Skip to main content Skip to main navigation menu Skip to site footer

Cerium Metal-Organic Framework Composites for Supercapacitor Energy Storage

  • Ruhani Baweja
  • Sanjeev Gautam
  • Navdeep Goyal

Abstract

Supercapacitors have emerged as efficient energy storage devices, offering high power density, long cycle life, and rapid charge-discharge capabilities. Advanced materials such as carbon nanotubes (CNTs) and graphene oxide (GO) stand out due to their exceptional electrochemical properties, including open structures and chirality, with capacities ranging from 300 to 1300 mAh g-1. However, the search for cost-effective and highly conductive materials continues to challenge researchers. Metal-Organic Frameworks (MOFs) have surfaced as strong candidates due to their vast surface area, inherent conductivity, and affordability. Nonetheless, the relatively low conductivity of pristine MOFs necessitates composite integration for optimal performance. This review focuses on cerium-based MOF (Ce-MOF) composites, analyzing their structural and electrochemical properties. Key aspects, including synthesis methods, structural characterization, and electrochemical evaluation through cyclic voltammetry and galvanostatic charge-discharge techniques, are discussed in detail. The integration of functional composites into MOFs enhances cycling stability and minimizes capacitance loss over extended use. This review aims to inspire further research into Ce-MOF composites, underscoring their potential as high-performance materials for supercapacitor applications.

Section

References

  1. Abdel Maksoud, M. I. A., Fahim, R. A., Shalan, A. E., Abd Elkodous, M., Olojede, S. O., Osman, A. I., ... & Rooney, D. W. (2021). Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environmental Chemistry Letters, 19, 375-439.
  2. Abdeladim, M., & Ashraf, A. (2015). Review of Super capacitor Technology. Int. J. Comput. Sci. Electron. Eng.(IJCSEE), 3(3).
  3. Agarwal, S., Burr, G., Chen, A., Das, S., Debenedictis, E., Frank, M. P., ... & Rakshit, T. (2018). International Roadmap of Devices and Systems 2017 Edition: Beyond CMOS chapter (No. SAND2018-3550R). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
  4. Ahmed Malik, W. M., Afaq, S., Mahmood, A., Niu, L., Yousaf ur Rehman, M., Ibrahim, M., ... & Chughtai, A. H. (2022). A facile synthesis of CeO2 from the GO@ Ce-MOF precursor and its efficient performance in the oxygen evolution reaction. Frontiers in Chemistry, 10, 996560.
  5. Aiyappa, H. B., Pachfule, P., Banerjee, R., & Kurungot, S. (2013). Porous carbons from nonporous MOFs: influence of ligand characteristics on intrinsic properties of end carbon. Crystal growth & design, 13(10), 4195-4199.
  6. Anwer, A. H., Ansari, M. Z., Mashkoor, F., Zhu, S., Shoeb, M., & Jeong, C. (2023). Synergistic effect of carbon nanotube and tri-metallic MOF nanoarchitecture for electrochemical high-performance asymmetric supercapacitor applications and their charge storage mechanism. Journal of Alloys and Compounds, 955, 170038.
  7. Augustyn, V., Simon, P., & Dunn, B. (2014). Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 7(5), 1597-1614.
  8. Babu, S., Thanneeru, R., Inerbaev, T., Day, R., Masunov, A. E., Schulte, A., & Seal, S. (2009). Dopant-mediated oxygen vacancy tuning in ceria nanoparticles. Nanotechnology, 20(8), 085713.
  9. Balasubramaniam, S., Mohanty, A., Balasingam, S. K., Kim, S. J., & Ramadoss, A. (2020). Comprehensive insight into the mechanism, material selection and performance evaluation of supercapatteries. Nano-Micro Letters, 12, 1-46.
  10. Baumann, A. E., Burns, D. A., Liu, B., & Thoi, V. S. (2019). Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Communications Chemistry, 2(1), 86.
  11. Bellani, S., Petroni, E., Del Rio Castillo, A. E., Curreli, N., Martín‐García, B., Oropesa‐Nuñez, R., ... & Bonaccorso, F. (2019). Scalable production of graphene inks via wet‐jet milling exfoliation for screen‐printed micro‐supercapacitors. Advanced Functional Materials, 29(14), 1807659.
  12. Bibi, N., Xia, Y., Ahmed, S., Zhu, Y., Zhang, S., & Iqbal, A. (2018). Highly stable mesoporous CeO2/CeS2 nanocomposite as electrode material with improved supercapacitor electrochemical performance. Ceramics International, 44(18), 22262-22270.
  13. Brownson, D. A., Figueiredo-Filho, L. C., Ji, X., Gómez-Mingot, M., Iniesta, J., Fatibello-Filho, O., ... & Banks, C. E. (2013). Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non-aqueous media. Journal of Materials Chemistry A, 1(19), 5962-5972.
  14. Cai, Y., Zhang, A., Ping Feng, Y., & Zhang, C. (2011). Switching and rectification of a single light-sensitive diarylethene molecule sandwiched between graphene nanoribbons. The Journal of chemical physics, 135(18).
  15. Cao, Y., Liang, J., Li, X., Yue, L., Liu, Q., Lu, S., ... & Sun, X. (2021). Recent advances in perovskite oxides as electrode materials for supercapacitors. Chemical Communications, 57(19), 2343-2355.
  16. Cao, Y., Zhao, L., Gutmann, T., Xu, Y., Dong, L., Buntkowsky, G., & Gao, F. (2018). Getting insights into the influence of crystal plane effect of shaped ceria on its catalytic performances. The Journal of Physical Chemistry C, 122(35), 20402-20409.
  17. Cao, Y., Zhao, Y., Lv, Z., Song, F., & Zhong, Q. (2015). Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites. Journal of Industrial and Engineering Chemistry, 27, 102-107.
  18. Cao, Z., Momen, R., Tao, S., Xiong, D., Song, Z., Xiao, X., ... & Ji, X. (2022). Metal–organic framework materials for electrochemical supercapacitors. Nano-micro letters, 14(1), 181.
  19. Choi, K. M., Jeong, H. M., Park, J. H., Zhang, Y. B., Kang, J. K., & Yaghi, O. M. (2014). Supercapacitors of nanocrystalline metal–organic frameworks. ACS nano, 8(7), 7451-7457.
  20. Cong, H. P., Ren, X. C., Wang, P., & Yu, S. H. (2013). Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy & Environmental Science, 6(4), 1185-1191.
  21. De Combarieu, G., Morcrette, M., Millange, F., Guillou, N., Cabana, J., Grey, C. P., ... & Tarascon, J. M. (2009). Influence of the benzoquinone sorption on the structure and electrochemical performance of the MIL-53 (Fe) hybrid porous material in a lithium-ion battery. Chemistry of Materials, 21(8), 1602-1611.
  22. Dezfuli, A. S., Kohan, E., Naderi, H. R., & Salehi, E. (2019). Study of the supercapacitive activity of a Eu-MOF as an electrode material. New Journal of Chemistry, 43(23), 9260-9264.
  23. Díaz, R., Orcajo, M. G., Botas, J. A., Calleja, G., & Palma, J. (2012). Co8-MOF-5 as electrode for supercapacitors. Materials letters, 68, 126-128.
  24. Djire, A., Pande, P., Deb, A., Siegel, J. B., Ajenifujah, O. T., He, L., ... & Thompson, L. T. (2019). Unveiling the pseudocapacitive charge storage mechanisms of nanostructured vanadium nitrides using in-situ analyses. Nano Energy, 60, 72-81.
  25. Dürkop, T., Getty, S. A., Cobas, E., & Fuhrer, M. S. (2004). Extraordinary mobility in semiconducting carbon nanotubes. Nano letters, 4(1), 35-39.
  26. Elkholy, A. E., Heakal, F. E. T., & Allam, N. K. (2017). Nanostructured spinel manganese cobalt ferrite for high-performance supercapacitors. RSC advances, 7(82), 51888-51895.
  27. Ethiraj, J., Bonino, F., Vitillo, J. G., Lomachenko, K. A., Lamberti, C., Reinsch, H., ... & Bordiga, S. (2016). Solvent‐Driven Gate Opening in MOF‐76‐Ce: Effect on CO2 Adsorption. ChemSusChem, 9(7), 713-719.
  28. Faraji, S., & Ani, F. N. (2015). The development supercapacitor from activated carbon by electroless plating—A review. Renewable and Sustainable Energy Reviews, 42, 823-834.
  29. Fatemi, S., & Ganjali, M. R. (2022). Fabrication and comparison of composites of cerium metal-organic framework/reduced graphene oxide as the electrode in supercapacitor application. Journal of Energy Storage, 55, 105545.
  30. Fauzi, A. A., Jalil, A. A., Hassan, N. S., Aziz, F. F. A., Azami, M. S., Hussain, I., ... & Vo, D. V. (2022). A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant. Chemosphere, 286, 131651.
  31. Fleker, O., Borenstein, A., Lavi, R., Benisvy, L., Ruthstein, S., & Aurbach, D. (2016). Preparation and properties of metal organic framework/activated carbon composite materials. Langmuir, 32(19), 4935-4944.
  32. Gautam, S., Verma, M., Chauhan, R., Aghara, S., & Goyal, N. (2023). Reviewing thermal conductivity aspects of solar salt energy storage. Energy Advances.
  33. Gautham Prasad, G., Shetty, N., Thakur, S., Rakshitha, & Bommegowda, K. B. (2019, October). Supercapacitor technology and its applications: a review. In IOP Conference Series: Materials Science and Engineering (Vol. 561, No. 1, p. 012105). IOP Publishing.
  34. Ghosh, S., Anbalagan, K., Kumar, U. N., Thomas, T., & Rao, G. R. (2020). Ceria for supercapacitors: dopant prediction, and validation in a device. Applied Materials Today, 21, 100872.
  35. Ghosh, S., De Adhikari, A., Nath, J., Nayak, G. C., & Nayek, H. P. (2019). Lanthanide (III) Metal‐Organic Frameworks: Syntheses, Structures and Supercapacitor Application. ChemistrySelect, 4(36), 10624-10631.
  36. Gonçalves, J. M., da Silva, M. I., Toma, H. E., Angnes, L., Martins, P. R., & Araki, K. (2020). Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review. Journal of Materials Chemistry A, 8(21), 10534-10570.
  37. Gong, Q., Li, Y., Huang, H., Zhang, J., Gao, T., & Zhou, G. (2018). Shape-controlled synthesis of Ni-CeO2@ PANI nanocomposites and their synergetic effects on supercapacitors. Chemical Engineering Journal, 344, 290-298.
  38. Green, A., & Jehoulet, C. (2002). The non-battery battery-The potential role of supercapacitors in standby power applications. In The Battcon 2002 Proceedings.
  39. Halper, M. S., & Ellenbogen, J. C. (2006). Supercapacitors: A brief overview. The MITRE Corporation, McLean, Virginia, USA, 1.
  40. Hassan, M. H., Andreescu, D., & Andreescu, S. (2020). Cerium oxide nanoparticles stabilized within metal–organic frameworks for the degradation of nerve agents. ACS Applied Nano Materials, 3(4), 3288-3294.
  41. He, X., Looker, B. G., Dinh, K. T., Stubbs, A. W., Chen, T., Meyer, R. J., ... & Dincă, M. (2020). Cerium (IV) enhances the catalytic oxidation activity of single-site Cu active sites in MOFs. ACS Catalysis, 10(14), 7820-7825.
  42. Hossain, E., Faruque, H. M. R., Sunny, M. S. H., Mohammad, N., & Nawar, N. (2020). A comprehensive review on energy storage systems: Types, comparison, current scenario, applications, barriers, and potential solutions, policies, and future prospects. Energies, 13(14), 3651.
  43. Hou, Q., Zhou, S., Wei, Y., Caro, J., & Wang, H. (2020). Balancing the grain boundary structure and the framework flexibility through bimetallic Metal–Organic Framework (MOF) membranes for gas separation. Journal of the American Chemical Society, 142(21), 9582-9586.
  44. Huang, H., Chen, Y., Chen, Z., Chen, J., Hu, Y., & Zhu, J. J. (2021). Electrochemical sensor based on Ce-MOF/carbon nanotube composite for the simultaneous discrimination of hydroquinone and catechol. Journal of hazardous materials, 416, 125895.
  45. Inoue, H., Morimoto, T., & Nohara, S. (2007). Electrochemical characterization of a hybrid capacitor with Zn and activated carbon electrodes. Electrochemical and Solid-State Letters, 10(12), A261.
  46. Iro, Z. S., Subramani, C., & Dash, S. S. (2016). A brief review on electrode materials for supercapacitor. International Journal of Electrochemical Science, 11(12), 10628-10643.
  47. Jacobsen, J., Ienco, A., D'Amato, R., Costantino, F., & Stock, N. (2020). The chemistry of Ce-based metal–organic frameworks. Dalton Transactions, 49(46), 16551-16586.
  48. Jafari, H., Mohammadnezhad, P., Khalaj, Z., Naderi, H. R., Kohan, E., Hosseini, M. R. M., & Dezfuli, A. S. (2020). Terbium metal–organic frameworks as capable electrodes for supercapacitors. New Journal of Chemistry, 44(27), 11615-11621.
  49. Javed, M. S., Shah, H. U., Shaheen, N., Lin, R., Qiu, M., Xie, J., ... & Hu, C. (2018). High energy density hybrid supercapacitor based on 3D mesoporous cuboidal Mn2O3 and MOF-derived porous carbon polyhedrons. Electrochimica Acta, 282, 1-9.
  50. Javed, N., Noor, T., Iqbal, N., & Naqvi, S. R. (2023). A review on development of metal–organic framework-derived bifunctional electrocatalysts for oxygen electrodes in metal–air batteries. RSC advances, 13(2), 1137-1161.
  51. Jayakumar, A., Antony, R. P., Wang, R., & Lee, J. M. (2017). MOF‐derived hollow cage NixCo3− xO4 and their synergy with graphene for outstanding supercapacitors. Small, 13(11), 1603102.
  52. Jeyaranjan, A. (2020). Cerium Oxide based Nanocomposites for Supercapacitors.
  53. Jiang, Y., & Liu, J. (2019). Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials, 2(1), 30-37.
  54. Jiao, L., Seow, J. Y. R., Skinner, W. S., Wang, Z. U., & Jiang, H. L. (2019). Metal–organic frameworks: Structures and functional applications. Materials Today, 27, 43-68.
  55. Kang, L., Sun, S. X., Kong, L. B., Lang, J. W., & Luo, Y. C. (2014). Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chinese Chemical Letters, 25(6), 957-961.
  56. Karthikeyan, S., Narenthiran, B., Sivanantham, A., Bhatlu, L. D., & Maridurai, T. (2021). Supercapacitor: Evolution and review. Materials Today: Proceedings, 46, 3984-3988.
  57. Kaur, M., Gautam, S., & Goyal, N. (2022). Ion-implantation and photovoltaics efficiency: A review. Materials Letters, 309, 131356.
  58. Kaur, M., Gautam, S., Chae, K. H., Klysubun, W., & Goyal, N. (2023). Charge transfer and X-ray absorption investigations in aluminium and copper co-doped zinc oxide nanostructure for perovskite solar cell electrodes. Scientific Reports, 13(1), 10769.
  59. Khan, U. A., Iqbal, N., Noor, T., Ahmad, R., Ahmad, A., Gao, J., ... & Wahab, A. (2021). Cerium based metal organic framework derived composite with reduced graphene oxide as efficient supercapacitor electrode. Journal of Energy Storage, 41, 102999.
  60. Kowsuki, K., Nirmala, R., Ra, Y. H., & Navamathavan, R. (2023). Recent advances in cerium oxide-based nanocomposites in synthesis, characterization, and energy storage applications: A comprehensive review. Results in Chemistry, 5, 100877.
  61. Lammert, M., Wharmby, M. T., Smolders, S., Bueken, B., Lieb, A., Lomachenko, K. A., ... & Stock, N. (2015). Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity. Chemical Communications, 51(63), 12578-12581.
  62. Lee, C. S., Lim, J. M., Park, J. T., & Kim, J. H. (2021). Direct growth of highly organized, 2D ultra-thin nano-accordion Ni-MOF@ NiS2@ C core-shell for high performance energy storage device. Chemical Engineering Journal, 406, 126810.
  63. Lee, D. Y., Yoon, S. J., Shrestha, N. K., Lee, S. H., Ahn, H., & Han, S. H. (2012). Unusual energy storage and charge retention in Co-based metal–organic-frameworks. Microporous and Mesoporous Materials, 153, 163-165.
  64. Li, C., Hu, C., Zhao, Y., Song, L., Zhang, J., Huang, R., & Qu, L. (2014). Decoration of graphene network with metal–organic frameworks for enhanced electrochemical capacitive behavior. Carbon, 78, 231-242.
  65. Li, C., Zhang, X., Lv, Z., Wang, K., Sun, X., Chen, X., & Ma, Y. (2021). Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors. Chemical Engineering Journal, 414, 128781.
  66. Li, H., Li, Z., Sun, M., Wu, Z., Shen, W., & Fu, Y. Q. (2019). Zinc cobalt sulfide nanoparticles as high performance electrode material for asymmetric supercapacitor. Electrochimica Acta, 319, 716-726.
  67. Li, K., Teng, H., Dai, X., Wang, Y., Wang, D., Zhang, X., ... & Zhang, Y. (2022). Atomic scale modulation strategies and crystal phase transition of flower-like CoAl layered double hydroxides for supercapacitors. CrystEngComm, 24(11), 2081-2088.
  68. Li, X., Tang, Y., Song, J., Yang, W., Wang, M., Zhu, C., ... & Lin, Y. (2018). Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon, 129, 236-244.
  69. Li, Y., Ma, L., Yi, Z., Zhao, Y., Mao, J., Yang, S., ... & Kim, J. K. (2021). Metal–organic framework-derived carbon as a positive electrode for high-performance vanadium redox flow batteries. Journal of Materials Chemistry A, 9(9), 5648-5656.
  70. Liang, J., Huang, Y., Oh, J., Kozlov, M., Sui, D., Fang, S., ... & Chen, Y. (2011). Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper. Advanced Functional Materials, 21(19), 3778-3784.
  71. Libich, J., Máca, J., Vondrák, J., Čech, O., & Sedlaříková, M. (2018). Supercapacitors: Properties and applications. Journal of energy storage, 17, 224-227.
  72. Lin, J., Yan, Y., Wang, H., Zheng, X., Jiang, Z., Wang, Y., ... & Feng, J. (2019). Hierarchical Fe2O3 and NiO nanotube arrays as advanced anode and cathode electrodes for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 794, 255-260.
  73. Liu, H., & Le, Q. (2016). Synthesis and performance of cerium oxide as anode materials for lithium ion batteries by a chemical precipitation method. Journal of Alloys and Compounds, 669, 1-7.
  74. Liu, N., Tang, Q., Huang, B., & Wang, Y. (2021). Graphene synthesis: method, exfoliation mechanism and large-scale production. Crystals, 12(1), 25.
  75. Liu, T., Zhang, L., You, W., & Yu, J. (2018). Core–shell nitrogen‐doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high‐performance supercapacitor. Small, 14(12), 1702407.
  76. Lu, G., Li, S., Guo, Z., Farha, O. K., Hauser, B. G., Qi, X., ... & Huo, F. (2012). Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nature chemistry, 4(4), 310-316.
  77. Lu, T., Zhang, Y., Li, H., Pan, L., Li, Y., & Sun, Z. (2010). Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors. Electrochimica Acta, 55(13), 4170-4173.
  78. Maheswari, N., & Muralidharan, G. (2015). Supercapacitor behavior of cerium oxide nanoparticles in neutral aqueous electrolytes. Energy & Fuels, 29(12), 8246-8253.
  79. Maiti, S., Pramanik, A., & Mahanty, S. (2014). Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide. Chemical Communications, 50(79), 11717-11720.
  80. Matsuda, Y., Tahir-Kheli, J., & Goddard III, W. A. (2010). Definitive band gaps for single-wall carbon nanotubes. The Journal of Physical Chemistry Letters, 1(19), 2946-2950.
  81. Mehtab, T., Yasin, G., Arif, M., Shakeel, M., Korai, R. M., Nadeem, M., ... & Lu, X. (2019). Metal-organic frameworks for energy storage devices: Batteries and supercapacitors. Journal of Energy Storage, 21, 632-646.
  82. Meng, X., Wan, C., Jiang, X., & Ju, X. (2018). Rodlike CeO 2/carbon nanocomposite derived from metal–organic frameworks for enhanced supercapacitor applications. Journal of Materials Science, 53, 13966-13975.
  83. Mishra, S. R., & Ahmaruzzaman, M. (2021). Cerium oxide and its nanocomposites: structure, synthesis, and wastewater treatment applications. Materials Today Communications, 28, 102562.
  84. Mohanty, A., Jaihindh, D., Fu, Y. P., Senanayak, S. P., Mende, L. S., & Ramadoss, A. (2021). An extensive review on three dimension architectural Metal-Organic Frameworks towards supercapacitor application. Journal of Power Sources, 488, 229444.
  85. Montini, T., Melchionna, M., Monai, M., & Fornasiero, P. (2016). Fundamentals and catalytic applications of CeO2-based materials. Chemical reviews, 116(10), 5987-6041.
  86. Muzaffar, A., Ahamed, M. B., Deshmukh, K., & Thirumalai, J. (2019). A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and sustainable energy reviews, 101, 123-145.
  87. Nikolaidis, P., & Poullikkas, A. (2017). A comparative review of electrical energy storage systems for better sustainability. Journal of power technologies, 97(3), 220-245.
  88. Padmanathan, N., & Selladurai, S. (2014). Shape controlled synthesis of CeO 2 nanostructures for high performance supercapacitor electrodes. RSC advances, 4(13), 6527-6534.
  89. Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R., & Rousset, A. (2001). Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 39(4), 507-514.
  90. Peng, M. M., Ganesh, M., Vinodh, R., Palanichamy, M., & Jang, H. T. (2019). Solvent free oxidation of ethylbenzene over Ce-BTC MOF. Arabian Journal of Chemistry, 12(7), 1358-1364.
  91. Ponnaiah, S. K., & Prakash, P. (2021). A new high-performance supercapacitor electrode of strategically integrated cerium vanadium oxide and polypyrrole nanocomposite. International Journal of Hydrogen Energy, 46(37), 19323-19337.
  92. Prasanna, K., Subburaj, T., Jo, Y. N., Lee, W. J., & Lee, C. W. (2015). Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries. ACS applied materials & interfaces, 7(15), 7884-7890.
  93. Pujar, M. S., Hunagund, S. M., Barretto, D. A., Desai, V. R., Patil, S., Vootla, S. K., & Sidarai, A. H. (2020). Synthesis of cerium-oxide NPs and their surface morphology effect on biological activities. Bulletin of Materials Science, 43(1), 24.
  94. Qu, C., Zhang, L., Meng, W., Liang, Z., Zhu, B., Dang, D., ... & Zou, R. (2018). MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors. Journal of materials chemistry A, 6(9), 4003-4012.
  95. Ramachandran, R., Saranya, M., Kollu, P., Raghupathy, B. P., Jeong, S. K., & Grace, A. N. (2015). Solvothermal synthesis of Zinc sulfide decorated Graphene (ZnS/G) nanocomposites for novel Supercapacitor electrodes. Electrochimica Acta, 178, 647-657.
  96. Ramachandran, R., Xuan, W., Zhao, C., Leng, X., Sun, D., Luo, D., & Wang, F. (2018). Enhanced electrochemical properties of cerium metal–organic framework based composite electrodes for high-performance supercapacitor application. RSC advances, 8(7), 3462-3469.
  97. Ramineni, P., Pandian, A., Kumar, M. K., & Sundaram, K. M. (2022). Improved operation of Li-ion battery with supercapacitor realized to solar-electric vehicle. Energy Reports, 8, 256-264.
  98. Raptopoulou, C. P. (2021). Metal-Organic Frameworks: Synthetic Methods and Potential Applications. Materials 2021, 14, 310.
  99. Raza, W., Ali, F., Raza, N., Luo, Y., Kim, K. H., Yang, J., ... & Kwon, E. E. (2018). Recent advancements in supercapacitor technology. Nano Energy, 52, 441-473.
  100. Raza, W., Nabi, G., Shahzad, A., Malik, N., & Raza, N. (2021). Electrochemical performance of lanthanum cerium ferrite nanoparticles for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 32, 7443-7454.
  101. Redondo, E., Le Fevre, L. W., Fields, R., Todd, R., Forsyth, A. J., & Dryfe, R. A. (2020). Enhancing supercapacitor energy density by mass-balancing of graphene composite electrodes. Electrochimica Acta, 360, 136957.
  102. Riaz, A., Sarker, M. R., Saad, M. H. M., & Mohamed, R. (2021). Review on comparison of different energy storage technologies used in micro-energy harvesting, WSNs, low-cost microelectronic devices: challenges and recommendations. Sensors, 21(15), 5041.
  103. Şahin, M. E., Blaabjerg, F., & Sangwongwanich, A. (2022). A Comprehensive Review on Supercapacitor Applications and Developments. Energies 2022, 15, 674.
  104. Sangeetha, S., & Krishnamurthy, G. (2020). Electrochemical and photocatalytic applications of Ce-MOF. Bulletin of Materials Science, 43(1), 269.
  105. Saraf, M., Rajak, R., & Mobin, S. M. (2016). A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. Journal of Materials Chemistry A, 4(42), 16432-16445.
  106. Shah, V. A., Joshi, J. A., Maheshwari, R., & Roy, R. (2008, December). Review of ultracapacitor technology and its applications. In Proceedings of the 15th National Power System Conference (pp. 142-147).
  107. Sharma, K., Arora, A., & Tripathi, S. K. (2019). Review of supercapacitors: Materials and devices. Journal of Energy Storage, 21, 801-825.
  108. Sharma, P., & Kumar, V. (2020). Current technology of supercapacitors: A review. Journal of Electronic Materials, 49(6), 3520-3532.
  109. Shen, C. H., Chuang, C. H., Gu, Y. J., Ho, W. H., Song, Y. D., Chen, Y. C., ... & Kung, C. W. (2021). Cerium-based metal–organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance. ACS Applied Materials & Interfaces, 13(14), 16418-16426.
  110. Sinan, N., & Unur, E. (2016). Fe3O4/carbon nanocomposite: Investigation of capacitive & magnetic properties for supercapacitor applications. Materials Chemistry and Physics, 183, 571-579.
  111. Smith, K. A. (2010). Electrochemical control of lithium-ion batteries [applications of control]. IEEE Control Systems Magazine, 30(2), 18-25.
  112. Snook, G. A., Kao, P., & Best, A. S. (2011). Conducting-polymer-based supercapacitor devices and electrodes. Journal of power sources, 196(1), 1-12.
  113. Song, H., Shen, L., Wang, J., & Wang, C. (2016). Reversible lithiation–delithiation chemistry in cobalt based metal organic framework nanowire electrode engineering for advanced lithium-ion batteries. Journal of Materials Chemistry A, 4(40), 15411-15419.
  114. Song, M. K., Park, S., Alamgir, F. M., Cho, J., & Liu, M. (2011). Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Materials Science and Engineering: R: Reports, 72(11), 203-252.
  115. Stock, N., & Biswas, S. (2012). Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical reviews, 112(2), 933-969.
  116. Su, L. H., Zhang, X. G., Mi, C. H., Gao, B., & Liu, Y. (2009). Improvement of the capacitive performances for Co–Al layered double hydroxide by adding hexacyanoferrate into the electrolyte. Physical Chemistry Chemical Physics, 11(13), 2195-2202.
  117. Subramanian, G., & Peter, J. (2020, July). Integrated Li-ion battery and super capacitor based hybrid energy storage system for electric vehicles. In 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT) (pp. 1-6). IEEE.
  118. Tang, Z., Pei, Z., Wang, Z., Li, H., Zeng, J., Ruan, Z., ... & Zhi, C. (2018). Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon, 130, 532-543.
  119. Teffu, D. M. (2021). Palladium-reduced graphene oxide/metal organic framework as an efficient electrode material for battery-type supercapacitor applications (Doctoral dissertation).
  120. Tiwari, S. K., Sahoo, S., Wang, N., & Huczko, A. (2020). Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, 5(1), 10-29.
  121. van Voorden, A. M., Elizondo, L. M. R., Paap, G. C., Verboomen, J., & van der Sluis, L. (2007, July). The application of super capacitors to relieve battery-storage systems in autonomous renewable energy systems. In 2007 IEEE Lausanne Power Tech (pp. 479-484). IEEE.
  122. Varghese, J., Wang, H., & Pilon, L. (2011). Simulating electric double layer capacitance of mesoporous electrodes with cylindrical pores. Journal of The Electrochemical Society, 158(10), A1106.
  123. Venkataraman, A., Amadi, E. V., Chen, Y., & Papadopoulos, C. (2019). Carbon nanotube assembly and integration for applications. Nanoscale research letters, 14, 1-47.
  124. Walkey, C., Das, S., Seal, S., Erlichman, J., Heckman, K., Ghibelli, L., ... & Self, W. T. (2015). Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environmental Science: Nano, 2(1), 33-53.
  125. Wang, G., Zhang, L., & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41(2), 797-828.
  126. Wang, L., Feng, X., Ren, L., Piao, Q., Zhong, J., Wang, Y., ... & Wang, B. (2015). Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. Journal of the American Chemical Society, 137(15), 4920-4923.
  127. Wang, L., Han, Y., Feng, X., Zhou, J., Qi, P., & Wang, B. (2016). Metal–organic frameworks for energy storage: Batteries and supercapacitors. Coordination Chemistry Reviews, 307, 361-381.
  128. Wang, Q., Jiao, L., Du, H., Si, Y., Wang, Y., & Yuan, H. (2012). Co 3 S 4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors. Journal of Materials Chemistry, 22(40), 21387-21391.
  129. Wang, Q., Jiao, L., Du, H., Wang, Y., & Yuan, H. (2014). Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. Journal of Power Sources, 245, 101-106.
  130. Wang, T., Chen, H. C., Yu, F., Zhao, X. S., & Wang, H. (2019). Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Materials, 16, 545-573.
  131. Wang, Y. (2008). Modeling of ultracapacitor short-term and long-term dynamic behavior (Master's thesis, University of Akron).
  132. Wang, Y., Liu, Y., Wang, H., Liu, W., Li, Y., Zhang, J., ... & Yang, J. (2019). Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Applied Energy Materials, 2(3), 2063-2071.
  133. Wang, Y., Wang, X., Dai, X., Li, K., Bao, Z., Li, H., ... & Zhang, Y. (2021). Structural evolution and sulfuration of nickel cobalt hydroxides from 2D to 1D on 3D diatomite for supercapacitors. CrystEngComm, 23(33), 5636-5644.
  134. Wang, Z., Zhao, K., Lu, S., & Xu, W. (2020). Application of flammulina-velutipes-like CeO2/Co3O4/rGO in high-performance asymmetric supercapacitors. Electrochimica Acta, 353, 136599.
  135. Wen, P., Gong, P., Sun, J., Wang, J., & Yang, S. (2015). Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. Journal of Materials Chemistry A, 3(26), 13874-13883.
  136. Xia, J., Chen, F., Li, J., & Tao, N. (2009). Measurement of the quantum capacitance of graphene. Nature nanotechnology, 4(8), 505-509.
  137. Xie, S., Wang, Z., Cheng, F., Zhang, P., Mai, W., & Tong, Y. (2017). Ceria and ceria-based nanostructured materials for photoenergy applications. Nano Energy, 34, 313-337.
  138. Xu, B., Zhang, H., Mei, H., & Sun, D. (2020). Recent progress in metal-organic framework-based supercapacitor electrode materials. Coordination Chemistry Reviews, 420, 213438.
  139. Xu, J., Wang, K., Zu, S. Z., Han, B. H., & Wei, Z. (2010). Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS nano, 4(9), 5019-5026.
  140. Yan, J., Fan, Z., Wei, T., Qian, W., Zhang, M., & Wei, F. (2010). Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon, 48(13), 3825-3833.
  141. Yang, G., Zhang, D., Zhu, G., Zhou, T., Song, M., Qu, L., ... & Li, H. (2020). A Sm-MOF/GO nanocomposite membrane for efficient organic dye removal from wastewater. RSC advances, 10(14), 8540-8547.
  142. Yang, J., Ma, Z., Gao, W., & Wei, M. (2017). Layered structural co‐based MOF with conductive network frames as a new supercapacitor electrode. Chemistry–A European Journal, 23(3), 631-636.
  143. Yang, J., Zheng, C., Xiong, P., Li, Y., & Wei, M. (2014). Zn-doped Ni-MOF material with a high supercapacitive performance. Journal of Materials Chemistry A, 2(44), 19005-19010.
  144. Yang, Q., Liu, W., Wang, B., Zhang, W., Zeng, X., Zhang, C., ... & Lu, J. (2017). Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nature communications, 8(1), 14429.
  145. Yang, Q., Wang, Q., Long, Y., Wang, F., Wu, L., Pan, J., ... & Song, S. (2020). In situ formation of Co9S8 quantum dots in MOF‐derived ternary metal layered double hydroxide nanoarrays for high‐performance hybrid supercapacitors. Advanced energy materials, 10(7), 1903193.
  146. Yang, Q., Xu, Q., & Jiang, H. L. (2017). Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews, 46(15), 4774-4808.
  147. Yang, W., Gao, Z., Song, N., Zhang, Y., Yang, Y., & Wang, J. (2014). Synthesis of hollow polyaniline nano-capsules and their supercapacitor application. Journal of Power Sources, 272, 915-921.
  148. Yuan, C., Zhang, X., Su, L., Gao, B., & Shen, L. (2009). Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. Journal of Materials Chemistry, 19(32), 5772-5777.
  149. Yuan, J., Wang, B. Y., Zong, Y. C., & Zhang, F. Q. (2023). Ce-MOF modified Ceria-based photocatalyst for enhancing the photocatalytic performance. Inorganic Chemistry Communications, 153, 110799.
  150. Zang, X., Zhang, R., Zhen, Z., Lai, W., Yang, C., Kang, F., & Zhu, H. (2017). Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes. Nano Energy, 40, 224-232.
  151. Zeng, G., Chen, Y., Chen, L., Xiong, P., & Wei, M. (2016). Hierarchical cerium oxide derived from metal-organic frameworks for high performance supercapacitor electrodes. Electrochimica Acta, 222, 773-780.
  152. Zhang, Q., & Deng, W. (2016). An adaptive energy management system for electric vehicles based on driving cycle identification and wavelet transform. Energies, 9(5), 341.
  153. Zhang, W., Yang, L. P., Wu, Z. X., Piao, J. Y., Cao, A. M., & Wan, L. J. (2016). Controlled formation of uniform CeO 2 nanoshells in a buffer solution. Chemical Communications, 52(7), 1420-1423.
  154. Zhao, J., & Burke, A. F. (2021). Review on supercapacitors: Technologies and performance evaluation. Journal of energy chemistry, 59, 276-291.
  155. Zhao, Y., Song, Z., Li, X., Sun, Q., Cheng, N., Lawes, S., & Sun, X. (2016). Metal organic frameworks for energy storage and conversion. Energy storage materials, 2, 35-62.

How to Cite

Cerium Metal-Organic Framework Composites for Supercapacitor Energy Storage. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2032

How to Cite

Cerium Metal-Organic Framework Composites for Supercapacitor Energy Storage. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2032

HTML
62

Total
44

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Ruhani Baweja, Sanjeev Gautam, Navdeep Goyal

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.