Enhancement of the Electro-Optical, Photoluminescent and Plasmonic properties of Gold Nano Particles (GNPs) doped Cholesteric Liquid Crystals Matrix
Abstract
The optimized investigations of gold nanoparticles (GNP) doped cholesteric liquid crystals revealed the vibrant transitions of liquid crystal phases. Thermodynamical investigation observed the critical temperatures of different phases. The different concentration of gold nanoparticles induced in cholesteric liquid crystal shows the extensive assortment of various phases as well as reduced the cholesteric–blue phase-isotropic transition temperature from 105 OC to 101 OC. The predisposition of the twisting of molecules in the gold nanoparticles doped cholesteric liquid crystal samples was confirmed by the electro-optical examination. Dielectric investigation recorded the effect of gold nanoparticles in cholesteric liquid crystal. It signatures that the dielectric permittivity and absorption reduced from 11.57 to 10.2 and 14 to 13.2 respectively. Plasmonic behavior of the CLC-Au NPs matrix modulated by the wavelength shifting. Enrichment of the functional area of the material surface and decrement of photoluminescence intensity has been experiential by the doping of gold nanoparticles in a cholesteric liquid crystals matrix.
References
- Asiya, S., Pal, K., Kralj, S., & Thomas, S. (2020). Nanomaterials dispersed liquid crystalline self-assembly of hybrid matrix application towards thermal sensor. Nanofabrication for Smart Nanosensor Applications, chapter-12, 295-321. https://doi.org/10.1016/B978-0-12-820702-4.00013-1
- Bisoyi, H. K., & Kumar, S. (2011). Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chemical Society Reviews, 40, 306-319. https://doi.org/10.1039/B901793N
- Bitar, R., Agez, G., & Mitov, M. (2011). Cholesteric liquid crystal self - organization of gold nanoparticles. Soft Matter, 7, 8198–8206. https://doi.org/10.1039/C1SM05628J
- Bukowczan, A., Hebda, E., & Pielichowski, K. (2021). The influence of nanoparticles on phase formation and stability of liquid crystals and liquid crystalline polymers. Journal of Molecular Liquids, 321, 114849. https://doi.org/10.1016/j.molliq.2020.114849
- Caputo, R., De, S. L., Cataldi, U., & Umeton, C. (2012). Plasmon Resonance Tunability of Gold Nanoparticles Embedded in a Confined Cholesteric Liquid Crystal Host. Molecular Crystal Liquid Crystal, 559, 194–201. https://doi.org/10.1080/15421406.2012.658709
- Chaudhary, M., & Ghildyal, D. (2024). Investigations of axioms of twist grain boundary phases (TGBPs) in binary mixture of liquid crystals. International Journal of Modern Physics B, 38, 2450006 https://doi.org/10.1142/S0217979224500061
- Chaudhry, M., & Ghildyal, D. (2022). Characterization of thermal, electro optical and photoluminescent properties of nematic liquid crystal doped with gold nano particles. Materials today: Proceedings, 57, 2061-2066. https://doi.org/10.1016/j.matpr.2021.11.265
- Chauhan, G., Malik, P., & Deep, A. (2023). Morphological, dielectric, electro-optic and photoluminescence properties of titanium oxide nanoparticles enriched polymer stabilized cholesteric liquid crystal composites. Journal of Molecular Liquids, 376, 121406. https://doi.org/10.1016/j.molliq.2023.121406
- Coles, H., & Morris, S. (2010). Liquid Crystal lasers. Nature Photonics, 4, 676-685. http://doi.org/10.1038/nphoton.2010.184
- Cordoyiannis, G., Lavric, M., Treck, M., Tzitzios, V., Lelidis, I., Nounesis G., Daniel, H., & Kutnjak, Z. (2020). Quantum Dot-Driven Stabilization of Liquid-Crystalline Blue Phases. Frontiers in Physics, 8, 1-8. https://doi.org/10.3389/fphy.2020.00315
- Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104, 293-346. https://doi.org/10.1021/cr030698+
- De, S. L., Cataldi, U., Guglielmelli, A., Bürgi, T., Tabiryan, N., Bunning, T. J. (2018). Dynamic optical properties of gold nanoparticles/cholesteric liquid crystal arrays. MRS Communications, 8, 550-555. https://doi.org/10.1557/mrc.2018.80
- Ding, H., Wang, X., Mu, L., Yang, Z., Yang, H. (2013). The Effect of CB15 on Cholesteric Liquid Crystal’s Thermal-Optical Properties. Advanced Materials Research, 807, 2684-2687. https://doi.org/10.4028/www.scientific.net/AMR.807-809.2684
- Garbovskiy, Y. (2017). Ions in liquid crystals doped with nanoparticles: conventional and counterintuitive temperature effects. Liquid Crystal, 44, 1402–1408. https://doi.org/10.1080/02678292.2017.1280856
- Gorkunov, M. V., & Osipov, M. A. (2011). Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparticles. Soft Matter, 7, 4348–4356. https://doi.org/10.1039/C0SM01398F
- Hadjichristov, G. B., & Marinov, Y. G. (2017). Photo responsive azo-doped aerosil/7CB nematic liquid-crystalline nanocomposite films: the role of polyimide alignment layers of the films. Journal of Physics: Conference Series, 780, 012008. https://doi.org/10.1088/1742-6596/780/1/012008
- Huang, C. C., Chou, T. R., Chen, J. W., & Chao, C. Y. (2015). Enhancement of Photoluminescence Intensity of Cd Se Nanorods doped in cholesteric liquid crystals. Brazilian Journal of Physics, 45, 41-46. https://doi.org/10.1007/s13538-014-0284-9
- Infusino, M., De, L. A., Ciuchi, F., Ionescu, A., Scaramuzza, N., & Strangi, G. (2014). Optical and electrical characterization of a gold nanoparticle dispersion in a chiral liquid crystal matrix. Journal of Materials Science, 49, 1805-1811. https://doi.org/10.1007/s10853-013-7868-6
- Infusino, M., Luca, A. D., Ciuchi, F., Ionescu, A., Scaramuzza, N., & Strangi, G. (2013). Effects of Gold Nanoparticle Dispersion in a Chiral Liquid Crystal Matrix. Molecular Crystal Liquid Crystal, 572, 59–65. https://doi.org/10.1080/15421406.2012.763211.
- Jain, P. K., Lee, K. S., El-Sayed, I. H., & El-Sayed, M. A. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal Physical Chemistry B, 110, 7238–7248. https://doi.org/10.1021/jp057170o
- Jonscher, A. K. (1999). Dielectric relaxation in solids. Journal of Physics D: Applied Physics, 32, R57-R70. https://doi.org/10.1088/0022-3727/32/14/201
- Kim, H., Kobashi, J., Maeda, Y., Yoshida, H., & Ozaki, M. (2015). Pitch-Length Independent Threshold Voltage of Polymer/Cholesteric Liquid Crystal Nano-Composites. Crystals, 5, 302–311. https://doi.org/10.3390/cryst5030302
- Köysal, O. (2010). Conductivity and dielectric properties of cholesteric liquid crystal doped with single wall carbon nanotube. Synthetic Metals, 160, 1097–1100. https://doi.org/10.1016/j.synthmet.2010.02.033
- Kumar, A., & Singh, G. (2023). Recent advances and future perspectives of photoluminescent liquid crystals and their nanocomposites for emissive displays and other tunable photonic devices. Journal of Molecular Liquids, 386, 122607. https://doi.org/10.1016/j.molliq.2023.122607
- Lee, H. G., Munir, S., & Park, S. Y. (2016). Cholesteric liquid crystal droplets for biosensors. ACS Applied Materials Interfaces, 8, 26407–26417 https://doi.org/10.1021/acsami.6b09624
- Liu, Y. S., Lin, H. C., & Xu, H. L. (2018). The Surface Plasmon Resonance Effect on the Defect-Mode Cholesteric Liquid Crystals Doped with Gold Nanoparticles. IEEE Photonics Journal, 10, 4700407. https://doi.org/10.1109/JPHOT.2018.2821560
- Pathak, G., Hegde, G., & Prasad, V. (2021). Octadecylamine-capped CdSe/ZnS quantum dot dispersed cholesteric liquid crystal for potential display application: Investigation on photoluminescence and UV absorbance. Liquid Crystal, 48, 579–587. https://doi.org/10.1080/02678292.2020.1799085
- Pathinti, R S., Gollapelli, B., Jakka, S. K., & Vallamkondu, J. (2021). Green synthesized TiO2 nanoparticles dispersed cholesteric liquid crystal systems for enhanced optical and dielectric properties. Journal of Molecular Liquids, 336, 116877-84. https://doi.org/10.1016/j.molliq.2021.116877
- Petriashvili, G., Devadze, L., Zurabishvili, T., Sepashvili, N., Chirakadze, A., Bukia, T., & Sanikidze, G. (2022). Gold nanoparticles mediated tuning of thermo-optical parameters in gold nanoparticles doped cholesteric liquid crystal nanocomposite. Nano Studies, 22, 111-124. https://doi.org/10.52340/ns.2022.12
- Qi, H., & Hegmann, T. (2008). Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. Journal of Materials Chemistry. 18, 3288–3294. https://doi.org/10.1039/B718920F
- Roy, J. S., Majumder, T. P., & Dabrowski, R. (2015). Photoluminescence behavior of TiO2 nanoparticles doped with liquid crystals. Journal of Molecular Structure, 1098, 351-354. https://doi.org/10.1016/j.molstruc.2015.06.028
- Roy, A., Singh, B. P., Yadav, G., Khan, H., Kumar, S., Srivastava, A., & Manohar, R. (2019). Effect of gold nanoparticles on intrinsic material parameters and luminescent characteristics of nematic liquid crystals. Journal of Molecular Liquid, 295, 111872. https://doi.org/10.1016/j.molliq.2019.111872
- Tomylko, S., Yaroshchuk, O., Kovalchuk, O., Maschke, U., & Yamaguchi, R. (2011). Dielectric and electro-optical properties of liquid crystals doped with diamond nanoparticles. Molecular Crystal Liquid Crystal, 541, 273–281. https://doi.org/10.1080/15421406.2011.569658
- Vardanyan, K. K., Sita, D. M., Walton, R. D., Saidel, W. M., & Jones, K. M. (2013). Cyanobiphenyl liquid crystal composites with gold nanoparticles. RSC Advances, 3, 259−273. https://doi.org/10.1039/C2RA21220J
- Yadav, G., Katiyar, R., Pathak, G., & Manohar, R. (2018.) Effect of ion trapping behavior of TiO2 nanoparticles on different parameters of weakly polar nematic liquid crystal. Journal of Theoretical and Applied Physics, 12, 191-198. https://doi.org/10.1007/s40094-018-0296-x
How to Cite
How to Cite
Downloads
Article Details
Most Read This Month
License
Copyright (c) 2024 Manisha Chaudhary, Monika Yadav, Rajendra Prasad
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.