Skip to main content Skip to main navigation menu Skip to site footer

Effect of Food-Grade Pharmaceutical Excipients on Physicochemical Behaviour of Quercetin Nanocomposites: Thermal and Non-Thermal Analysis

  • Sabya Sachi Das
  • Priya Ranjan Prasad Verma
  • Sandeep Kumar Singh

Abstract

In this study, the compatibility of Quercetin (QC) nanocomposites with some selective food-grade pharmaceutical excipients was assessed using various thermal (DSC and TGA), non-thermal (P-XRD, FT-IR, and RAMAN spectroscopy, and FESEM) techniques. All the techniques were simultaneously used and correlated to detect the QC's compatibility with the selected excipients (CO, CCO, OA, T20, T60, and T80). DSC-TG studies showed that QC-CO and QC-T60 samples exhibited irregular degradation patterns, causing the drug's transformation from crystalline to amorphous. P-XRD results showed that the crystalline behavior of QC was retained in all the samples. However, the peak intensities were reduced and shifted in some samples. The Davg. value for all samples, including pure QC, was 26.80-76.07 nm. FT-IR and RAMAN studies demonstrated that bonds including –C=O stretching, C-C stretching (ring A), and -OH bonds (in ring A, B, and C) in pure QC play a crucial role in its interaction with excipients. Furthermore, the excipients' effect on QC's morphology using FESEM showed smoothening, fragmentation, and agglomeration of the drug. In conclusion, the possible drug-excipient incompatibility can be potentially determined with the help of these analytical methods. The physicochemical studies from this work may provide immense knowledge for the researchers and manufacturers involved in quercetin-based pharmaceutical and/or nutraceutical formulations.

Section

References

  1. Agrawal K, Chakraborty P, Dewanjee S, Arfin S, Das SS, Dey A, Moustafa M, Mishra PC, Jafari SM, Jha NK, Jha SK, Kumar D (2023) Neuropharmacological interventions of quercetin and its derivatives in neurological and psychological disorders. Neurosci Biobehav Rev 144: 104955. doi:10.1016/j.neubiorev.2022.104955.
  2. Alkhatib MH, Alyamani SA, Abdu F (2020) Incorporation of methotrexate into coconut oil nanoemulsion potentiates its antiproliferation activity and attenuates its oxidative stress. Drug Deliv 27: 422-430. doi:10.1080/10717544.2020.1736209.
  3. Anarjan N, Tan CP (2013) Effects of selected polysorbate and sucrose ester emulsifiers on the physicochemical properties of astaxanthin nanodispersions. Molecules 18: 768-777. doi:10.3390/molecules18010768.
  4. Balestrin LA, Bidone J, Bortolin RC, Moresco K, Moreira JC, Teixeira HF (2016) Protective effect of a hydrogel containing Achyrocline satureioides extract-loaded nanoemulsion against UV-induced skin damage. J Photochem Photobiol B 163: 269-276. doi:10.1016/j.jphotobiol.2016.08.039.
  5. Baranovic G, Segota S (2018) Infrared spectroscopy of flavones and flavonols. Reexamination of the hydroxyl and carbonyl vibrations in relation to the interactions of flavonoids with membrane lipids. Spectrochim Acta A Mol Biomol Spectrosc 192: 473-486. doi:10.1016/j.saa.2017.11.057.
  6. Barkat Ali K (2011) Basics of pharmaceutical emulsions: A review. African Journal of Pharmacy and Pharmacology 5. doi:10.5897/ajpp11.698.
  7. Basiri L, Rajabzadeh G, Bostan A (2017) Physicochemical properties and release behavior of Span 60/Tween 60 niosomes as vehicle for α-Tocopherol delivery. Lwt 84: 471-478. doi:10.1016/j.lwt.2017.06.009.
  8. Bischoff SC (2008) Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 11: 733-740. doi:10.1097/MCO.0b013e32831394b8.
  9. Borghetti GS, Lula IS, Sinisterra RD, Bassani VL (2009) Quercetin/beta-cyclodextrin solid complexes prepared in aqueous solution followed by spray-drying or by physical mixture. AAPS PharmSciTech 10: 235-242. doi:10.1208/s12249-009-9196-3.
  10. Bruni G, Amici L, Berbenni V, Marini A, Orlandi A (2002) Drug-Excipient Compatibility Studies. Search of interaction indicators. Journal of Thermal Analysis and Calorimetry 68: 561-573. doi:10.1023/a:1016052121973.
  11. Catauro M, Papale F, Bollino F, Piccolella S, Marciano S, Nocera P, Pacifico S (2015) Silica/quercetin sol-gel hybrids as antioxidant dental implant materials. Sci Technol Adv Mater 16: 035001. doi:10.1088/1468-6996/16/3/035001.
  12. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519: 92-96. doi:10.1038/nature14232.
  13. Crowley P, Martini L (2001) Drug-Excipient Interactions. Pharmaceutical Technology Europe 13: 26-31.
  14. D'Andrea G (2015) Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 106: 256-271. doi:10.1016/j.fitote.2015.09.018.
  15. Das SS, Dubey AK, Verma PRP, Singh SK, Singh SK (2022) Therapeutic Potential of Quercetin-Loaded Nanoemulsion against Experimental Visceral Leishmaniasis: In Vitro/Ex Vivo Studies and Mechanistic Insights. Mol Pharm 19: 3367-3384. doi:10.1021/acs.molpharmaceut.2c00492.
  16. Das SS, Hussain A, Verma PRP, Imam SS, Altamimi MA, Alshehri S, Singh SK (2020) Recent Advances in Liposomal Drug Delivery System of Quercetin for Cancer Targeting: A Mechanistic Approach. Curr Drug Deliv 17: 845-860. doi:10.2174/1567201817666200415112657.
  17. Das SS, Jha NK, Jha SK, Verma PRP, Ashraf GM, Singh SK (2023) Neuroprotective Role of Quercetin against Alpha-Synuclein-Associated Hallmarks in Parkinson's Disease. Curr Neuropharmacol 21: 1464-1466. doi:10.2174/1570159X21666221221092250.
  18. Das SS, Sarkar A, Chabattula SC, Verma PRP, Nazir A, Gupta PK, Ruokolainen J, Kesari KK, Singh SK (2022) Food-Grade Quercetin-Loaded Nanoemulsion Ameliorates Effects Associated with Parkinson's Disease and Cancer: Studies Employing a Transgenic C. elegans Model and Human Cancer Cell Lines. Antioxidants (Basel) 11. doi:10.3390/antiox11071378.
  19. Das SS, Verma PRP, Kar S, Singh SK (2020). Quercetin-Loaded Nanomedicine as Oncotherapy. In Nanomedicine for Bioactives (pp. 155-183).
  20. Das SS, Verma PRP, Sekarbabu V, Mohanty S, Pattnaik AK, Ruokolainen J, Kesari KK, Singh SK (2023) Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry Estimation of Quercetin-Loaded Nanoemulsion in Rabbit Plasma: In Vivo-In Silico Pharmacokinetic Analysis Using GastroPlus. ACS Omega 8: 12456-12466. doi:10.1021/acsomega.3c00429.
  21. Das SS, Verma PRP, Singh SK (2020a). Quercetin-Loaded Nanomedicine as Nutritional Application. In Nanomedicine for Bioactives (pp. 259-301).
  22. Das SS, Verma PRP, Singh SK (2020b) Screening and preparation of quercetin doped nanoemulsion: characterizations, antioxidant and anti-bacterial activities. LWT-Food Sci Technol 124. doi:10.1016/j.lwt.2020.109141.
  23. Dey M, Ghosh B, Giri TK (2020) Enhanced intestinal stability and pH sensitive release of quercetin in GIT through gellan gum hydrogels. Colloids Surf B Biointerfaces 196: 111341. doi:10.1016/j.colsurfb.2020.111341.
  24. Dimitric Markovic JM, Markovic ZS, Milenkovic D, Jeremic S (2011) Application of comparative vibrational spectroscopic and mechanistic studies in analysis of fisetin structure. Spectrochim Acta A Mol Biomol Spectrosc 83: 120-129. doi:10.1016/j.saa.2011.08.001.
  25. Dinesh Kumar V, Verma PRP, Singh SK (2015) Development and evaluation of biodegradable polymeric nanoparticles for the effective delivery of quercetin using a quality by design approach. LWT-Food Sci Technol 61: 330-338. doi:10.1016/j.lwt.2014.12.020.
  26. Dupont J, White PJ, Carpenter MP, Schaefer EJ, Meydani SN, Elson CE, Woods M, Gorbach SL (1990) Food uses and health effects of corn oil. J Am Coll Nutr 9: 438-470. doi:10.1080/07315724.1990.10720403.
  27. Fuentes J, Arias-Sante MF, Atala E, Pastene E, Kogan MJ, Speisky H (2020) Low nanomolar concentrations of a quercetin oxidation product, which naturally occurs in onion peel, protect cells against oxidative damage. Food Chem 314: 126166. doi:10.1016/j.foodchem.2020.126166.
  28. Gallelli G, Cione E, Serra R, Leo A, Citraro R, Matricardi P, Di Meo C, Bisceglia F, Caroleo MC, Basile S, Gallelli L (2020) Nano-hydrogel embedded with quercetin and oleic acid as a new formulation in the treatment of diabetic foot ulcer: A pilot study. Int Wound J 17: 485-490. doi:10.1111/iwj.13299.
  29. Gao X, Wang B, Wei X, Men K, Zheng F, Zhou Y, Zheng Y, Gou M, Huang M, Guo G, Huang N, Qian Z, Wei Y (2012) Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale 4: 7021-7030. doi:10.1039/c2nr32181e.
  30. Garcia-Mendoza MDP, Espinosa-Pardo FA, Savoire R, Harscoat-Schiavo C, Cansell M, Subra-Paternault P (2021) Improvement of the oxidative stability of camelina oil by enrichment with phospholipid-quercetin formulations. Food Chem 341: 128234. doi:10.1016/j.foodchem.2020.128234.
  31. German JB (1999) Food processing and lipid oxidation. Adv Exp Med Biol 459: 23-50. doi:10.1007/978-1-4615-4853-9_3.
  32. Gupta K, Kumar S, Gupta RK, Sharma A, Verma AK, Stalin K, Chaudhari BP, Das M, Singh SP, Dwivedi PD (2016) Reversion of Asthmatic Complications and Mast Cell Signalling Pathways in BALB/c Mice Model Using Quercetin Nanocrystals. J Biomed Nanotechnol 12: 717-731. doi:10.1166/jbn.2016.2197.
  33. Han J, Tong M, Li S, Yu X, Hu Z, Zhang Q, Xu R, Wang J (2021) Surfactant-free amorphous solid dispersion with high dissolution for bioavailability enhancement of hydrophobic drugs: a case of quercetin. Drug Dev Ind Pharm 47: 153-162. doi:10.1080/03639045.2020.1862173.
  34. Hemati M, Haghiralsadat F, Yazdian F, Jafari F, Moradi A, Malekpour-Dehkordi Z (2019) Development and characterization of a novel cationic PEGylated niosome-encapsulated forms of doxorubicin, quercetin and siRNA for the treatment of cancer by using combination therapy. Artif Cells Nanomed Biotechnol 47: 1295-1311. doi:10.1080/21691401.2018.1489271.
  35. Kakran M, Shegokar R, Sahoo NG, Shaal LA, Li L, Muller RH (2012) Fabrication of quercetin nanocrystals: comparison of different methods. Eur J Pharm Biopharm 80: 113-121. doi:10.1016/j.ejpb.2011.08.006.
  36. Kamoun O, Gassoumi A, Kouass S, Alhalaili B, Vidu R, Turki-Kamoun N (2020) An Investigation on the Synthesis of Molybdenum Oxide and Its Silica Nanoparticle Composites for Dye Degradation. Nanomaterials (Basel) 10. doi:10.3390/nano10122409.
  37. Kar S, Das SS, Kundu S, Sahu BD, Kumar KJ, Kesari KK, Singh SK (2024) Intranasal Delivery of Carvedilol- and Quercetin-Encapsulated Cationic Nanoliposomes for Cardiovascular Targeting: Formulation and In Vitro and Ex Vivo Studies. ACS Appl Bio Mater. doi:10.1021/acsabm.4c00102.
  38. Kar S, Das SS, Singh SK (2023) Quercetin‐encapsulated magnetoliposomes: Fabrication, optimization, characterization, and antioxidant studies. European Journal of Lipid Science and Technology 125. doi:10.1002/ejlt.202300112.
  39. Khalid N, Kobayashi I, Neves MA, Uemura K, Nakajima M, Nabetani H (2016) Microchannel emulsification study on formulation and stability characterization of monodisperse oil-in-water emulsions encapsulating quercetin. Food Chem 212: 27-34. doi:10.1016/j.foodchem.2016.05.154.
  40. Kim JS (2020) Study of Flavonoid/Hydroxypropyl-beta-Cyclodextrin Inclusion Complexes by UV-Vis, FT-IR, DSC, and X-Ray Diffraction Analysis. Prev Nutr Food Sci 25: 449-456. doi:10.3746/pnf.2020.25.4.449.
  41. Kiokias S, Gordon MH, Oreopoulou V (2017) Effects of composition and processing variables on the oxidative stability of protein-based and oil-in-water food emulsions. Crit Rev Food Sci Nutr 57: 549-558. doi:10.1080/10408398.2014.893503.
  42. Li S, Yan Y, Guan X, Huang K (2020) Preparation of a hordein-quercetin-chitosan antioxidant electrospun nanofibre film for food packaging and improvement of the film hydrophobic properties by heat treatment. Food Packaging and Shelf Life 23. doi:10.1016/j.fpsl.2020.100466.
  43. Li Y, Gao S, Ji X, Liu H, Liu N, Yang J, Lu M, Han L, Wang M (2020) Evaluation studies on effects of quercetin with different concentrations on the physicochemical properties and in vitro digestibility of Tartary buckwheat starch. Int J Biol Macromol 163: 1729-1737. doi:10.1016/j.ijbiomac.2020.09.116.
  44. Lillard DA (1983) Effect of Processing on Chemical and Nutritional Changes in Food Lipids. J Food Prot 46: 61-67. doi:10.4315/0362-028X-46.1.61.
  45. Liu D, Hu H, Lin Z, Chen D, Zhu Y, Hou S, Shi X (2013) Quercetin deformable liposome: preparation and efficacy against ultraviolet B induced skin damages in vitro and in vivo. J Photochem Photobiol B 127: 8-17. doi:10.1016/j.jphotobiol.2013.07.014.
  46. Liu D, Kobayashi T, Russo S, Li F, Plevy SE, Gambling TM, Carson JL, Mumper RJ (2013) In vitro and in vivo evaluation of a water-in-oil microemulsion system for enhanced peptide intestinal delivery. AAPS J 15: 288-298. doi:10.1208/s12248-012-9441-7.
  47. Lv R, Qi L, Zou Y, Zou J, Luo Z, Shao P, Tamer TM (2019) Preparation and structural properties of amylose complexes with quercetin and their preliminary evaluation in delivery application. International Journal of Food Properties 22: 1445-1462. doi:10.1080/10942912.2019.1651736.
  48. Makris DP, Rossiter JT (2000) Heat-induced, metal-catalyzed oxidative degradation of quercetin and rutin (Quercetin 3-O-rhamnosylglucoside) in aqueous model systems. J Agric Food Chem 48: 3830-3838. doi:10.1021/jf0001280.
  49. Manta K, Papakyriakopoulou P, Chountoulesi M, Diamantis DA, Spaneas D, Vakali V, Naziris N, Chatziathanasiadou MV, Andreadelis I, Moschovou K, Athanasiadou I, Dallas P, Rekkas DM, Demetzos C, Colombo G, Banella S, Javornik U, Plavec J, Mavromoustakos T, Tzakos AG, Valsami G (2020) Preparation and Biophysical Characterization of Quercetin Inclusion Complexes with beta-Cyclodextrin Derivatives to be Formulated as Possible Nose-to-Brain Quercetin Delivery Systems. Mol Pharm 17: 4241-4255. doi:10.1021/acs.molpharmaceut.0c00672.
  50. Olejniczak S, Potrzebowski MJ (2004) Solid state NMR studies and density functional theory (DFT) calculations of conformers of quercetin. Org Biomol Chem 2: 2315-2322. doi:10.1039/b406861k.
  51. Qiao Y, Cao Y, Yu K, Zong L, Pu X (2020) Preparation and antitumor evaluation of quercetin nanosuspensions with synergistic efficacy and regulating immunity. Int J Pharm 589: 119830. doi:10.1016/j.ijpharm.2020.119830.
  52. Ramachandran S, Dash CS, Thamilselvan A, Kalpana S, Sundararajan M (2020) Rapid Synthesis and Characterization of Pure and Cobalt Doped Zinc Aluminate Nanoparticles via Microwave Assisted Combustion Method. J Nanosci Nanotechnol 20: 2382-2388. doi:10.1166/jnn.2020.17314.
  53. Sales-Campos H, Reis de Souza P, Crema Peghini B, Santana da Silva J, Ribeiro Cardoso C (2013) An Overview of the Modulatory Effects of Oleic Acid in Health and Disease. Mini-Reviews in Medicinal Chemistry 13: 201-210. doi:10.2174/1389557511313020003.
  54. Santos MI, Gerbino E, Tymczyszyn E, Gomez-Zavaglia A (2015) Applications of Infrared and Raman Spectroscopies to Probiotic Investigation. Foods 4: 283-305. doi:10.3390/foods4030283.
  55. Schoener AL, Zhang R, Lv S, Weiss J, McClements DJ (2019) Fabrication of plant-based vitamin D3-fortified nanoemulsions: influence of carrier oil type on vitamin bioaccessibility. Food Funct 10: 1826-1835. doi:10.1039/c9fo00116f.
  56. Sedaghat Doost A, Kassozi V, Grootaert C, Claeys M, Dewettinck K, Van Camp J, Van der Meeren P (2019) Self-assembly, functionality, and in-vitro properties of quercetin loaded nanoparticles based on shellac-almond gum biological macromolecules. Int J Biol Macromol 129: 1024-1033. doi:10.1016/j.ijbiomac.2019.02.071.
  57. Seneviratne KN, HapuarachchI CD, Ekanayake S (2009) Comparison of the phenolic-dependent antioxidant properties of coconut oil extracted under cold and hot conditions. Food Chemistry 114: 1444-1449. doi:10.1016/j.foodchem.2008.11.038.
  58. Shi X, Fan N, Zhang G, Sun J, He Z, Li J (2020) Quercetin amorphous solid dispersions prepared by hot melt extrusion with enhanced solubility and intestinal absorption. Pharm Dev Technol 25: 472-481. doi:10.1080/10837450.2019.1709502.
  59. Singh N, Hussain A, Kumar Singh S (2020) Morphological transitions of Bacillus subtilis in the presence of food-grade lipidic nanoemulsions. J Food Sci 85: 1223-1230. doi:10.1111/1750-3841.15088.
  60. Teo A, Goh KK, Wen J, Oey I, Ko S, Kwak HS, Lee SJ (2016) Physicochemical properties of whey protein, lactoferrin and Tween 20 stabilised nanoemulsions: Effect of temperature, pH and salt. Food Chem 197: 297-306. doi:10.1016/j.foodchem.2015.10.086.
  61. Thumma S, Repka MA (2009) Compatibility studies of promethazine hydrochloride with tablet excipients by means of thermal and non-thermal methods. Pharmazie 64: 183-189. doi:10.1691/ph.2009.8268.
  62. Tuncer M, Bakan F, Gocmez H, Erdem E (2019) Capacitive behaviour of nanocrystalline octacalcium phosphate (OCP) (Ca8H2(PO4)6.5H2O) as an electrode material for supercapacitors: biosupercaps. Nanoscale 11: 18375-18381. doi:10.1039/c9nr07108c.
  63. Vaz GR, Clementino A, Bidone J, Villetti MA, Falkembach M, Batista M, Barros P, Sonvico F, Dora C (2020) Curcumin and Quercetin-Loaded Nanoemulsions: Physicochemical Compatibility Study and Validation of a Simultaneous Quantification Method. Nanomaterials (Basel) 10. doi:10.3390/nano10091650.
  64. Verma RK, Garg S (2005) Selection of excipients for extended release formulations of glipizide through drug-excipient compatibility testing. J Pharm Biomed Anal 38: 633-644. doi:10.1016/j.jpba.2005.02.026.
  65. Wang Z, Zou W, Liu L, Wang M, Li F, Shen W (2021) Characterization and bacteriostatic effects of beta-cyclodextrin/quercetin inclusion compound nanofilms prepared by electrospinning. Food Chem 338: 127980. doi:10.1016/j.foodchem.2020.127980.
  66. Wyttenbach N, Birringer C, Alsenz J, Kuentz M (2005) Drug-excipient compatibility testing using a high-throughput approach and statistical design. Pharm Dev Technol 10: 499-505. doi:10.1080/10837450500299875.
  67. Zdyb A, Krawczyk S (2016) Characterization of adsorption and electronic excited states of quercetin on titanium dioxide nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 157: 197-203. doi:10.1016/j.saa.2016.01.006.
  68. Zhang GG, Law D, Schmitt EA, Qiu Y (2004) Phase transformation considerations during process development and manufacture of solid oral dosage forms. Adv Drug Deliv Rev 56: 371-390. doi:10.1016/j.addr.2003.10.009.

How to Cite

Effect of Food-Grade Pharmaceutical Excipients on Physicochemical Behaviour of Quercetin Nanocomposites: Thermal and Non-Thermal Analysis. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2014

How to Cite

Effect of Food-Grade Pharmaceutical Excipients on Physicochemical Behaviour of Quercetin Nanocomposites: Thermal and Non-Thermal Analysis. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.2014

HTML
78

Total
40

Share

Search Panel

Sabya Sachi Das
Google Scholar
Pubmed
JDMFS Journal


Priya Ranjan Prasad Verma
Google Scholar
Pubmed
JDMFS Journal


Sandeep Kumar Singh
Google Scholar
Pubmed
JDMFS Journal


Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Sabya Sachi Das, Priya Ranjan Prasad Verma, Sandeep Kumar Singh

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.