N. (2020). Brain-on-a-chip systems for modeling disease pathogenesis. In Organ-on-a-chip (pp. 215–232). Elsevier. https://doi.org/10.1016/B978-0-12-817202-5.00006-1
- Hassan, S., Sebastian, S., Maharjan, S., Lesha, A., Carpenter, A., Liu, X., Xie, X., Livermore, C., Zhang, Y. S., & Zarrinpar, A. (2020). Liver‐on‐a‐Chip Models of Fatty Liver Disease. Hepatology, 71(2), 733–740. https://doi.org/10.1002/hep.31106
- Homan, K. A., Kolesky, D. B., Skylar-Scott, M. A., Herrmann, J., Obuobi, H., Moisan, A., & Lewis, J. A. (2016). Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips. Scientific Reports, 6(1), 34845. https://doi.org/10.1038/srep34845
- Humayun, A., Luo, Y., Elumalai, A., & Mills, D. K. (2020). 3D printed antimicrobial PLA constructs functionalised with zinc- coated halloysite nanotubes-Ag-chitosan oligosaccharide lactate. Materials Technology, 1–8. https://doi.org/10.1080/10667857.2020.1806188
- Javanbakht, S., Pooresmaeil, M., Hashemi, H., & Namazi, H. (2018). Carboxymethylcellulose capsulated Cu-based metal-organic framework-drug nanohybrid as a pH-sensitive nanocomposite for ibuprofen oral delivery. International Journal of Biological Macromolecules, 119, 588–596. https://doi.org/10.1016/j.ijbiomac.2018.07.181
- Javanbakht, S., Pooresmaeil, M., & Namazi, H. (2019). Green one-pot synthesis of carboxymethylcellulose/Zn-based metal-organic framework/graphene oxide bio-nanocomposite as a nanocarrier for drug delivery system. Carbohydrate Polymers, 208, 294–301. https://doi.org/10.1016/j.carbpol.2018.12.066
- Johnson, B. N., Lancaster, K. Z., Hogue, I. B., Meng, F., Kong, Y. L., Enquist, L. W., & McAlpine, M. C. (2016). 3D printed nervous system on a chip. Lab on a Chip, 16(8), 1393–1400. https://doi.org/10.1039/C5LC01270H
- Joseph, B., Ninan, N., Visalakshan, R. M., Denoual, C., Bright, R., Kalarikkal, N., Grohens, Y., Vasilev, K., & Thomas, S. (2021). Insights into the biomechanical properties of plasma treated 3D printed PCL scaffolds decorated with gold nanoparticles. Composites Science and Technology, 202, 108544. https://doi.org/10.1016/j.compscitech.2020.108544
- Karbasian, M., Eftekhari, S. A., Karimzadeh Kolamroudi, M., Kamyab Moghadas, B., Nasri, P., Jasemi, A., Telloo, M., Saber-Samandari, S., & Khandan, A. (2021). Therapy with new generation of biodegradable and bioconjugate 3D printed artificial gastrointestinal lumen. Iranian Journal of Basic Medical Sciences, 24(3). https://doi.org/10.22038/ijbms.2021.47925.11013
- Khanzadeh, M., Rao, P., Jafari-Marandi, R., Smith, B. K., Tschopp, M. A., & Bian, L. (2018). Quantifying Geometric Accuracy With Unsupervised Machine Learning: Using Self-Organizing Map on Fused Filament Fabrication Additive Manufacturing Parts. Journal of Manufacturing Science and Engineering, 140(3), 031011. https://doi.org/10.1115/1.4038598
- Kim, H., Fernando, T., Li, M., Lin, Y., & Tseng, T.-L. B. (2018). Fabrication and characterization of 3D printed BaTiO 3 /PVDF nanocomposites. Journal of Composite Materials, 52(2), 197–206. https://doi.org/10.1177/0021998317704709
- Kim, H., Johnson, J., Chavez, L. A., Garcia Rosales, C. A., Tseng, T.-L. B., & Lin, Y. (2018). Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing. Ceramics International, 44(8), 9037–9044. https://doi.org/10.1016/j.ceramint.2018.02.107
- Kumar, R., Singh, R., Singh, M., & Kumar, P. (2020). On ZnO nano particle reinforced PVDF composite materials for 3D printing of biomedical sensors. Journal of Manufacturing Processes, 60, 268–282. https://doi.org/10.1016/j.jmapro.2020.10.027
- Lee, D., Heo, D. N., Lee, S. J., Heo, M., Kim, J., Choi, S., Park, H.-K., Park, Y. G., Lim, H.-N., & Kwon, I. K. (2018). Poly(lactide-co-glycolide) nanofibrous scaffolds chemically coated with gold-nanoparticles as osteoinductive agents for osteogenesis. Applied Surface Science, 432, 300–307. https://doi.org/10.1016/j.apsusc.2017.05.237
- Lee, D., & Wu, G.-Y. (2020). Parameters Affecting the Mechanical Properties of Three-Dimensional (3D) Printed Carbon Fiber-Reinforced Polylactide Composites. Polymers, 12(11), 2456. https://doi.org/10.3390/polym12112456
- Lee, S. H., & Jun, B.-H. (2019). Advances in dynamic microphysiological organ-on-a-chip: Design principle and its biomedical application. Journal of Industrial and Engineering Chemistry, 71, 65–77. https://doi.org/10.1016/j.jiec.2018.11.041
- Li, J., Chen, M., Fan, X., & Zhou, H. (2016). Recent advances in bioprinting techniques: Approaches, applications and future prospects. Journal of Translational Medicine, 14(1), 271. https://doi.org/10.1186/s12967-016-1028-0
- Li, L., Shi, J., Ma, K., Jin, J., Wang, P., Liang, H., Cao, Y., Wang, X., & Jiang, Q. (2021). Robotic in situ 3D bio-printing technology for repairing large segmental bone defects. Journal of Advanced Research, 30, 75–84. https://doi.org/10.1016/j.jare.2020.11.011
- Li, Z., Zhang, Z., Shi, J., & Wu, D. (2019). Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robotics and Computer-Integrated Manufacturing, 57, 488–495. https://doi.org/10.1016/j.rcim.2019.01.004
- Lipskas, J., Deep, K., & Yao, W. (2019). Robotic-Assisted 3D Bio-printing for Repairing Bone and Cartilage Defects through a Minimally Invasive Approach. Scientific Reports, 9(1), 3746. https://doi.org/10.1038/s41598-019-38972-2
- Liu, X., Carter, S. D., Renes, M. J., Kim, J., Rojas‐Canales, D. M., Penko, D., Angus, C., Beirne, S., Drogemuller, C. J., Yue, Z., Coates, P. T., & Wallace, G. G. (2019). Development of a Coaxial 3D Printing Platform for Biofabrication of Implantable Islet‐Containing Constructs. Advanced Healthcare Materials, 8(7), 1801181. https://doi.org/10.1002/adhm.201801181
- Ma, K., Zhao, T., Yang, L., Wang, P., Jin, J., Teng, H., Xia, D., Zhu, L., Li, L., Jiang, Q., & Wang, X. (2020). Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: An in vivo study. Journal of Advanced Research, 23, 123–132. https://doi.org/10.1016/j.jare.2020.01.010
- Menon, A., Póczos, B., Feinberg, A. W., & Washburn, N. R. (2019). Optimization of Silicone 3D Printing with Hierarchical Machine Learning. 3D Printing and Additive Manufacturing, 6(4), 181–189. https://doi.org/10.1089/3dp.2018.0088
- Mohammadi Nasr, S., Rabiee, N., Hajebi, S., Ahmadi, S., Fatahi, Y., Hosseini, M., Bagherzadeh, M., Ghadiri, A. M., Rabiee, M., Jajarmi, V., & Webster, T. J. (2020). Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine. International Journal of Nanomedicine, Volume 15, 4205–4224. https://doi.org/10.2147/IJN.S245936
- Moroni, L., Burdick, J. A., Highley, C., Lee, S. J., Morimoto, Y., Takeuchi, S., & Yoo, J. J. (2018a). Biofabrication strategies for 3D in vitro models and regenerative medicine. Nature Reviews Materials, 3(5), 21–37. https://doi.org/10.1038/s41578-018-0006-y
- Moroni, L., Burdick, J. A., Highley, C., Lee, S. J., Morimoto, Y., Takeuchi, S., & Yoo, J. J. (2018b). Biofabrication strategies for 3D in vitro models and regenerative medicine. Nature Reviews Materials, 3(5), 21–37. https://doi.org/10.1038/s41578-018-0006-y
- Muthulakshmi, L., Rajini, N., Varada Rajalu, A., Siengchin, S., & Kathiresan, T. (2017). Synthesis and characterization of cellulose/silver nanocomposites from bioflocculant reducing agent. International Journal of Biological Macromolecules, 103, 1113–1120. https://doi.org/10.1016/j.ijbiomac.2017.05.068
- Papaioannou, T. G., Manolesou, D., Dimakakos, E., Tsoucalas, G., Vavuranakis, M., & Tousoulis, D. (2019). 3D Bioprinting Methods and Techniques: Applications on Artificial Blood Vessel Fabrication. Acta Cardiol Sin, 6.
- Parak, A., Pradeep, P., du Toit, L. C., Kumar, P., Choonara, Y. E., & Pillay, V. (2019). Functionalizing bioinks for 3D bioprinting applications. Drug Discovery Today, 24(1), 198–205. https://doi.org/10.1016/j.drudis.2018.09.012
- Pillai, M. M., Kumar, G. S., Houshyar, S., Padhye, R., & Bhattacharyya, A. (2020). Effect of nanocomposite coating and biomolecule functionalization on silk fibroin based conducting 3D braided scaffolds for peripheral nerve tissue engineering. Nanomedicine: Nanotechnology, Biology and Medicine, 24, 102131. https://doi.org/10.1016/j.nano.2019.102131
- Prasad, A., & Kandasubramanian, B. (2019). Fused deposition processing polycaprolactone of composites for biomedical applications. Polymer-Plastics Technology and Materials, 58(13), 1365–1398. https://doi.org/10.1080/25740881.2018.1563117
- Prashantha, K., & Roger, F. (2017). Multifunctional properties of 3D printed poly(lactic acid)/graphene nanocomposites by fused deposition modeling. Journal of Macromolecular Science, Part A, 54(1), 24–29. https://doi.org/10.1080/10601325.2017.1250311
- Qi, F., Chen, N., & Wang, Q. (2018). Dielectric and piezoelectric properties in selective laser sintered polyamide11/BaTiO 3 /CNT ternary nanocomposites. Materials & Design, 143, 72–80. https://doi.org/10.1016/j.matdes.2018.01.050
- Qian, G., Zhang, L., Wang, G., Zhao, Z., Peng, S., & Shuai, C. (2021). 3D Printed Zn-doped Mesoporous Silica-incorporated Poly-L-lactic Acid Scaffolds for Bone Repair. International Journal of Bioprinting, 7(2). https://doi.org/10.18063/ijb.v7i2.346
- Qian, Y., Yao, Z., Lin, H., & Zhou, J. (2018). Mechanical and microwave absorption properties of 3D-printed Li0.44Zn0.2Fe2.36O4/polylactic acid composites using fused deposition modeling. Journal of Materials Science: Materials in Electronics, 29(22), 19296–19307. https://doi.org/10.1007/s10854-018-0056-3
- Rasoulianboroujeni, M., Fahimipour, F., Shah, P., Khoshroo, K., Tahriri, M., Eslami, H., Yadegari, A., Dashtimoghadam, E., & Tayebi, L. (2019). Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications. Materials Science and Engineering: C, 96, 105–113. https://doi.org/10.1016/j.msec.2018.10.077
- Rigotti, D., Fambri, L., & Pegoretti, A. (2018). Polyvinyl alcohol reinforced with carbon nanotubes for fused deposition modeling. Journal of Reinforced Plastics and Composites, 37(10), 716–727. https://doi.org/10.1177/0731684418761224
- Rivière, P., Nypelö, T. E., Obersriebnig, M., Bock, H., Müller, M., Mundigler, N., & Wimmer, R. (2017). Unmodified multi-wall carbon nanotubes in polylactic acid for electrically conductive injection-moulded composites. Journal of Thermoplastic Composite Materials, 30(12), 1615–1638. https://doi.org/10.1177/0892705716649651
- Ronca, A., Rollo, G., Cerruti, P., Fei, G., Gan, X., Buonocore, G., Lavorgna, M., Xia, H., Silvestre, C., & Ambrosio, L. (2019). Selective Laser Sintering Fabricated Thermoplastic Polyurethane/Graphene Cellular Structures with Tailorable Properties and High Strain Sensitivity. Applied Sciences, 9(5), 864. https://doi.org/10.3390/app9050864
- Samie Tootooni, M., Dsouza, A., Donovan, R., Rao, P. K., Kong, Z. (James), & Borgesen, P. (2017). Classifying the Dimensional Variation in Additive Manufactured Parts From Laser-Scanned Three-Dimensional Point Cloud Data Using Machine Learning Approaches. Journal of Manufacturing Science and Engineering, 139(9), 091005. https://doi.org/10.1115/1.4036641
- Saxena, V., Hasan, A., & Pandey, L. M. (2021). Antibacterial nano-biocomposite scaffolds of Chitosan, Carboxymethyl Cellulose and Zn & Fe integrated Hydroxyapatite (Chitosan-CMC-FZO@HAp) for bone tissue engineering. Cellulose, 28(14), 9207–9226. https://doi.org/10.1007/s10570-021-04072-6
- Seyedsalehi, A., Daneshmandi, L., Barajaa, M., Riordan, J., & Laurencin, C. T. (2020). Fabrication and characterization of mechanically competent 3D printed polycaprolactone-reduced graphene oxide scaffolds. Scientific Reports, 10(1), 22210. https://doi.org/10.1038/s41598-020-78977-w
- Shrestha, J., Ghadiri, M., Shanmugavel, M., Razavi Bazaz, S., Vasilescu, S., Ding, L., & Ebrahimi Warkiani, M. (2019). A rapidly prototyped lung-on-a-chip model using 3D-printed molds. Organs-on-a-Chip, 1, 100001. https://doi.org/10.1016/j.ooc.2020.100001
- Singh, M., Singh, R., Kumar, R., Kumar, P., & Preet, P. (2020). On 3D-printed ZnO-reinforced PLA matrix composite: Tensile, thermal, morphological and shape memory characteristics. Journal of Thermoplastic Composite Materials, 089270572093596. https://doi.org/10.1177/0892705720935961
- Subashini, K., Prakash, S., & Sujatha, V. (2020). Polymer nanocomposite prepared using copper oxide nanoparticles derived from Sterculia foetida leaf extract with biological applications. Materials Research Express, 7(11), 115308. https://doi.org/10.1088/2053-1591/abc979
- Takahashi, C., Matsubara, N., Akachi, Y., Ogawa, N., Kalita, G., Asaka, T., Tanemura, M., Kawashima, Y., & Yamamoto, H. (2017). Visualization of silver-decorated poly (DL-lactide- co -glycolide) nanoparticles and their efficacy against Staphylococcus epidermidis. Materials Science and Engineering: C, 72, 143–149. https://doi.org/10.1016/j.msec.2016.11.051
- Tappa, K., & Jammalamadaka, U. (2018a). Novel Biomaterials Used in Medical 3D Printing Techniques. Journal of Functional Biomaterials, 9(1), 17. https://doi.org/10.3390/jfb9010017
- Tappa, K., & Jammalamadaka, U. (2018b). Novel Biomaterials Used in Medical 3D Printing Techniques. Journal of Functional Biomaterials, 9(1), 17. https://doi.org/10.3390/jfb9010017
- Teo, A. J. T., Mishra, A., Park, I., Kim, Y.-J., Park, W.-T., & Yoon, Y.-J. (2016). Polymeric Biomaterials for Medical Implants and Devices. ACS Biomaterials Science & Engineering, 2(4), 454–472. https://doi.org/10.1021/acsbiomaterials.5b00429
- Totu, E. E., Nechifor, A. C., Nechifor, G., Aboul-Enein, H. Y., & Cristache, C. M. (2017). Poly(methyl methacrylate) with TiO 2 nanoparticles inclusion for stereolitographic complete denture manufacturing − the fututre in dental care for elderly edentulous patients? Journal of Dentistry, 59, 68–77. https://doi.org/10.1016/j.jdent.2017.02.012
- Vidakis, N., Petousis, M., Velidakis, E., Liebscher, M., & Tzounis, L. (2020). Three-Dimensional Printed Antimicrobial Objects of Polylactic Acid (PLA)-Silver Nanoparticle Nanocomposite Filaments Produced by an In-Situ Reduction Reactive Melt Mixing Process. Biomimetics, 5(3), 42. https://doi.org/10.3390/biomimetics5030042
- Vijayavenkataraman, S., Thaharah, S., Zhang, S., Lu, W. F., & Fuh, J. Y. H. (2019). 3D‐Printed PCL/rGO Conductive Scaffolds for Peripheral Nerve Injury Repair. Artificial Organs, 43(5), 515–523. https://doi.org/10.1111/aor.13360
- Wang, L., Liu, W., Wang, Y., Wang, J., Tu, Q., Liu, R., & Wang, J. (2013). Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell–drug interactions in a dynamic hypoxia microenvironment. Lab Chip, 13(4), 695–705. https://doi.org/10.1039/C2LC40661F
- Wang, X., Molino, B. Z., Pitkänen, S., Ojansivu, M., Xu, C., Hannula, M., Hyttinen, J., Miettinen, S., Hupa, L., & Wallace, G. (2019). 3D Scaffolds of Polycaprolactone/Copper-Doped Bioactive Glass: Architecture Engineering with Additive Manufacturing and Cellular Assessments in a Coculture of Bone Marrow Stem Cells and Endothelial Cells. ACS Biomaterials Science & Engineering, 5(9), 4496–4510. https://doi.org/10.1021/acsbiomaterials.9b00105
- Wang, Y., Lei, M., Wei, Q., Wang, Y., Zhang, J., Guo, Y., & Saroia, J. (2020). 3D printing biocompatible l-Arg/GNPs/PLA nanocomposites with enhanced mechanical property and thermal stability. Journal of Materials Science, 55(12), 5064–5078. https://doi.org/10.1007/s10853-020-04353-8
- Wasti, S., & Adhikari, S. (2020). Use of Biomaterials for 3D Printing by Fused Deposition Modeling Technique: A Review. Frontiers in Chemistry, 8, 315. https://doi.org/10.3389/fchem.2020.00315
- Wnorowski, A., Yang, H., & Wu, J. C. (2019). Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Advanced Drug Delivery Reviews, 140, 3–11. https://doi.org/10.1016/j.addr.2018.06.001
- Xie, Z., Gao, M., Lobo, A. O., & Webster, T. J. (2020). 3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid. Polymers, 12(8), 1717. https://doi.org/10.3390/polym12081717
- Yang, L., Chen, Y., Wang, M., Shi, S., & Jing, J. (2020). Fused Deposition Modeling 3D Printing of Novel Poly(vinyl alcohol)/Graphene Nanocomposite with Enhanced Mechanical and Electromagnetic Interference Shielding Properties. Industrial & Engineering Chemistry Research, 59(16), 8066–8077. https://doi.org/10.1021/acs.iecr.0c00074
- Yuan, S., Zheng, Y., Chua, C. K., Yan, Q., & Zhou, K. (2018). Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering. Composites Part A: Applied Science and Manufacturing, 105, 203–213. https://doi.org/10.1016/j.compositesa.2017.11.007
- Zhang, S., & Wang, H. (2019). Current Progress in 3D Bioprinting of Tissue Analogs. SLAS TECHNOLOGY: Translating Life Sciences Innovation, 24(1), 70–78. https://doi.org/10.1177/2472630318799971
- Zhu, K., Shin, S. R., van Kempen, T., Li, Y., Ponraj, V., Nasajpour, A., Mandla, S., Hu, N., Liu, X., Leijten, J., Lin, Y., Hussain, M. A., Zhang, Y. S., Tamayol, A., & Khademhosseini, A. (2017). Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs. Advanced Functional Materials, 27(12), 1605352. https://doi.org/10.1002/adfm.201605352
- Zou, F., Jiang, J., Lv, F., Xia, X., & Ma, X. (2020). Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair. Journal of Nanobiotechnology, 18(1), 39. https://doi.org/10.1186/s12951-020-00594-6
How to Cite
How to Cite
Search Panel
Pubmed
JDMFS Journal
Google Scholar
Pubmed
JDMFS Journal
Google Scholar
Pubmed
JDMFS Journal
Google Scholar
Pubmed
JDMFS Journal
Google Scholar
Pubmed
JDMFS Journal
Google Scholar
Pubmed
JDMFS Journal
Google Scholar
Pubmed
JDMFS Journal
Google Scholar
Pubmed
JDMFS Journal
Google Scholar
Pubmed
JDMFS Journal
Google Scholar
Pubmed
JDMFS Journal
Google Scholar
Pubmed
JDMFS Journal
Google Scholar
Pubmed
JDMFS Journal
Article Details
Most Read This Month
License
Copyright (c) 2023 Bableen Flora, Rohit Kumar, Ramisa Mahdieh, Kimiya Zarei, Shaghayegh Chehrazi, Simran Deep Kaur, Arushi Sharma, Priyanka Mohapatra, Akshita Sakshi, Anjuvan Singh, Kavindra Kumar Kesari, Piyush Kumar Gupta
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.