Skip to main content Skip to main navigation menu Skip to site footer

Green Approach to Beckmann Rearrangement of Cyclohexanone Oxime Using Nanostructured ZSM-5 Zeolite

  • L Selva Roselin
  • R. Savidha
  • Khadijah H. Alharbi
  • Ruey Chang Hsiao
  • Sankar Ganesh Ramaraj
  • Rosilda Selvin

Abstract

The catalytic liquid-phase Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam has been effectively achieved using ZSM-5 nanoparticles as catalysts. Comprehensive characterization of the catalysts was performed by utilizing techniques such as DLS, XRD, FT-IR, N2 adsorption–desorption isotherms and NMR analysis. A systematic investigation of key reaction parameters, including the concentration of cyclohexanone oxime, catalyst loading, reaction temperature, and catalyst reusability, was conducted to optimize the catalytic process. The results demonstrate that the ZSM-5 nanoparticles aged at 80°C for 24 h and calcined at 550°C for 5 h (denoted as ZSM-5(50)-24/c) exhibited superior catalytic performance, achieving the highest conversion of cyclohexanone oxime and exceptional selectivity for ε-caprolactam under optimized conditions. The optimum reaction conditions are 0.10 g of ZSM-5(50)-24/c catalyst, cyclohexanone oxime concentration of 100 mmol and the reaction temperature of 120°C. This catalytic system offers notable advantages, including environmental sustainability, straightforward separation, and efficient catalyst recovery and recyclability. These features make it a promising approach for industrial applications in ε-caprolactam production, aligning with the green chemistry principle.

Section

References

  1. 1. Aerts, A., Isacker, A. V., Huybrechts, W., Kremer, S. P. B., Kirschhock, C. E. A., Collignon, F., Houthoofd, K., Denayer, J. F. M., Baron, G. V., Marin, G. B., Jacobs, P.A., Martens, J. A., (2004). Decane hydroconversion on bifunctional Zeogrid and nano-zeolite assembled from aluminosilicate nanoslabs of MFI framework type. Appl. Catal. A: Gen. 257(1), 7–17. https://doi.org/10.1016/S0926-860X(03)00592-1
  2. 2. Ando, T., Brown, S. J., Clark, J. H., Cork, D. G., Hanafusa, T., Ichihara, J., Miller, J.M., Robertson, M. S., (1986). Alumina-supported fluoride reagents for organic synthesis: optimisation of reagent preparation and elucidation of the active species. Journal of the Chemical Society, Perkin Transactions 2, (8), 1133-1139. https://doi.org/10.1039/P29860001133
  3. 3. Anilkumar, M., Hoelderich, W. F., (2012). New non-zeolitic Nb-based catalysts for the gas-phase Beckmann rearrangement of cyclohexanone oxime to caprolactam. J. Catal. 293, 76–84. https://doi.org/10.1016/j.jcat.2012.06.007
  4. 4. Aucejo, A., Burguet, M. C., Corma, A., Fornes, V., (1986). Beckman rearrangement of cyclohexanone-oxime on HNaY zeolites: kinetic and spectroscopic studies. Applied Catalysis, 22(2), 187–200. https://doi.org/10.1016/S0166-9834(00)82628-7
  5. 5. Beaumont, R., Barthomeuf, D., (1972). X, Y, aluminum-deficient and ultrastable faujasite-type zeolites II. Acid strength and aluminum site reactivity. J. Catal. 27(1), 45–51. https://doi.org/10.1016/0021-9517(72)90151-0
  6. 6. Centi, G., Perathoner, S., (2011). Creating and mastering nano-objects to design advanced catalytic materials. Coordination Chemistry Reviews. 255(13-14), 1480–1498. https://doi.org/10.1016/j.ccr.2011.01.021
  7. 7. Chandrasekhar, S., Gopalaiah, K. (2003). Ketones to amides via a formal Beckmann rearrangement in “one pot”: a solvent-free reaction promoted by anhydrous oxalic acid. Possible analogy with the Schmidt reaction. Tetrahedron Lett. 44(40), 7437–7439. https://doi.org/10.1016/j.tetlet.2003.08.038
  8. 8. Chandrasekhar, S., Gopalaiah, K., (2002). Beckmann rearrangement of ketoximes on solid metaboric acid: a simple and effective procedure. Tetrahedron Lett. 43(13), 2455–2457. https://doi.org/10.1016/S0040-4039(02)00282-4
  9. 9. Chang, A., Yang, T. C., Chen, M. Y., Hsiao, H. M., & Yang, C. M. (2020). Hierarchical zeolites comprising orthogonally stacked bundles of zeolite nanosheets for catalytic and adsorption applications. Journal of Hazardous Materials, 400, 123241. 10.1016/j.jhazmat.2020.123241
  10. 10. Choi, M.; Cho, H.x S.; Srivastava, R.; Venkatesan, C.; Choi, D. H.; Ryoo, R., (2006). Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Mater 5, 718–723. https://doi.org/10.1038/nmat1705.
  11. 11. Chu, Y., Li, G., Huang, L., Yi, X., Xia, H., Zheng, A., Deng, F., (2017). External or internal surface of H-ZSM-5 zeolite, which is more effective for the Beckmann rearrangement reaction? Catal. Sci. Technol. 7(12), 2512–2523. https://doi.org/10.1039/C7CY00377C
  12. 12. Conesa, T.D., Mokaya, R., Yang, Z., Luque, R., Campelo, J.M., Romero, A.A., (2007). Novel mesoporous silicoaluminophosphates as highly active and selective materials in the Beckmann rearrangement of cyclohexanone and cyclododecanone oximes. J. Catal. 252(1), 1–10. https://doi.org/10.1016/j.jcat.2007.09.006
  13. 13. Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298–312. https://doi.org/10.1016/S0021-9517(02)00132-X
  14. 14. Corma, A., Garcia, H., Primo, J., Sastre, E., (1991). Beckmann rearrangement of cyclohexanone oxime on zeolites. Zeolites, 11(6), 593–597. https://doi.org/10.1016/S0144-2449(05)80010-7
  15. 15. Curtin, T., McMonagle, J. B., Hodnett, B. K., (1992). Influence of boria loading on the acidity of B2O3/Al2O3 catalysts for the conversion of cyclohexanone oxime to caprolactam. Appl. Catal. A: Gen., 93(1), 91–101. https://doi.org/10.1016/0926-860X(92)80296-O
  16. 16. Curtin, T., Mcmonagle, J. B., Ruwet, M., Hodnett, B. K., (1993). Deactivation and Regeneration of Alumina Catalysts for the Rearrangement of Cyclohexanone Oxime into Caprolactam. J. Catal., 142(1), 172–181. https://doi.org/10.1006/jcat.1993.1199
  17. 17. Dai, L.-X., Hayasaka, R., Iwaki, Y., Koyano, K. A., & Tatsumi, T., (1996). Vapour phase Beckmann rearrangement of cyclohexanone oxime catalysed by Hβ zeolite. Chem. Commun. 9, 1071-1072. https://doi.org/10.1039/CC9960001071
  18. 18. Dai, L.-X., Koyama, K., Miyamoto, M., Tatsumi, T., (1999). Highly selective vapor phase Beckmann rearrangement over H-USY zeolites. Appl. Catal. A: Gen. 189(2), 237–242. https://doi.org/10.1016/S0926-860X(99)00280-X
  19. 19. Davis, Jr., J. H., Fox, P. A., (2003). From curiosities to commodities: ionic liquids begin the transition. Chem. Commun. (11), 1209–1212. https://doi.org/10.1039/B212788A
  20. 20. De Moor, P.-P. E. A., Beelen, T. P. M., van Santen, R. A., (1999). In situ Observation of Nucleation and Crystal Growth in Zeolite Synthesis. A Small-Angle X-ray Scattering Investigation on Si-TPA-MFI. The Journal of Physical Chemistry B, 103(10), 1639–1650. https://doi.org/10.1021/jp982553q
  21. 21. Deng, Y.-Q., Yin, S.-F., Au, C.-T., (2012). Preparation of Nanosized Silicalite-1 and Its Application in Vapor-Phase Beckmann Rearrangement of Cyclohexanone Oxime. Ind. Eng. Chem. Res. 51(28), 9492–9499. https://doi.org/10.1021/ie3001277
  22. 22. Dupont, J., de Souza, R. F., Suarez, P. A. Z., (2002). Ionic Liquid (Molten Salt) Phase Organometallic Catalysis. Chem. Rev. 102(10), 3667–3692. https://doi.org/10.1021/cr010338r
  23. 23. Dusselier, M., Van Wouwe, P., Dewaele, A., Jacobs, P. A., Sels, B. F. (2015). Shape-selective zeolite catalysis for bioplastics production. Science, 349(6243), 78–80. DOI: 10.1126/science.aaa7169
  24. 24. Elings, J. A., Ait-Meddour, R., Clark, J. H., Macquarrie, D. J. (1998). Preparation of a silica-supported peroxycarboxylic acid and its use in the epoxidation of alkenes†. Chemical Communications, (24), 2707–2708. https://doi.org/10.1039/A807517D
  25. 25. Flowers, G. C., Lindley, S., Leffler, J. E., (1984). Variability of silica surfaces as reaction media. Tetrahedron Letters, 25(44), 4997–4998. https://doi.org/10.1016/S0040-4039(01)91100-1
  26. 26. Ge, C., Sun, X., Lian, D., Li, Z., & Wu, J., (2021). Controllable Synthesis and Structure-Performance Relationship of Silicalite-1 Nanosheets in Vapor Phase Beckmann Rearrangement of Cyclohexanone Oxime. Catal. Lett. 151, 1488–1498 https://doi.org/10.1007/s10562-020-03404-8
  27. 27. González-Camuñas, N., Cantín, Á., Dawson, D.M., Lozinska, M.M., Martínez-Triguero, J., Mattock, J., Cox, P.A., Ashbrook, S.E., Wright, P.A. and Rey, F., 2024. Synthesis of the large pore aluminophosphate STA-1 and its application as a catalyst for the Beckmann rearrangement of cyclohexanone oxime. Journal of Materials Chemistry A, 12(25), pp.15398-15411. https://doi.org/10.1039/D4TA01132E
  28. 28. Hölderich, W. F., Röseler, J., Heitmann, G., Liebens, A. T., (1997). The use of zeolites in the synthesis of fine and intermediate chemicals. Catalysis Today, 37(4), 353–366. https://doi.org/10.1016/S0920-5861(97)81094-2
  29. 29. Ichihashi, H., Ishida, M., Shiga, A., Kitamura, M., Suzuki, T., Suenobu, K., Sugita, K., (2003). The Catalysis of Vapor-Phase Beckmann Rearrangement for the Production of ε-Caprolactam. Catalysis Surveys from Asia, 7(4), 261–270. https://doi.org/10.1023/B:CATS.0000008165.80991.05
  30. 30. Ishida, M., Suzuki, T., Ichihashi, H., Shiga, A., (2003). Theoretical study on vapour phase Beckmann rearrangement of cyclohexanone oxime over a high silica MFI zeolite. Catalysis Today, 87(1-4), 187–194. https://doi.org/10.1016/j.cattod.2003.10.021
  31. 31. Jacobs, P. A., Derouane, E. G., Weitkamp, J. (1981). Evidence for X-ray-amorphous zeolites. Journal of the Chemical Society, Chemical Communications, (12), 591-593. https://doi.org/10.1039/C39810000591
  32. 32. Jacobs, P.A. (1977). Carboniogeiic Activity of Zeolites, Elsevier, Amsterdam.
  33. 33. Jang, J., Lee, H. S., Kim, J. W., Kim, S. Y., Kim, S. H., Hwang, I.,Kang, B.J., Kang, M. K. 2019. Facile and cost-effective strategy for fabrication of polyamide 6 wrapped multi-walled carbon nanotube via anionic melt polymerization of ε-caprolactam. Chem. Eng. J. , 373, 251–258. https://doi.org/10.1016/j.cej.2019.05.044
  34. 34. Katada, N., Tsubouchi, T., Niwa, M., Murakami, Y., (1995). Vapor-phase Beckmann rearrangement over silica monolayers prepared by chemical vapor deposition. Appl. Catal. A: Gen. 124(1), 1–7. https://doi.org/10.1016/0926-860X(94)00257-6
  35. 35. Kent J.E. Riegel’s Handbook of industrial Chemistry, 8th Ed., Van Nostrand, New York, (1983), p. 402
  36. 36. Khayyat, S. A., Selvin, R., Umar, A., (2017). Beckmann Rearrangement of Cyclohexanone Oxime Using Nanocrystalline Titanium Silicalite-1 (TS-1). J. Nanosci. Nanotechnol., 17(3), 2170–2176. https://doi.org/10.1166/jnn.2017.12724
  37. 37. Kiely-Collins, H. J., Sechi, I., Brennan, P. E., McLaughlin, M. G., (2018). Mild, calcium catalysed Beckmann rearrangements. Chem. Commun. 54(6), 654–657. https://doi.org/10.1039/C7CC09491D
  38. 38. Kirk–Othmer, Encyclopedia of Chemical Technology, vol. 19, fourth ed., Wiley, New York, 1992, 493.
  39. 39. Kragten, D. D., Fedeyko, J. M., Sawant, K. R., Rimer, J. D., Vlachos, D. G., Lobo, R. F., Tsapatsis, M., (2003). Structure of the Silica Phase Extracted from Silica/(TPA)OH Solutions Containing Nanoparticles. The Journal of Physical Chemistry B, 107(37), 10006–10016. https://doi.org/10.1021/jp035110h
  40. 40. Kremer, S. P. B., Kirschhock, C. E. A., Tielen, M., Collignon, F., Grobet, P. J., Jacobs, P. A., Martens, J. A., (2002). Silicalite-1 Zeogrid: A New Silica Molecular Sieve with Super- and Ultra-Micropores. Advanced Functional Materials, 12(4), 286. https://doi.org/10.1002/1616-3028(20020418)12:4<286::AID-ADFM286>3.0.CO;2-M
  41. 41. Kumar, R., Chowdhury, B. (2014). Comprehensive Study for Vapor Phase Beckmann Rearrangement Reaction over Zeolite Systems. Industrial & Engineering Chemistry Research, 53(43), 16587–16599. https://doi.org/10.1021/ie503170n
  42. 42. Leithall, R. M.; Shetti, V. N.; Maurelli, S.; Chiesa, M.; Gianotti, E.; Raja, R., (2013). Toward understanding the catalytic synergy in the design of bimetallic molecular sieves for selective aerobic oxidations. J. Am. Chem. Soc. 2013, 135, 2915-2918. https://doi.org/10.1021/ja3119064
  43. 43. Lezcano-González, I., Boronat, M., & Blasco, T. (2009). Investigation on the Beckmann rearrangement reaction catalyzed by porous solids: MAS NMR and theoretical calculations. Solid State Nucl. Magn. Reson. 35(2), 120–129. https://doi.org/10.1016/j.ssnmr.2009.02.001
  44. 44. Li, W.C., Lu, A.H., Palkovits, R., Schmidt, W., Spliethoff, B., and , F. (2005) Hierarchically structured monolithic silicalite-1 consisting of crystallized nanoparticles and its performance in the Beckmann rearrangement of cyclohexanone oxime. 127(36), 12595-600. DOI: 10.1021/ja052693v.
  45. 45. Linares, M., Vargas, C., García, A., Ochoa-Hernández, C., Čejka, J., García-Muñoz, R. A., Serrano, D. P., (2017). Effect of hierarchical porosity in Beta zeolites on the Beckmann rearrangement of oximes. Catalysis Science & Technology, 7(1), 181–190. https://doi.org/10.1039/C6CY01895E
  46. 46. Mao D, Lu G, Chen Q, Xie Z, Zhang Y., 2001. Catalytic Performance of B2O3/TiO2–ZrO2 for Vapor-Phase Beckmann Rearrangement of Cyclohexanone Oxime: The Effect of Boria Loading. Catalysis Lett. 77, 119–124 (2001). https://doi.org/10.1023/A:1012787028360.
  47. 47. Maronna, M. M., Kruissink, E. C., Tinge, J. T., Agar, D. W., & Hoelderich, W. F., (2016). Kinetic Study on Gas-Phase Beckmann Rearrangement of Cyclohexanone Oxime to ε-Caprolactam over a Silica-Supported Niobia Catalyst. Ind. Eng. Chem. Res. 55(5), 1202–1214. https://doi.org/10.1021/acs.iecr.5b04240
  48. 48. Marthala, V. R.R., Frey, J., Hunger, M., (2010). Accessibility and Interaction of Surface OH Groups in Microporous and Mesoporous Catalysts Applied for Vapor-Phase Beckmann Rearrangement of Oximes. Catalysis Lett. 135(1-2), 91–97. https://doi.org/10.1007/s10562-010-0274-7
  49. 49. Marthala, V.R.R., Jiang, Y., Huang, J., Wang, W., Gläser, R., Hunger, M. (2006). Beckmann Rearrangement of 15N-Cyclohexanone Oxime on Zeolites Silicalite-1, H-ZSM-5, and H-[B]ZSM-5 Studied by Solid-State NMR Spectroscopy. Am. Chem. Soc., 128(46), 14812–14813. https://doi.org/10.1021/ja066392c
  50. 50. Marthala, V.R.R., Rabl, S., Huang, J., Rezai, SAS., Thomas, B., Hunger, M., (2008). In situ solid-state NMR investigations of the vapor-phase Beckmann rearrangement of 15N-cyclohexanone oxime on MFI-type zeolites and mesoporous SBA-15 materials in the absence and presence of the additive 13C-methanol. J. Catal. 257(1), 134–141. https://doi.org/10.1016/j.jcat.2008.04.014
  51. 51. Marzianom N.C., Ronchin L., Tortato, C. Vavasori A., Badetti C., (2007). Catalyzed Beckmann rearrangement of cyclohexanoneoxime in heterogeneous liquid/solid system Part 1: Batch and continuous operation with supported acid catalysts, Journal of Molecular Catalysis A: Chemical 277, 221–232. https://doi.org/10.1016/j.molcata.2007.07.046
  52. 52. Narasaka, K., Kusama, H., Yamashita, Y., Sato, H., (1993). Beckmann Rearrangement Catalyzed by the Combined Use of Tetrabutylammonium Perrhenate(VII) and Trifluoromethanesulfonic Acid. Chemistry Lett. 22(3), 489–492. https://doi.org/10.1246/cl.1993.489
  53. 53. Nimisha N.P., Narendranath S.B., Sakthivel A., (2024). In situ preparation of a nickel-oxy-hydrxide decorated ITQ-2 composite: a hydrodeoxygenation catalyst. Chem. Commun., (60), 1480-1483. https://doi.org/10.1039/D3CC05427F.
  54. 54. Palkovits, R., Schmidt, W., Ilhan, Y., Erdem-Şenatalar, A., Schüth, F. (2009). Crosslinked TS-1 as stable catalyst for the Beckmann rearrangement of cyclohexanone oxime. Microporous and Mesoporous Materials, 117(1-2), 228–232. https://doi.org/10.1016/j.micromeso.2008.06.041
  55. 55. Park, H., Bang, J., Park, H., Kim, J., Kim, J.C., Park, J.Y. and Ryoo, R., 2023. Surface silanol sites in mesoporous MFI zeolites for catalytic Beckmann rearrangement. Catalysis Science & Technology, 13(11), pp.3436-3444. https://doi.org/10.1039/D3CY00543G
  56. 56. Polshettiwar, V., Varma, R. S., 2010. Green chemistry by nano-catalysis. Green Chemistry, 12(5), 743-754. https://doi.org/10.1039/B921171C
  57. 57. Poole, C. F., (2004). Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. Journal of Chromatography A, 1037(1-2), 49–82. https://doi.org/10.1016/j.chroma.2003.10.127
  58. 58. Potter, M. E., O’Malley, A. J., Chapman, S., Kezina, J., Newland, S. H., Silverwood, I. P., Mukhopadhyay, S., Carravetta, M.,Mezza, T.M., Parker, S.F., Catlow C.R.A., Raja, R., (2017). Understanding the Role of Molecular Diffusion and Catalytic Selectivity in Liquid-Phase Beckmann Rearrangement. ACS Catalysis, 7(4), 2926–2934. https://doi.org/10.1021/acscatal.6b03641
  59. 59. Potter, M. E; Cholerton, M. E.; Kezina, J.; Bounds, R.; Carravetta, M.; Manzoli, M.; Gianotti, E.; Lefenfeld, M.; Raja, R., (2014). Role of Isolated Acid Sites and Influence of Pore Diameter in the Low-Temperature Dehydration of Ethanol. ACS Catalysis, 4(11), 4161–4169. https://doi.org/10.1021/cs501092b
  60. 60. Raja, R., Potter, M. E., Newland, S. H., (2014). Predictive design of engineered multifunctional solid catalysts. Chem. Commun., 50(45), 5940–5957. https://doi.org/10.1039/C4CC00834K
  61. 61. Ravishankar, R., Kirschhock, C. E. A., Knops-Gerrits, P.-P., Feijen, E. J. P., Grobet, P. J., Vanoppen, P., De Schryver, F.C., Miehe, G., Fuess, H., Schoeman, B.J., Jacobs, P.A., Martens, J. A. (1999). Characterization of Nanosized Material Extracted from Clear Suspensions for MFI Zeolite Synthesis. The Journal of Physical Chemistry B, 103(24), 4960–4964. https://doi.org/10.1021/jp990296z
  62. 62. Regev, O., Cohen, Y., Kehat, E., Talmon, Y., (1994). Precursors of the zeolite ZSM-5 imaged by Cryo-TEM and analyzed by SAXS. Zeolites, 14(5), 314–319. https://doi.org/10.1016/0144-2449(94)90103-1
  63. 63. Ren, R.X., Zueva, L., Ou, W., (2001). Formation of caprolactum via catalytic Beckmann rearrangment using P2O5 in ionic liquids. Tetrahedron Lett. 42, 8441-8443. https://doi.org/10.1016/S0040-4039(01)01850-0
  64. 64. Röseler, J., Heitmann, G., Hölderich, W. F. (1996). Vapour-phase Beckmann rearrangement using B-MFI zeolites. Appl. Catal. A: Gen. 144(1-2), 319–333. https://doi.org/10.1016/0926-860X(96)00127-5
  65. 65. Sahu, P., and Sakthivel, A. (2021). Zeolite-β based molecular sieves: A potential catalyst for esterification of biomass derived model compound levulinic acid. Materials Science for Energy Technologies, 4, 307–316. doi:10.1016/j.mset.2021.08.007
  66. 66. Sato, S., Urabe, K., and Izumi, Y., (1986). Vapor-phase Beckmann rearrangement over silica-supported boria catalyst prepared by vapor decomposition method. J. Catal. 102(1), 99–108. https://doi.org/10.1016/0021-9517(86)90144-2
  67. 67. Selvin R., Hsu, H.-L., T.-M. Her., (2008). Acylation of anisole with acetic anhydride using ZSM-5 catalysts: Effect of ZSM-5 particle size in the nanoscale range. Catal. Commun. 10(2), 169–172. https://doi.org/10.1016/j.catcom.2008.08.013
  68. 68. Selvin, R., Rajarajeswari, G., Selva Roselin, L., Sadasivam, V., Sivasankar, B., Rengaraj, K., (2001). Catalytic decomposition of cumene hydroperoxide into phenol and acetone. Appl. Catal. A: Gen. 219(1-2), 125–129. https://doi.org/10.1016/S0926-860X(01)00674-3
  69. 69. Selvin, R., Sivasankar, B., Rengaraj, K., (1999). Kinetic studies on Friedel-Crafts acylation of anisole by clayzic. React. Kinet. Catal. Lett. 67(2), 319–324. https://doi.org/10.1007/BF02475778
  70. 70. Shabana, K.K., Narendranath, S.B., Nimisha, N.P., Venkatesha, N.J. Sheetal G., A. Sakthivel A. (2024) Temperature-programmed reduction method for stabilization of the inorganic framework of SAPO-37 materials: promising catalysts for MTBE production.
  71. Chem. Commun., 60, 8688-8691. https://doi.org/10.1039/D4CC01839G.
  72. 71. Sirijaraensre, J., Limtrakul, J., (2009). Effect of the acidic strength on the vapor phase Beckmann rearrangement of cyclohexanone oxime over the MFI zeolite: an embedded ONIOM study. Phys. Chem. Chem. Phys. 11(3), 578–585. https://doi.org/10.1039/B808662A
  73. 72. Smith, J. V. (1988). Topochemistry of zeolites and related materials. 1. Topology and geometry. Chemical Reviews, 88(1), 149–182. https://doi.org/10.1021/cr00083a008
  74. 73. Takahashi, T., Kai, T. and Nakao, E., (2004). Catalyst deactivation in the Beckmann rearrangement of cyclohexanone oxime over HSZM-5 zeolite and silica-alumina catalysts. Applied Catalysis A: General, 262(2), pp.137-142. https://doi.org/10.1016/j.apcata.2003.11.040
  75. 74. Thangaraj, A., Sivasanker, S. Ratnasamy P., (1992). Catalytic properties of titanium silicalites IV. Vapour phase beckmann rearrangement of cyclohexanone oxime. J. Catal. 137(1), 252–256. https://doi.org/10.1016/0021-9517(92)90154-A
  76. 75. Thorat, T. S., Yadav, V. M., Yadav, G. D., (1992). Esterification of phthalic anhydride with 2-ethylhexanol by solid superacidic catalysts. Appl. Catal. A: Gen. 90(2), 73–96. https://doi.org/10.1016/0926-860X(92)85050-L
  77. 76. Ushikubo, T., Wada, K., (1994). Vapor-Phase Beckmann Rearrangement over Silica-Supported Tantalum Oxide Catalysts. J. Catal. 148(1), 138–148. https://doi.org/10.1006/jcat.1994.1195
  78. 77. Van Grieken, R., Sotelo, J. L., Menéndez, J. M., Melero, J. A. (2000). Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Microporous and Mesoporous Materials, 39(1-2), 135–147. https://doi.org/10.1016/S1387-1811(00)00190-6
  79. 78. Wang, B., Gu, Y., Luo, C., Yang, T., Yang, L., Suo, J. (2004). Sulfamic acid as a cost-effective and recyclable catalyst for liquid Beckmann rearrangement, a green process to produce amides from ketoximes without waste. Tetrahedron Lett. 45(17), 3369–3372. https://doi.org/10.1016/j.tetlet.2004.03.017.
  80. 79. Wang, K., Wang, F., Zhai, Y., Wang, J., Zhang, X., Li, M., Jiang, L., Fan, X., Bing, C., Zhang, J., Zhang, X., (2023). Application of zeolite in Beckmann rearrangement of cyclohexanone oxime. Molecular Catalysis. 112881-112901. https://doi.org/10.1016/j.mcat.2022.112881
  81. 80. Wang, Z., Liu, B., Lin, J., (2013). Highly effective perovskite-type BaZrO3 supported Ru catalyst for ammonia synthesis. Appl. Catal. A: Gen., 458, 130–136. https://doi.org/10.1016/j.apcata.2013.03.037.
  82. 81. Wasserscheid, P., Keim, W. (2000). Ionic Liquids—New “Solutions” for Transition Metal Catalysis. Angewandte Chemie, 39(21), 3772–3789. https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
  83. 82. Welton, T., Wasserscheid, P. (2008). In Ionic Liquids in Synthesis; Wiley-VCH: Weinheim, 1. 265–268.
  84. 83. Xu, B.-Q., Cheng, S.-B., Jiang, S., Zhu, Q.-M., (1999). Gas phase beckmann rearrangement of cyclohexanone oxime over zirconia-supported boria catalyst. Appl. Catal. A: Gen., 188(1-2), 361–368. https://doi.org/10.1016/S0926-860X(99)00255-0.
  85. 84. Yadav, G. D., Joshi, A. V., (2001). Etherification of tert-Amyl Alcohol with Methanol over Ion-Exchange Resin. Org. Proc. Res. Dev. 5, 408-414. doi: https://doi.org/10.1021/op010018+
  86. 85. Yashima, T., Oka, N., Komatsu, T., (1997). Vapor phase Beckmann rearrangement of cyclohexanone oxime on the zeolite catalysts. Catalysis Today, 38(2), 249–253. https://doi.org/10.1016/S0920-5861(97)00074-6.
  87. 86. Yin, P., Nie, J., Wen, X. et al. Application of Mixed Acid-Modified Hollow TS-1 Zeolite to Vapor-Phase Beckman Rearrangement Reaction. Catal Lett 154, 6035–6048 (2024). https://doi.org/10.1007/s10562-024-04780-1
  88. 87. Zhang, D., Wang, R., Yang, X., Yao, W., (2010). Vapor-phase Beckmann rearrangement of cyclohexanone oxime over phosphorus modified Si-MCM-41. React. Kinet. Mech. Catal. 101(2), 455–463. https://doi.org/10.1007/s11144-010-0226-7
  89. 88. Zhang, X.-F., Zhang, K., Zhang, X., Feng, Y., & Yao, J. (2018). Controlled synthesis of hierarchical beta zeolite through design template to enhance gas-phase beckmann rearrangement performance. Microporous and Mesoporous Materials, 272, 202–208. https://doi.org/10.1016/j.micromeso.2018.06.034.

How to Cite

Green Approach to Beckmann Rearrangement of Cyclohexanone Oxime Using Nanostructured ZSM-5 Zeolite. (2025). Nanofabrication, 10. https://doi.org/10.37819/nanofab.10.2079

How to Cite

Green Approach to Beckmann Rearrangement of Cyclohexanone Oxime Using Nanostructured ZSM-5 Zeolite. (2025). Nanofabrication, 10. https://doi.org/10.37819/nanofab.10.2079

HTML
45

Total
31

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2025 L Selva Roselin, R. Savidha, Khadijah H. Alharbi, Ruey Chang Hsiao, Sankar Ganesh Ramaraj, Rosilda Selvin

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.