Skip to main content Skip to main navigation menu Skip to site footer

Histopathological alteration in Zebrafish: Unravelling the Effects of Long-Term Copper Oxide Nanoparticle Exposure

  • Himanshu Gupta
  • Mansee Thakur
  • Navami Dayal
  • Muskaan Singh
  • Jigesh Mehta
  • Ankit D. Oza
  • Chander Prakash

Abstract

Copper Oxide nanoparticles (CuO-NPs) are widely used and they build up in the aquatic environment and can be harmful to aquatic life. Aquatic creatures are affected by CuO NPs, yet the consequences of these particles have not been well explored despite contentious toxicological results. Therefore, this study aimed to investigate the effects of chronic exposure to CuO-NPs on adult zebrafish. The study was carried out by conducting physicochemical characterization of commercially procured CuO-NPs using UV/Vis, ICP-OES spectroscopy, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy(FTIR). Following characterization, adult zebrafish were chronically exposed to 0.5, 1, and 3 mg/l of CuO-NPs. Characterization revealed a heterogeneous population of nanoparticles in the size ranges of 10–50 nm. Oxidative stress indicators and functional markers were studied in addition to tissue histology. Chronic exposure to adult Fish at concentrations of 1 and 3 mg/l exhibited increased levels of stress compared to lower concentrations of 0.5 mg/l. Observations from histology showed that the extent of tissue damage and injuries increased with the concentration of CuO-NPs. In conclusion, chronic exposure to ≤50nm-sized CuO-NPs exhibited toxic repercussions in adult zebrafish.

Section

References

  1. A brief review on synthesis and characterization of copper oxide nanoparticles and its applications. (2016). Journal of Bioelectronics and Nanotechnology, 1(1). https://doi.org/10.13188/2475-224x.1000003
  2. Ahamed, M., Alhadlaq, H. A., Khan, M. A., Karuppiah, P., & Al-Dhabi, N. A. (2014). undefined. Journal of Nanomaterials, 2014(1). https://doi.org/10.1155/2014/637858
  3. Akhtar, M. J., Kumar, S., Alhadlaq, H. A., Alrokayan, S. A., Abu-Salah, K. M., & Ahamed, M. (2013). Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicology and Industrial Health, 32(5), 809-821. https://doi.org/10.1177/0748233713511512
  4. Aksakal, F. I., & Ciltas, A. (2019). Impact of copper oxide nanoparticles (CuO NPs) exposure on embryo development and expression of genes related to the innate immune system of zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 223, 78-87. https://doi.org/10.1016/j.cbpc.2019.05.016
  5. Aksnes, D. W., Langfeldt, L., & Wouters, P. (2019). Citations, citation indicators, and research quality: An overview of basic concepts and theories. Sage Open, 9(1). https://doi.org/10.1177/2158244019829575
  6. Baek, Y., & An, Y. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NIO, ZnO, and Sb2O3) to escherichia coli, bacillus subtilis, and streptococcus aureus. Science of The Total Environment, 409(8), 1603-1608. https://doi.org/10.1016/j.scitotenv.2011.01.014
  7. Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  8. Bin Mobarak, M., Hossain, M. S., Chowdhury, F., & Ahmed, S. (2022). Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters. Arabian Journal of Chemistry, 15(10), 104117. https://doi.org/10.1016/j.arabjc.2022.104117
  9. Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., & Kahru, A. (2013). Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Archives of Toxicology, 87(7), 1181-1200. https://doi.org/10.1007/s00204-013-1079-4
  10. Carvalho, J. C., Keita, H., Santana, G. R., De Souza, G. C., Dos Santos, I. V., Amado, J. R., Kourouma, A., Prada, A. L., De Oliveira Carvalho, H., & Silva, M. L. (2017). Effects of Bothrops alternatus venom in zebrafish: A histopathological study. Inflammopharmacology, 26(1), 273-284. https://doi.org/10.1007/s10787-017-0362-z
  11. Dagher, S., Haik, Y., Ayesh, A. I., & Tit, N. (2014). Synthesis and optical properties of colloidal CuO nanoparticles. Journal of Luminescence, 151, 149-154. https://doi.org/10.1016/j.jlumin.2014.02.015
  12. Devasagayam, T. P., & Tarachand, U. (1987). Decreased lipid peroxidation in the rat kidney during gestation. Biochemical and Biophysical Research Communications, 145(1), 134-138. https://doi.org/10.1016/0006-291x(87)91297-6
  13. Devi, A. B., Moirangthem, D. S., Talukdar, N. C., Devi, M. D., Singh, N. R., & Luwang, M. N. (2014). Novel synthesis and characterization of CuO nanomaterials: Biological applications. Chinese Chemical Letters, 25(12), 1615-1619. https://doi.org/10.1016/j.cclet.2014.07.014
  14. Etefagh, R., Rozati, S., Azhir, E., Shahtahmasebi, N., & Hosseini, A. (2017). Synthesis and antimicrobial properties of ZnO/PVA, CuO/PVA, and TiO2/PVA nanocomposites. Scientia Iranica, 24(3), 1717-1723. https://doi.org/10.24200/sci.2017.4147
  15. Kadam, J., Dhawal, P., Barve, S., & Kakodkar, S. (2020). Green synthesis of silver nanoparticles using cauliflower waste and their multifaceted applications in photocatalytic degradation of methylene blue dye and Hg2+ biosensing. SN Applied Sciences, 2(4). https://doi.org/10.1007/s42452-020-2543-4
  16. Katwal, R., Kaur, H., Sharma, G., Naushad, M., & Pathania, D. (2015). Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. Journal of Industrial and Engineering Chemistry, 31, 173-184. https://doi.org/10.1016/j.jiec.2015.06.021
  17. Lowry, O., Rosebrough, N., Farr, A. L., & Randall, R. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. https://doi.org/10.1016/s0021-9258(19)52451-6
  18. Mani, R., Balasubramanian, S., Raghunath, A., & Perumal, E. (2019). Chronic exposure to copper oxide nanoparticles causes muscle toxicity in adult zebrafish. Environmental Science and Pollution Research, 27(22), 27358-27369. https://doi.org/10.1007/s11356-019-06095-w
  19. MARKLUND, S., & MARKLUND, G. (1974). Involvement of the superoxide anion radical in the Autoxidation of pyrogallol and a convenient assay for superoxide Dismutase. European Journal of Biochemistry, 47(3), 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  20. Marulasiddeshi, H. B., Kanti, P. K., Jamei, M., Prakash, S. B., Sridhara, S. N., & Said, Z. (2022). Experimental study on the thermal properties of al 2 O 3 ‐cuo /water hybrid nanofluids: Development of an artificial intelligence model. International Journal of Energy Research, 46(15), 21066-21083. https://doi.org/10.1002/er.8739
  21. Menke, A. L., Spitsbergen, J. M., Wolterbeek, A. P., & Woutersen, R. A. (2011). Normal anatomy and histology of the adult Zebrafish. Toxicologic Pathology, 39(5), 759-775. https://doi.org/10.1177/0192623311409597
  22. Nations, S., Long, M., Wages, M., Maul, J. D., Theodorakis, C. W., & Cobb, G. P. (2015). Subchronic and chronic developmental effects of copper oxide (CuO) nanoparticles on xenopus laevis. Chemosphere, 135, 166-174. https://doi.org/10.1016/j.chemosphere.2015.03.078
  23. Naz, S., Gul, A., & Zia, M. (2019). Toxicity of copper oxide nanoparticles: A review study. IET Nanobiotechnology, 14(1), 1-13. https://doi.org/10.1049/iet-nbt.2019.0176
  24. Perreault, F., Melegari, S. P., Da Costa, C. H., De Oliveira Franco Rossetto, A. L., Popovic, R., & Matias, W. G. (2012). Genotoxic effects of copper oxide nanoparticles in Neuro 2a cell cultures. Science of The Total Environment, 441, 117-124. https://doi.org/10.1016/j.scitotenv.2012.09.065
  25. Ruiz, P., Katsumiti, A., Nieto, J. A., Bori, J., Jimeno-Romero, A., Reip, P., Arostegui, I., Orbea, A., & Cajaraville, M. P. (2015). Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and Ionic copper in mussels mytilus galloprovincialis. Marine Environmental Research, 111, 107-120. https://doi.org/10.1016/j.marenvres.2015.07.018
  26. Sahooli, M., Sabbaghi, S., & Saboori, R. (2012). Synthesis and characterization of mono sized CuO nanoparticles. Materials Letters, 81, 169-172. https://doi.org/10.1016/j.matlet.2012.04.148
  27. Samim, A. R., & Vaseem, H. (2023). Exposure to nickel oxide nanoparticles induces alterations in antioxidant system, metabolic enzymes and nutritional composition in muscles of Heteropneustes fossilis. Bulletin of Environmental Contamination and Toxicology, 110(4). https://doi.org/10.1007/s00128-023-03714-8
  28. Turan, V. (2021). Calcite in combination with olive pulp biochar reduces Ni mobility in soil and its distribution in chili plant. International Journal of Phytoremediation, 24(2), 166-176. https://doi.org/10.1080/15226514.2021.1929826
  29. Win-Shwe, T., & Fujimaki, H. (2011). Nanoparticles and neurotoxicity. International Journal of Molecular Sciences, 12(9), 6267-6280. https://doi.org/10.3390/ijms12096267
  30. Yang, G., Wang, Y., Wang, T., Wang, D., Weng, H., Wang, Q., & Chen, C. (2021). Variations of enzymatic activity and gene expression in zebrafish (Danio rerio) embryos Co-exposed to zearalenone and fumonisin B1. Ecotoxicology and Environmental Safety, 222, 112533. https://doi.org/10.1016/j.ecoenv.2021.112533
  31. Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., Liu, C., & Yang, S. (2014). CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Progress in Materials Science, 60, 208-337. https://doi.org/10.1016/j.pmatsci.2013.09.003

How to Cite

Histopathological alteration in Zebrafish: Unravelling the Effects of Long-Term Copper Oxide Nanoparticle Exposure. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2030

How to Cite

Histopathological alteration in Zebrafish: Unravelling the Effects of Long-Term Copper Oxide Nanoparticle Exposure. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2030

HTML
57

Total
1

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Himanshu Gupta, Mansee Thakur, Navami Dayal, Muskaan Singh, Jigesh Mehta, Ankit D. Oza, Chander Prakash

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.