Skip to main content Skip to main navigation menu Skip to site footer

Screening of the Medicinal Plant-Based Metabolites Responsible for Silver Nanoparticle Phytofabrication

  • Preeti Sharma
  • Basudha Sharma

Abstract

 In this study, the detailed phytochemical composition of two medicinal plants was investigated and their importance in silver nanoparticles (AgNPs) synthesis was highlighted. Aqueous extracts from the leaves of both plants were used for various analytical techniques, including UV-vis spectroscopy, Gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FTIR) and Thin layer chromatography (TLC). Quantification of total phenolics and flavonoids in different fractions of plant extracts revealed significant concentrations. TLC profiling showed a higher abundance of free phenolic and flavonoid compounds compared to bound forms in both plants, suggesting that they contribute significantly to total phenolic and flavonoid content. UV-vis spectra from 200 to 600 nm revealed the presence of aromatic rings and chromophores in leaf extracts. Furthermore, the GC-MS analysis identified several bioactive compounds, some of which were found to be common between these two species. The results demonstrate that various bioactive compounds such as phenols, flavonoids, alkaloids, carotenoids and terpenoids were present in these plant species. These compounds efficiently serve as both reducing and stabilizing agents during phytofabrication of AgNPs, consequently eliminating the need for the use of hazardous chemicals.

Section

References

  1. Adedapo, A. A., Jimoh, F. O., Afolayan, A. J., & Masika, P. J. (2008). Antioxidant activities and phenolic contents of the methanol extracts of the stems of Acokanthera oppositifolia and Adenia gummifera. BMC Complementary and Alternative Medicine, 8, 1-7. https://doi.org/10.1186/1472-6882-8-54
  2. Adinortey, C. A., Kwarko, G. B., Koranteng, R., Boison, D., Obuaba, I., Wilson, M. D., & Kwofie, S. K. (2022). Molecular structure-based screening of the constituents of Calotropis procera identifies potential inhibitors of diabetes mellitus target alpha glucosidase. Current Issues in Molecular Biology, 44(2), 963-987. https://doi.org/10.3390/cimb44020064
  3. Afreen, A., Ahmed, R., Mehboob, S., Tariq, M., Alghamdi, H. A., Zahid, A. A., ... & Hasan, A. (2020). Phytochemical-assisted biosynthesis of silver nanoparticles from Ajuga bracteosa for biomedical applications. Materials Research Express, 7(7), 075404.DOI 10.1088/2053-1591/aba5d0
  4. Ahmed, M., Khan, K. U. R., Ahmad, S., Aati, H. Y., Ovatlarnporn, C., Rehman, M. S. U., ... & Anwar, M. (2022). Comprehensive phytochemical profiling, biological activities, and molecular docking studies of Pleurospermum candollei: An insight into potential for natural products development. Molecules, 27(13), 4113. https://doi.org/10.3390/molecules27134113
  5. Ahsan, T., Li, B., Wu, Y., & Li, Z. (2023). Bio-Fabrication of ZnONPs from Alkalescent Nucleoside Antibiotic to Control Rice Blast: Impact on Pathogen (Magnaporthe grisea) and Host (Rice). International Journal of Molecular Sciences, 24(3), 2778.
  6. Akinpelu, L. A., Olawuni, I. J., Ogundepo, G. E., Adegoke, A. M., Olayiwola, G., & Idowu, T. O. (2019). Spectroscopic analysis and anti-inflammatory effects of Milicia excelsa (Moraceae) leaf and fractions. GSC Biological and Pharmaceutical Sciences, 6(3), 051-060. https://doi.org/10.3390/ijms24032778
  7. Alara, O. R., Abdurahman, N. H., Mudalip, S. K. A., & Olalere, O. A. (2018). Characterization and effect of extraction solvents on the yield and total phenolic content from Vernonia amygdalina leaves. Journal of Food Measurement and Characterization, 12, 311-316. https://doi.org/10.1007/s11694-017-9642-y
  8. Aleixandre-Tudo, J. L., & Du Toit, W. (2018). The role of UV-visible spectroscopy for phenolic compounds quantification in winemaking. Frontiers and new trends in the science of fermented food and beverages, 200-204. DOI: 10.5772/intechopen.79550
  9. Ali, S., Khan, M. R., Batool, R., Shah, S. A., Iqbal, J., Abbasi, B. A., ... & Althobaiti, F. (2021). Characterization and phytochemical constituents of Periploca hydaspidis Falc crude extract and its anticancer activities. Saudi journal of biological sciences, 28(10), 5500-5517. https://doi.org/10.1016/j.sjbs.2021.08.020
  10. Alzandi, A. A., Taher, E. A., Al-Sagheer, N. A., Al-Khulaidi, A. W., Azizi, M., & Naguib, D. M. (2021). Phytochemical components, antioxidant and anticancer activity of 18 major medicinal plants in Albaha region, Saudi Arabia. Biocatalysis and Agricultural Biotechnology, 34, 102020. https://doi.org/10.1016/j.bcab.2021.102020
  11. Bachheti, A., Bachheti, R. K., Abate, L., & Husen, A. (2022). Current status of Aloe-based nanoparticle fabrication, characterization and their application in some cutting-edge areas. South African Journal of Botany, 147, 1058-1069. https://doi.org/10.1016/j.sajb.2021.08.021
  12. Bachheti, R. K., & Bachheti, A. (Eds.). (2023). Secondary Metabolites from Medicinal Plants: Nanoparticles Synthesis and Their Applications. CRC Press. https://doi.org/10.1201/9781003213727
  13. Belay, A., & Gholap, A. V. (2009). Characterization and determination of chlorogenic acids (CGA) in coffee beans by UV-Vis spectroscopy. African Journal of Pure and Applied Chemistry, 3(11), 234-240. http://www.academicjournals.org/ajpac
  14. Bykkam, S., Ahmadipour, M., Narisngam, S., Kalagadda, V. R., & Chidurala, S. C. (2015). Extensive studies on X-ray diffraction of green synthesized silver nanoparticles. Adv. Nanopart, 4(1), 1-10. http://dx.doi.org/10.4236/anp.2015.41001
  15. Catauro, M., Barrino, F., Dal Poggetto, G., Crescente, G., Piccolella, S., & Pacifico, S. (2020). New SiO2/caffeic acid hybrid materials: Synthesis, spectroscopic characterization, and bioactivity. Materials, 13(2), 394. https://doi.org/10.3390/ma13020394
  16. Chandra, H., Kumari, P., Bontempi, E., & Yadav, S. (2020). Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology, 24, 101518. https://doi.org/10.1016/j.bcab.2020.101518
  17. Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352. https://doi.org/10.3390/molecules15107313
  18. DeFilipps, R. A., & Krupnick, G. A. (2018). The medicinal plants of Myanmar. PhytoKeys, (102), 1. https://doi.org/10.3897/phytokeys.102.24380
  19. Deshmukh, S., Shrivastava, B., & Bhajipale, N. (2018). A Review on Acacia species of therapeutics importance. International Journal of Pharmaceutical and Biological Science Archive, 6(4), 24-34.
  20. Dhivya, K., & Kalaichelvi, K. (2017). Screening of phytoconstituents, UV-VIS Spectrum and FTIR analysis of Micrococca mercurialis (L.) Benth. International Journal of Herbal Medicine, 5(6), 40-44. https://www.florajournal.com/archives/2017/vol5issue6/PartA/6-4-2-168.pdf
  21. Dimitrić-Marković, J. M., Mioč, U. B., Baranac, J., & Nedić, Z. P. (2001). A study of the IR spectra of the copigments of malvin chloride with organic acids. Journal of the Serbian Chemical Society, 66(7), 451-462.
  22. Durán, M., Silveira, C. P., & Durán, N. (2015). Catalytic role of traditional enzymes for biosynthesis of biogenic metallic nanoparticles: a mini‐review. IET nanobiotechnology, 9(5), 314-323. https://doi.org/10.1049/iet-nbt.2014.0054
  23. Edreva, A., Velikova, V., Tsonev, T., Dagnon, S., Gürel, A., Aktaş, L., & Gesheva, E. (2008). Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol, 34(1-2), 67-78.
  24. El-Kemary, M., Ibrahim, E., A-Ajmi, F., Khalifa, S. A., Alanazi, A. D., & El-Seedi, H. R. (2016). Calendula officinalis-mediated biosynthesis of silver nanoparticles and their electrochemical and optical characterization. International Journal of Electrochemical Science, 11(12), 10795-10805. https://doi.org/10.20964/2016.12.88
  25. Gao, B., Chen, D., Gu, B., Wang, T., Wang, Z., Yang, Y., ... & Wang, G. (2020). Facile and highly effective synthesis of nitrogen-doped graphene quantum dots as a fluorescent sensing probe for Cu2+ detection. Current Applied Physics, 20(4), 538-544. https://doi.org/10.1016/j.cap.2020.01.018
  26. Gomathi, D., Kalaiselvi, M., Ravikumar, G., Devaki, K., & Uma, C. (2015). GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. Journal of food science and technology, 52, 1212-1217. https://doi.org/10.1007/s13197-013-1105-9
  27. Guo, D., Dou, D., Ge, L., Huang, Z., Wang, L., & Gu, N. (2015). A caffeic acid mediated facile synthesis of silver nanoparticles with powerful anti-cancer activity. Colloids and Surfaces B: Biointerfaces, 134, 229-234. https://doi.org/10.1016/j.colsurfb.2015.06.070
  28. Gururaja, K., & David, M. (2016). Spectroscopic signature, antibacterial and anticancer properties of Calotropis gigantea (Linn.) flower. International Journal of Pharmaceutical Sciences and Research, 7(4), 1686. 10.13040/IJPSR.0975-8232.7(4).1686-93
  29. Hamad, M. N. (2012). Isolation of rutin from Ruta graveolens (Rutaceae) cultivated in Iraq by precipitation and fractional solubilization. Pharmacie Globale, 3(4), 1.118717.
  30. Harborne, A. J. (1998). Phytochemical methods a guide to modern techniques of plant analysis. springer science & business media.
  31. Harley, B. K., Amponsah, I. K., Ben, I. O., Adongo, D. W., Mireku-Gyimah, N. A., Baah, M. K., ... & Fleischer, T. C. (2021). Myrianthus libericus: Possible mechanisms of hypoglycaemic action and in silico prediction of pharmacokinetics and toxicity profile of its bioactive metabolite, friedelan-3-one. Biomedicine & Pharmacotherapy, 137, 111379. https://doi.org/10.1016/j.biopha.2021.111379
  32. Hossain, M. A., AL-Raqmi, K. A. S., AL-Mijizy, Z. H., Weli, A. M., & Al-Riyami, Q. (2013). Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pacific journal of tropical biomedicine, 3(9), 705-710. https://doi.org/10.1016/S2221-1691(13)60142-2
  33. Hussain, I., Singh, N. B., Singh, A., Singh, H., & Singh, S. C. (2016). Green synthesis of nanoparticles and its potential application. Biotechnology letters, 38, 545-560. https://doi.org/10.1007/s10529-015-2026-7
  34. Ijaz, I., Gilani, E., Nazir, A., & Bukhari, A. (2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 13(3), 223-245.https://doi.org/10.1080/17518253.2020.1802517
  35. Indratmi, D., Haryanto, C. T., Rachmawan, M. D., & Zakia, A. (2023, May). Analysis of Volatile Metabolites from Papaya Seeds as Potential Organic Insecticides against Myzus persicae Sulz. In IOP Conference Series: Earth and Environmental Science (Vol. 1172, No. 1, p. 012046). IOP Publishing. DOI 10.1088/1755-1315/1172/1/012046
  36. Kancherla, N., Dhakshinamoothi, A., Chitra, K., & Komaram, R. B. (2019). Preliminary analysis of phytoconstituents and evaluation of anthelminthic property of Cayratia auriculata (in vitro). Maedica, 14(4), 350. doi: 10.26574/maedica.2019.14.4.350
  37. Kanniah, P., Chelliah, P., Thangapandi, J. R., Gnanadhas, G., Mahendran, V., & Robert, M. (2021). Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite. International Journal of Biological Macromolecules, 189, 18-33. https://doi.org/10.1016/j.ijbiomac.2021.08.056
  38. Kim, D. O., Jeong, S. W., & Lee, C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food chemistry, 81(3), 321-326. https://doi.org/10.1016/S0308-8146(02)00423-5
  39. Koul, A., Kumar, A., Singh, V. K., Tripathi, D. K., & Mallubhotla, S. (2018). Exploring plant-mediated copper, iron, titanium, and cerium oxide nanoparticles and their impacts. In Nanomaterials in plants, algae, and microorganisms (pp. 175-194). Academic Press. https://doi.org/10.1016/B978-0-12-811487-2.00008-6
  40. Kowalski, R., & Kowalska, G. (2005). Phenolic acid contents in fruits of aubergine (Solanum melongena L.). Polish journal of food and nutrition sciences, 14(1), 37-41.
  41. Krishna, A. B., Manikyam, H. K., Sharma, V. K., & Sharma, N. (2015). Plant cardenolides in therapeutics. Int J Indigenous Med Plants, 48, 1871-1896.
  42. Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2017). Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi journal of biological sciences, 24(1), 45-50. https://doi.org/10.1016/j.sjbs.2015.09.006
  43. Kurnia, E. D., Ratnasari, D., & Helmiawati, Y. (2019). Pembuatan Gel Ekstrak Daun Petai Cina (Leucaena glauca, Benth) Dengan Basis Gel Lidah (Aloe Vera L.) Buaya Sebagai Obat Luka Terbuka. Journal of Holistic and Health Sciences (Jurnal Ilmu Holistik dan Kesehatan), 3(1), 39-45.https://doi.org/10.51873/jhhs.v3i1.37
  44. Lalrinzuali, K., Vabeiryureilai, M., & Jagetia, G. C. (2015). Phytochemical and TLC profiling of Oroxylum indicum and Milletia pachycarpa. J Plant Biochem Physiol, 3(152), 2. DOI: 10.4172/2329-9029.1000152
  45. Mabasa, X. E., Mathomu, L. M., Madala, N. E., Musie, E. M., & Sigidi, M. T. (2021). Molecular spectroscopic (FTIR and UV-Vis) and hyphenated chromatographic (UHPLC-qTOF-MS) analysis and in vitro bioactivities of the Momordica balsamina leaf extract. Biochemistry Research International, 2021. https://doi.org/10.1155/2021/2854217
  46. Malik, W., Ahmed, D., & Izhar, S. (2017). Tyrosinase inhibitory activities of Carissa opaca Stapf ex haines roots extracts and their phytochemical analysis. Pharmacognosy Magazine, 13(Suppl 3), S544. doi: 10.4103/pm.pm_561_16
  47. Mallikarjuna, K., Sushma, N. J., Narasimha, G., Manoj, L., & Raju, B. D. P. (2014). Phytochemical fabrication and characterization of silver nanoparticles by using Pepper leaf broth. Arabian Journal of Chemistry, 7(6), 1099-1103. https://doi.org/10.1016/j.arabjc.2012.04.001
  48. Manikandan, G., Pandiselvi, P., Sobana, N., & Murugan, M. (2019). Gc-ms analysis of chemical constituents in the methanolic tuber extract of Momordica cymbalaria hook. F.international research journal of pharmacy. 2019,10 (1). https://doi.org/10.7897/2230-8407.100122
  49. Min, B., Gu, L., McClung, A. M., Bergman, C. J., & Chen, M. H. (2012). Free and bound total phenolic concentrations, antioxidant capacities, and profiles of proanthocyanidins and anthocyanins in whole grain rice (Oryza sativa L.) of different bran colours. Food Chemistry, 133(3), 715-722. https://doi.org/10.1016/j.foodchem.2012.01.079
  50. Muniyappan, N., & Nagarajan, N. S. (2014). Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process biochemistry, 49(6), 1054-1061. https://doi.org/10.1016/j.procbio.2014.03.015
  51. Nilsson, L., Lof, D., & Bergenståhl, B. (2008). Phenolic acid nanoparticle formation in iron-containing aqueous solutions. Journal of agricultural and food chemistry, 56(23), 11453-11457. https://doi.org/10.1021/jf8025925
  52. Nistane, N. T., Chauriya, C. B., & Gajbhiye, V. R. (2019). A comparative pharmacognostic and antimicrobial evaluation of different parts of Mimusops elengi for dental associated problems. Journal of Pharmacognosy and Phytochemistry, 8(4), 772-779. https://www.phytojournal.com/archives/2019/vol8issue4/PartN/8-3-651-110.pdf
  53. Noh, H. J., Kim, H. S., Jun, S. H., Kang, Y. H., Cho, S., & Park, Y. (2013). Biogenic silver nanoparticles with chlorogenic acid as a bioreducing agent. Journal of nanoscience and nanotechnology, 13(8), 5787-5793. https://doi.org/10.1166/jnn.2013.7492
  54. Oliveira, R. N., Mancini, M. C., Oliveira, F. C. S. D., Passos, T. M., Quilty, B., Thiré, R. M. D. S. M., & McGuinness, G. B. (2016). FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio de Janeiro), 21, 767-779. https://doi.org/10.1590/S1517-707620160003.0072
  55. Parlinska-Wojtan, M., Kus-Liskiewicz, M., Depciuch, J., & Sadik, O. (2016). Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using camomile terpenoids as a combined reducing and capping agent. Bioprocess and biosystems engineering, 39, 1213-1223. https://doi.org/10.1007/s00449-016-1599-4
  56. Parry, E. (2007). Arrow poisons. Zimbabwean Prehistory, (27), 52-58.
  57. Patle, T. K., Shrivas, K., Kurrey, R., Upadhyay, S., Jangde, R., & Chauhan, R. (2020). Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV–vis and FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 242, 118717. https://doi.org/10.1016/j.saa.2020.118717
  58. Rasyid, A., & Putra, M. Y. (2023). Antibacterial and antioxidant activity of sea cucumber extracts collected from Lampung waters, Indonesia. Kuwait Journal of Science, 50(4), 615-621. https://doi.org/10.1016/j.kjs.2023.03.012
  59. Sanjivkumar, M., & Silambarasan, T. S. (2023). Exploration on Green Synthesis of Nanoparticles from Plants and Microorganisms and Their Biological Applications. In Modern Nanotechnology: Volume 2: Green Synthesis, Sustainable Energy and Impacts (pp. 149-173). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-31104-8_7
  60. Saranraj, P., Sivasakthi, S., & Deepa, M. S. (2016). Phytochemistry of pharmacologically important medicinal plants–a review. Int. J. Curr. Res. Chem. Pharm. Sci, 3(11), 56-66. DOI:10.22192/ijcrcps
  61. Saxena, M., & Saxena, J. (2012). Evalution of phytoconstituents of Acorus calamus by FTIR and UV-VIS spectroscopic analysis. International Journal of Biological & Pharmaceutical Research, 3(3), 498-501. https://www.phytojournal.com/archives/2016/vol5issue2/PartB/4-4-41.pdf
  62. Scampicchio, M., Wang, J., Blasco, A. J., Sanchez Arribas, A., Mannino, S., & Escarpa, A. (2006). Nanoparticle-based assays of antioxidant activity. Analytical chemistry, 78(6), 2060-2063. https://doi.org/10.1021/ac052007a
  63. Shareef, H. K., Muhammed, H. J., Hussein, H. M., & Hameed, I. H. (2016). Antibacterial effect of ginger (Zingiber officinale) roscoe and bioactive chemical analysis using gas chromatography mass spectrum. Oriental Journal of Chemistry, 32(2), 20-40. http://dx.doi.org/10.13005/ojc/320207
  64. Sharma, P., & Chaurasia, S. (2015). Evaluation of total phenolic, flavonoid contents and antioxidant activity of Acokanthera oppositifolia and Leucaena leucocephala. Int J Pharmacogn Phytochem Res, 7, 175-80. http://impactfactor.org/PDF/IJPPR/7/IJPPR,Vol7,Issue1,Article26.pdf
  65. Sharma, P., & Sharma, B. (2023). Amoxicillin Degradation and Antimutagenic Potential of Phytofabricated Silver Nanoparticles-Doped Polyurethane Membrane for Wastewater Treatment. Nano LIFE, 2350009. https://doi.org/10.1142/S1793984423500095
  66. Sharma, P., Sharma, B., Singh, I., & Kumari, P. (2023) Phytofabrication and characterization of silver nanoparticles and their enhanced antimicrobial activity. Eurpoean Chemical Bulletin, (12) 11. https://www.eurchembull.com/uploads/paper/33ba2caa1b0322ffb04f9ac4fc9b1b9a.pdf
  67. Singh, A., Rai, G., Kumar, A., & Gautam, D. N. S. (2023). Pharmacognostical assessment, antioxidant ability and determination of phytomolecules using GC-MS in Gloriosa superba Linn. https://doi.org/10.21203/rs.3.rs-2620608/v1
  68. Souto, U. T. D. C. P., Barbosa, M. F., Dantas, H. V., de Pontes, A. S., da Silva Lyra, W., Diniz, P. H. G. D., ... & da Silva, E. C. (2015). Identification of adulteration in ground roasted coffees using UV–Vis spectroscopy and SPA-LDA. LWT-Food Science and Technology, 63(2), 1037-1041. https://doi.org/10.1016/j.lwt.2015.04.003
  69. Su, D., Zhang, R., Hou, F., Zhang, M., Guo, J., Huang, F., ... & Wei, Z. (2014). Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents. BMC Complementary and Alternative Medicine, 14, 1-10. https://doi.org/10.1186/1472-6882-14-9
  70. Suhandy, D., & Yulia, M. (2017). Peaberry coffee discrimination using UV-visible spectroscopy combined with SIMCA and PLS-DA. International journal of food properties, 20(sup1), S331-S339. https://doi.org/10.1080/10942912.2017.1296861
  71. Suhandy, D., & Yulia, M. (2018, October). The potential of UV-visible spectroscopy and chemometrics for determination of geographic origin of three specialty coffees in Indonesia. In AIP Conference Proceedings (Vol. 2021, No. 1). AIP Publishing. https://doi.org/10.1063/1.5062745
  72. Tepal, P. (2016). Phytochemical screening, total flavonoid and phenolic content assays of various solvent extracts of tepal of Musa paradisiaca. Malaysian Journal of Analytical Sciences, 20(5), 1181-1190.DOI.ORG/10.1016/S2221-1691(13)60142-2
  73. Tošović, J. (2017). Spectroscopic features of caffeic acid: theoretical study. Kragujevac Journal of Science, (39), 99-108.
  74. Umashankar, D. D. (2020). Plant secondary metabolites as potential usage in regenerative medicine. J. Phytopharmacol, 9(4), 270-273P. doi: 10.31254/phyto.2020.9410
  75. Umboro, R. O., & Hamdani, A. S. (2019). Uji Daya Anthelmintik Ekstrak Etanol Biji Petai Cina (Leucaena leucocephala, Lmk. de Wit) terhadap cacing gelang (Ascaridia galli schrank) Secara In Vitro. JISIP (Jurnal Ilmu Sosial dan Pendidikan), 3(1). DOI: http://dx.doi.org/10.58258/jisip.v3i1.953
  76. Vanitha, A., Kalimuthu, K., Chinnadurai, V., & Nisha, K. J. (2019). Phytochemical screening, FTIR and GC-MS analysis of aqueous extract of Caralluma bicolor–An endangered plant. Asian J Pharm Pharmacol, 5(6), 1122-1130. DOI: 10.31024/ajpp.2019.5.6.7
  77. Vihakas, M. (2014). Flavonoids and other phenolic compounds: characterization and interactions with lepidopteran and sawfly larvae.
  78. Wang, H. Y., Li, Y. F., & Huang, C. Z. (2007). Detection of ferulic acid based on the plasmon resonance light scattering of silver nanoparticles. Talanta, 72(5), 1698-1703. https://doi.org/10.1016/j.talanta.2007.02.028
  79. Wang, L., Wei, G., Sun, L., Liu, Z., Song, Y., Yang, T., ... & Li, Z. (2006). Self-assembly of cinnamic acid-capped gold nanoparticles. Nanotechnology, 17(12), 2907.DOI 10.1088/0957-4484/17/12/014
  80. Watt J.M. and Breyer-Brandwijk M.G. (1962). The medicinal and poisonous plants of Southern and Eastern Africa, 2nd edn. Livingstone, London, 15-18. 2
  81. Were, P. S., Waudo, W., Ozwara, H. S., & Kutima, H. L. (2015). Phytochemical analysis of warburgia ugandensis sprague using fourier transform infra-red (FT-IR) spectroscopy. International Journal of Pharmacognosy and Phytochemical Research, 7(2), 201-205. http://impactfactor.org/PDF/IJPPR/7/IJPPR,Vol7,Issue2,Article1.pdf
  82. Wohlman, A. (2009). Methods for enhancing the morphology, tone, texture and/or appearance of skin or hair using a meadowlactone." U.S. Patent 7,615,231. https://www.freepatentsonline.com/y2007/0092475.html
  83. Yasmin, A., Ramesh, K., & Rajeshkumar, S. (2014). Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating. Nano Convergence, 1(1), 12. https://doi.org/10.1186/s40580-014-0012-8
  84. Yu, L., Haley, S., Perret, J., Harris, M., Wilson, J., & Qian, M. (2002). Free radical scavenging properties of wheat extracts. Journal of agricultural and food chemistry, 50(6), 1619-1624. https://doi.org/10.1021/jf010964p
  85. Zhu, H., Liu, S., Yao, L., Wang, L., & Li, C. (2019). Free and bound phenolics of buckwheat varieties: HPLC characterization, antioxidant activity, and inhibitory potency towards α-glucosidase with molecular docking analysis. Antioxidants, 8(12), 606.DOI: 10.3390/antiox8120606

How to Cite

Screening of the Medicinal Plant-Based Metabolites Responsible for Silver Nanoparticle Phytofabrication. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1902

How to Cite

Screening of the Medicinal Plant-Based Metabolites Responsible for Silver Nanoparticle Phytofabrication. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1902

HTML
217

Total
100

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Preeti Sharma, Basudha Sharma

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.