Skip to main content Skip to main navigation menu Skip to site footer

Enhancement of the Electro-Optical, Photoluminescent and Plasmonic properties of Gold Nano Particles (GNPs) doped Cholesteric Liquid Crystals Matrix

  • Manisha Chaudhary
  • Monika Yadav
  • Rajendra Prasad

Abstract

The optimized investigations of gold nanoparticles (GNP) doped cholesteric liquid crystals revealed the vibrant transitions of liquid crystal phases. Thermodynamical investigation observed the critical temperatures of different phases. The different concentration of gold nanoparticles induced in cholesteric liquid crystal shows the extensive assortment of various phases as well as reduced the cholesteric–blue phase-isotropic transition temperature from 105 OC to 101 OC. The predisposition of the twisting of molecules in the gold nanoparticles doped cholesteric liquid crystal samples was confirmed by the electro-optical examination. Dielectric investigation recorded the effect of gold nanoparticles in cholesteric liquid crystal. It signatures that the dielectric permittivity and absorption reduced from 11.57 to 10.2 and 14 to 13.2 respectively.  Plasmonic behavior of the CLC-Au NPs matrix modulated by the wavelength shifting. Enrichment of the functional area of the material surface and decrement of photoluminescence intensity has been experiential by the doping of gold nanoparticles in a cholesteric liquid crystals matrix. 

Section

References

  1. Asiya, S., Pal, K., Kralj, S., & Thomas, S. (2020). Nanomaterials dispersed liquid crystalline self-assembly of hybrid matrix application towards thermal sensor. Nanofabrication for Smart Nanosensor Applications, chapter-12, 295-321. https://doi.org/10.1016/B978-0-12-820702-4.00013-1
  2. Bisoyi, H. K., & Kumar, S. (2011). Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chemical Society Reviews, 40, 306-319. https://doi.org/10.1039/B901793N
  3. Bitar, R., Agez, G., & Mitov, M. (2011). Cholesteric liquid crystal self - organization of gold nanoparticles. Soft Matter, 7, 8198–8206. https://doi.org/10.1039/C1SM05628J
  4. Bukowczan, A., Hebda, E., & Pielichowski, K. (2021). The influence of nanoparticles on phase formation and stability of liquid crystals and liquid crystalline polymers. Journal of Molecular Liquids, 321, 114849. https://doi.org/10.1016/j.molliq.2020.114849
  5. Caputo, R., De, S. L., Cataldi, U., & Umeton, C. (2012). Plasmon Resonance Tunability of Gold Nanoparticles Embedded in a Confined Cholesteric Liquid Crystal Host. Molecular Crystal Liquid Crystal, 559, 194–201. https://doi.org/10.1080/15421406.2012.658709
  6. Chaudhary, M., & Ghildyal, D. (2024). Investigations of axioms of twist grain boundary phases (TGBPs) in binary mixture of liquid crystals. International Journal of Modern Physics B, 38, 2450006 https://doi.org/10.1142/S0217979224500061
  7. Chaudhry, M., & Ghildyal, D. (2022). Characterization of thermal, electro optical and photoluminescent properties of nematic liquid crystal doped with gold nano particles. Materials today: Proceedings, 57, 2061-2066. https://doi.org/10.1016/j.matpr.2021.11.265
  8. Chauhan, G., Malik, P., & Deep, A. (2023). Morphological, dielectric, electro-optic and photoluminescence properties of titanium oxide nanoparticles enriched polymer stabilized cholesteric liquid crystal composites. Journal of Molecular Liquids, 376, 121406. https://doi.org/10.1016/j.molliq.2023.121406
  9. Coles, H., & Morris, S. (2010). Liquid Crystal lasers. Nature Photonics, 4, 676-685. http://doi.org/10.1038/nphoton.2010.184
  10. Cordoyiannis, G., Lavric, M., Treck, M., Tzitzios, V., Lelidis, I., Nounesis G., Daniel, H., & Kutnjak, Z. (2020). Quantum Dot-Driven Stabilization of Liquid-Crystalline Blue Phases. Frontiers in Physics, 8, 1-8. https://doi.org/10.3389/fphy.2020.00315
  11. Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104, 293-346. https://doi.org/10.1021/cr030698+
  12. De, S. L., Cataldi, U., Guglielmelli, A., Bürgi, T., Tabiryan, N., Bunning, T. J. (2018). Dynamic optical properties of gold nanoparticles/cholesteric liquid crystal arrays. MRS Communications, 8, 550-555. https://doi.org/10.1557/mrc.2018.80
  13. Ding, H., Wang, X., Mu, L., Yang, Z., Yang, H. (2013). The Effect of CB15 on Cholesteric Liquid Crystal’s Thermal-Optical Properties. Advanced Materials Research, 807, 2684-2687. https://doi.org/10.4028/www.scientific.net/AMR.807-809.2684
  14. Garbovskiy, Y. (2017). Ions in liquid crystals doped with nanoparticles: conventional and counterintuitive temperature effects. Liquid Crystal, 44, 1402–1408. https://doi.org/10.1080/02678292.2017.1280856
  15. Gorkunov, M. V., & Osipov, M. A. (2011). Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparticles. Soft Matter, 7, 4348–4356. https://doi.org/10.1039/C0SM01398F
  16. Hadjichristov, G. B., & Marinov, Y. G. (2017). Photo responsive azo-doped aerosil/7CB nematic liquid-crystalline nanocomposite films: the role of polyimide alignment layers of the films. Journal of Physics: Conference Series, 780, 012008. https://doi.org/10.1088/1742-6596/780/1/012008
  17. Huang, C. C., Chou, T. R., Chen, J. W., & Chao, C. Y. (2015). Enhancement of Photoluminescence Intensity of Cd Se Nanorods doped in cholesteric liquid crystals. Brazilian Journal of Physics, 45, 41-46. https://doi.org/10.1007/s13538-014-0284-9
  18. Infusino, M., De, L. A., Ciuchi, F., Ionescu, A., Scaramuzza, N., & Strangi, G. (2014). Optical and electrical characterization of a gold nanoparticle dispersion in a chiral liquid crystal matrix. Journal of Materials Science, 49, 1805-1811. https://doi.org/10.1007/s10853-013-7868-6
  19. Infusino, M., Luca, A. D., Ciuchi, F., Ionescu, A., Scaramuzza, N., & Strangi, G. (2013). Effects of Gold Nanoparticle Dispersion in a Chiral Liquid Crystal Matrix. Molecular Crystal Liquid Crystal, 572, 59–65. https://doi.org/10.1080/15421406.2012.763211.
  20. Jain, P. K., Lee, K. S., El-Sayed, I. H., & El-Sayed, M. A. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal Physical Chemistry B, 110, 7238–7248. https://doi.org/10.1021/jp057170o
  21. Jonscher, A. K. (1999). Dielectric relaxation in solids. Journal of Physics D: Applied Physics, 32, R57-R70. https://doi.org/10.1088/0022-3727/32/14/201
  22. Kim, H., Kobashi, J., Maeda, Y., Yoshida, H., & Ozaki, M. (2015). Pitch-Length Independent Threshold Voltage of Polymer/Cholesteric Liquid Crystal Nano-Composites. Crystals, 5, 302–311. https://doi.org/10.3390/cryst5030302
  23. Köysal, O. (2010). Conductivity and dielectric properties of cholesteric liquid crystal doped with single wall carbon nanotube. Synthetic Metals, 160, 1097–1100. https://doi.org/10.1016/j.synthmet.2010.02.033
  24. Kumar, A., & Singh, G. (2023). Recent advances and future perspectives of photoluminescent liquid crystals and their nanocomposites for emissive displays and other tunable photonic devices. Journal of Molecular Liquids, 386, 122607. https://doi.org/10.1016/j.molliq.2023.122607
  25. Lee, H. G., Munir, S., & Park, S. Y. (2016). Cholesteric liquid crystal droplets for biosensors. ACS Applied Materials Interfaces, 8, 26407–26417 https://doi.org/10.1021/acsami.6b09624
  26. Liu, Y. S., Lin, H. C., & Xu, H. L. (2018). The Surface Plasmon Resonance Effect on the Defect-Mode Cholesteric Liquid Crystals Doped with Gold Nanoparticles. IEEE Photonics Journal, 10, 4700407. https://doi.org/10.1109/JPHOT.2018.2821560
  27. Pathak, G., Hegde, G., & Prasad, V. (2021). Octadecylamine-capped CdSe/ZnS quantum dot dispersed cholesteric liquid crystal for potential display application: Investigation on photoluminescence and UV absorbance. Liquid Crystal, 48, 579–587. https://doi.org/10.1080/02678292.2020.1799085
  28. Pathinti, R S., Gollapelli, B., Jakka, S. K., & Vallamkondu, J. (2021). Green synthesized TiO2 nanoparticles dispersed cholesteric liquid crystal systems for enhanced optical and dielectric properties. Journal of Molecular Liquids, 336, 116877-84. https://doi.org/10.1016/j.molliq.2021.116877
  29. Petriashvili, G., Devadze, L., Zurabishvili, T., Sepashvili, N., Chirakadze, A., Bukia, T., & Sanikidze, G. (2022). Gold nanoparticles mediated tuning of thermo-optical parameters in gold nanoparticles doped cholesteric liquid crystal nanocomposite. Nano Studies, 22, 111-124. https://doi.org/10.52340/ns.2022.12
  30. Qi, H., & Hegmann, T. (2008). Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. Journal of Materials Chemistry. 18, 3288–3294. https://doi.org/10.1039/B718920F
  31. Roy, J. S., Majumder, T. P., & Dabrowski, R. (2015). Photoluminescence behavior of TiO2 nanoparticles doped with liquid crystals. Journal of Molecular Structure, 1098, 351-354. https://doi.org/10.1016/j.molstruc.2015.06.028
  32. Roy, A., Singh, B. P., Yadav, G., Khan, H., Kumar, S., Srivastava, A., & Manohar, R. (2019). Effect of gold nanoparticles on intrinsic material parameters and luminescent characteristics of nematic liquid crystals. Journal of Molecular Liquid, 295, 111872. https://doi.org/10.1016/j.molliq.2019.111872
  33. Tomylko, S., Yaroshchuk, O., Kovalchuk, O., Maschke, U., & Yamaguchi, R. (2011). Dielectric and electro-optical properties of liquid crystals doped with diamond nanoparticles. Molecular Crystal Liquid Crystal, 541, 273–281. https://doi.org/10.1080/15421406.2011.569658
  34. Vardanyan, K. K., Sita, D. M., Walton, R. D., Saidel, W. M., & Jones, K. M. (2013). Cyanobiphenyl liquid crystal composites with gold nanoparticles. RSC Advances, 3, 259−273. https://doi.org/10.1039/C2RA21220J
  35. Yadav, G., Katiyar, R., Pathak, G., & Manohar, R. (2018.) Effect of ion trapping behavior of TiO2 nanoparticles on different parameters of weakly polar nematic liquid crystal. Journal of Theoretical and Applied Physics, 12, 191-198. https://doi.org/10.1007/s40094-018-0296-x

How to Cite

Enhancement of the Electro-Optical, Photoluminescent and Plasmonic properties of Gold Nano Particles (GNPs) doped Cholesteric Liquid Crystals Matrix. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2029

How to Cite

Enhancement of the Electro-Optical, Photoluminescent and Plasmonic properties of Gold Nano Particles (GNPs) doped Cholesteric Liquid Crystals Matrix. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2029

HTML
14

Total
16

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Manisha Chaudhary, Monika Yadav, Rajendra Prasad

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.