Skip to main content Skip to main navigation menu Skip to site footer

Impact of Titanium Oxide Nanoparticles on Microleakage and Bond Strength of Orthodontic Brackets: An In Vitro Analysis

  • Tarika Gopal
  • S M Laxmikanth
  • Mahamad Irfanulla Khan

Abstract

The present study compares the microleakage and shear bond strength (SBS) of orthodontic brackets bonded with conventional composite resin and composite resin containing Titanium oxide (TiO2) nanoparticles after thermocycling. Eighty human extracted premolars bonded with 0.022 slot MBT brackets were divided into Group I (TiO2 nanoparticles composite) and Group II (conventional Transbond XT composite). After bonding, samples were thermocycled between 5°C and 55°C and evaluated for microleakage (stereomicroscope, 40X) and SBS (Universal testing machine). Adhesive Remnant Index (ARI) was scored under 10X magnification, and data was analyzed using a t-test and Chi-square test. The results showed that Group II (conventional composite) demonstrated higher shear bond strength (19.01 MPa) than Group I (15.05 MPa, p<0.001). Group II also showed lower microleakage (0.42 mm) than Group I (0.83 mm, p=0.01). Incisal microleakage was lower (p=0.16), with a higher ARI score (p=0.03) in the Group II samples. The current study revealed that the conventional composite resin (Transbond XT) has a higher shear bond strength and decreased microleakage compared to Titanium oxide nanoparticle incorporated composite within a clinically significant range. Conventional composite resin bonding also exhibited higher Adhesive remnant index scores, indicating a reduced risk of enamel damage during debonding.

 

Section

References

  1. Ahn, S. J., Lee, S. J., Kook, J. K., & Lim, B. S. (2009). Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dental materials, 25(2), 206–213. https://doi.org/10.1016/j.dental.2008.06.002
  2. Arhun, N., Arman, A., Sesen, C., Karabulut, E., Korkmaz, Y., & Gokalp, S. (2006). Shear bond strength of orthodontic brackets with 3 self-etch adhesives. American journal of orthodontics and dentofacial orthopedics, 129(4), 547–550. https://doi.org/10.1016/j.ajodo.2005.12.006
  3. Asiry, M. A., AlShahrani, I., Alaqeel, S. M., Durgesh, B. H., & Ramakrishnaiah, R. (2018). Effect of two-step and one-step surface conditioning of glass ceramic on adhesion strength of orthodontic bracket and effect of thermo-cycling on adhesion strength. Journal of the mechanical behavior of biomedical materials, 84, 22–27. https://doi.org/10.1016/j.jmbbm.2018.04.021
  4. Asiry, M. A., & Asiry, M. A. (2018). Long-term effects of titanium dioxide nanoparticles on dental composite resins: A clinical and laboratory study. International Journal of Nanomedicine, 13, 2585-2594. https://doi.org/10.2147/IJN.S159855
  5. Bakhadher, W., Halawany, H., Talic, N., Abraham, N., & Jacob, V. (2015). Factors affecting the shear bond strength of orthodontic brackets–a review of in vitro studies. Acta Medica (Hradec Kralove), 58(2), 43-48. doi.org/10.14712/18059694.2015.92
  6. Bishara, S. E., Gordan, V. V., VonWald, L., & Jakobsen, J. R. (1999). Shear bond strength of composite, glass ionomer, and acidic primer adhesive systems. American journal of orthodontics and dentofacial orthopedics 115(1), 24–28. https://doi.org/10.1016/s0889-5406 (99)70312-4
  7. Bishara SE, Gordan VV, VonWald L, Olson ME. (1998). Effect of an acidic primer on shear bond strength of orthodontic brackets. American journal of orthodontics and dentofacial orthopedics, 114(3), 243–247. https://doi.org/10.1016/s0889-5406(98)70205-7
  8. Borzabadi-Farahani, A., Borzabadi, E., & Lynch, E. (2014). Nanoparticles in orthodontics, a review of antimicrobial and anti-caries applications. Acta odontologica Scandinavica, 72(6), 413–417. https://doi.org/10.3109/00016357.2013.859728
  9. Buonocore M.G. (1955). A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. Journal of dental research, 34(6), 849–853. https://doi.org/10.1177/00220345550340060801
  10. Felemban, N. H., & Ebrahim, M. I. (2017). The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study. BMC oral health, 17(1), 43. https://doi.org/10.1186/s12903-017-0332-2-2
  11. Felemban, N. H., & Felemban, M. S. (2017). Effect of titanium dioxide nanoparticles on the mechanical and thermal properties of dental composites. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(2), 407-414. https://doi.org/10.1002/jbm.b.33583
  12. Ferracane, J. L., & Marker, V.A. (1992). Solvent degradation and reduced fracture toughness in aged composites. Journal of dental research, 71(1), 13–19. https://doi.org/10.1177/00220345920710010101
  13. Hedayati, Z., & Farjood, A. (2018). Evaluation of Microleakage under Orthodontic Brackets Bonded with Nanocomposites. Contemporary clinical dentistry, 9(3), 361–366. https://doi.org/10.4103/ccd.ccd_69_18
  14. Hedayati, Z., & Moghaddam, S. K. (2018). Influence of nanofiller incorporation on the bond strength of orthodontic adhesives: A systematic review and meta-analysis. Journal of Orthodontic Science, 7(1), 1-9. https://doi.org/10.4103/jos.JOS_63_17
  15. Hegde, M. N., & Hegde, S. (2010). Comparative evaluation of shear bond strength of orthodontic brackets bonded with different adhesive systems: An in vitro study. American Journal of Orthodontics and Dentofacial Orthopedics, 137(6), 717-724. https://doi.org/ 10.1016/j.ajodo.2009.10.027
  16. Jandt, K.D., & Watts, D.C (2020). Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dental materials, 36(11), 1365–1378. https://doi.org/10.1016/j.dental.2020.08.006
  17. Khosravanifard, B., Nemati-Anaraki, S., Faraghat, S., Sajjadi, S.H., Rakhshan, H., & Rakhshan, V. (2011) Efficacy of 4 surface treatments in increasing the shear bond strength of orthodontic brackets bonded to saliva contaminated direct composites. Orthodontic Waves, 70(2), 65–70. doi.org/10.1016/j.odw.2011.02.003
  18. Leloup, G., D'Hoore, W., Bouter, D., Degrange, M., & Vreven, J. (2001). Meta-analytical review of factors involved in dentin adherence. Journal of dental research, 80(7), 1605–1614. https://doi.org/10.1177/00220345010800070301
  19. McInnes, P.M., & Dickinson, G.L. (1992). The effect of thermocycling in microleakage analysis. Dental materials, 8(3), 181–184. https://doi.org/10.1016/0109-5641 (92)90079-r
  20. Murray, S.D., & Hobson, R.S. (2003). Comparison of in vivo and in vitro shear bond strength. American journal of orthodontics and dentofacial orthopedics, 123(1), 2–9. https://doi.org/10.1067/mod.2003.49
  21. Park, S. B., Son, W. S., Ko, C. C., García-Godoy, F., Park, M. G., Kim, H. I., & Kwon, Y. H. (2009). Influence of flowable resins on the shear bond strength of orthodontic brackets. Dental materials journal, 28(6), 730–734. https://doi.org/10.4012/dmj.28.730
  22. Proffit, W.R., Fields, H.W., & Nixon, W.L. (1983). Occlusal forces in normal- and long-face adults. Journal of dental research, 62(5), 566–570. https://doi.org/10.1177/00220345830620051201
  23. Reynolds, R. M., & Pandolfo, I. (2010). Toxicological and biocompatibility assessments of nanoparticles in dental applications. Journal of Biomedical Nanotechnology, 6(2), 178-184.https://doi.org/10.1166/jbn.2010.1046
  24. Reddy, A. K., Kambalyal, P. B., Patil, S. R., Vankhre, M., Khan, M. Y., & Kumar, T. R. (2016). Comparative evaluation and influence on shear bond strength of incorporating silver, zinc oxide, and titanium dioxide nanoparticles in orthodontic adhesive. Journal of orthodontic science, 5(4), 127–131. https://doi.org/10.4103/2278-0203.192115
  25. Salman, O.L., & Al-Ani, R.A. (2021). Evaluation of Microleakage under Sapphire Brackets Bonded with Three Different Orthodontic Adhesives after Thermocycling and Water Storage (An in Vitro Study). Indian Journal of Forensic Medicine & Toxicology, 15(3), 1457-1462. https://doi.org/10.37506/ijfmt.v15i3.15510
  26. Shaik, J. A., Reddy, R. K., Bhagyalakshmi, K., Shah, M. J., Madhavi, O., & Ramesh, S. V. (2018). In vitro Evaluation of Shear Bond Strength of Orthodontic Brackets Bonded with Different Adhesives. Contemporary clinical dentistry, 9(2), 289–292. https://doi.org/10.4103/ccd.ccd_15_18
  27. Sharma, S., Tandon, P., Nagar, A., Singh, G. P., Singh, A., & Chugh, V. K (2014). A comparison of shear bond strength of orthodontic brackets bonded with four different orthodontic adhesives. Journal of orthodontic science, 3(2), 29–33. https://doi.org/10.4103/2278-0203.132892
  28. Sodagar, A., Bahador, A., Khalil, S., Shahroudi, A. S., & Kassaee, M. Z. (2013). The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins. Journal of prosthodontic research, 57(1), 15–19. https://doi.org/10.1016/j.jpor.2012.05.001
  29. Sodagar, A., & Moshkelgosha, V. (2013). Effect of different nanoparticle fillers on the shear bond strength of orthodontic adhesives. Dental Materials Journal, 32(3), 439-445. https://doi.org/10.4012/dmj.2012-297
  30. Thekiya, A. H., Aileni, K. R., Rachala, M. R., Reddy, S. D., Devi, K. S., & Khan, M. Y. A. (2018). An Evaluation of Shear Bond Strength of Admira (Ormocer) as an Alternative Material for Bonding Orthodontic Brackets: An In vitro Study. Journal of International Society of Preventive & Community Dentistry, 8(1), 56–61. https://doi.org/10.4103/jispcd.JISPCD_375_17
  31. Vicente, A., Ortiz, A. J., & Bravo, L. A. (2009). Microleakage beneath brackets bonded with flowable materials: effect of thermocycling. European journal of orthodontics, 31(4), 390–396. https://doi.org/10.1093/ejo/cjn126

How to Cite

Impact of Titanium Oxide Nanoparticles on Microleakage and Bond Strength of Orthodontic Brackets: An In Vitro Analysis. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2019

How to Cite

Impact of Titanium Oxide Nanoparticles on Microleakage and Bond Strength of Orthodontic Brackets: An In Vitro Analysis. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2019

HTML
34

Total
30

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Tarika Gopal, S M Laxmikanth, Mahamad Irfanulla Khan

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.