Effect of MWCNTs on static, dynamic, and wear performance of Vacuum Assisted Resin Infusion Molding (VARIM) processed glass fabric-epoxy polymer composites
Abstract
In the present work, MWCNTs were used in wt.% of 0.075, 0.15, and 0.3 in epoxy resin, and then glass fabric-epoxy polymer (GF-EP) composites were fabricated using VARIM setup. The mechanical and wear properties of GF-EP composites were compared with and without the addition of MWCNTs. Maximum improvement in tensile and flexural performance was seen in GF-EP composites at 0.15 weight percent MWCNT addition compared to a neat GF-EP one, based on static testing such as tensile and flexural tests. High-cycle fatigue test results show a relatively higher cycle count with 0.15 wt.% MWCNTs addition in the GF-EP composite compared to the GF-EP without the addition of MWCNTs. The wear performance also improved with a lower friction coefficient as well as a lower track depth and width for MWCNTs with added GF-EP than plain GF-EP composite. Therefore, in addition to decreasing surface softening and improving the wear performance of glass fabric epoxy composites, MWCNTs (0.15 weight percent) increased the interfacial adhesion at the fiber-matrix interface. This study establishes an optimum ratio of 0.15 wt.% of MWCNTs addition in glass fabric-epoxy polymer composites for enhancement in their mechanical and wear performance.
References
- Barrena, M. I., Gómez de Salazar, J. M., Soria, A., & Cañas, R. (2014). Improved of the wear resistance of carbon nanofiber/epoxy nanocomposite by a surface functionalization of the reinforcement. Applied Surface Science, 289, 124–128. https://doi.org/10.1016/j.apsusc.2013.10.118.
- Burrego, L. P., Costa, J. D. M., Ferreira, J. A. M., & Silva, H. (2014). Fatigue behavior of glass fibre reinforced epoxy composites enhanced with nanoparticles. Composites Part B, 62, 65-72. https://doi.org/10.1016/j.compositesb.2014.02.016.
- Chanda, A., Sinha, S. K., & Datla, N. V. (2019). Tribological studies of epoxy-carbon nanofiber composites-Effect of nanofiber alignment using AC electric field. Tribology International, 138, 450-462. https://doi.org/10.1016/j.triboint.2019.06.014.
- Cui, L., Geng, H., Wang, W., Chen, L., & Gao, J. (2013). Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites. Carbon, 54, 277-282. https://doi.org/10.1016/j.carbon.2012.11.039.
- Dehrooyeh, S., Vaseghi, M., Sohrabian, M., & Sameezadeh, M. (2021). Glass fiber/carbon nanotube/epoxy hybrid composites: Achieving superior mechanical properties. Mechanics of Materials, 161, 104025. https://doi.org/10.1016/j.mechmat.2021.104025.
- Ding, J. H., Rahman, U. O., Peng, W. J., Dou, H. M., & Yu, H. B. (2018). A novel hydroxyl epoxy phosphate monomer enhancing the anticorrosive performance of waterborne graphene/ epoxy coatings. Applied Surface Science, 427, 981–991. https://doi.org/10.1016/j.apsusc.2017.08.224.
- Grimmer, C. S., & Dharan, C. K. H. (2009). High-cycle fatigue life extension of glass fiber/polymer composites with carbon nanotubes. Journal of Wuhan University of Technology- Mat. Sci. Ed., 24, 167-173. https://doi.org/10.1007/s11595-009-2167-4.
- Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., … & Verpost, I. (2010). Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Composites Science and Technology, 70, 1346-1352. https://doi.org/10.1016/j.compscitech.2010.04.010.
- He, Y. X., Chen, G. W., Zhang, L., Sang, Y. F., Lu. C., Yao, D. H., & Zhang Y. Q. (2014). Role of functionalized multiwalled carbon nanotubes on mechanical properties of epoxy-based composites at cryogenic temperature. High Performance Polymers, 26, 922–934. DOI: 10.1177/0954008314534279.
- Kumar, V., Kumar, A., Han, S. S., & Park, S. (2021). RTV silicone rubber composites reinforced with carbon nanotubes, titanium dioxide and their hybrid: Mechanical and piezoelectric actuation performance. Nano Materials Science, 3, 233-240. https://doi.org/10.1016/j.nanoms.2020.12.002.
- Kumar, V., Kumar, A., Alam, M. N., & Park S. (2022). Effect of graphite nanoplatelets surface area on mechanical, properties of room temperature vulcanised silicone rubber nanocomposites. Journal of Applied Polymer Science, 139, e52503. https://doi.org/10.1002/app.52503.
- Liao, D., Huang, B., Liu, J., Bian, X., Zhao, F., & Wang, J. (2023). Failure analysis of glass fiber reinforced composite pipe for high pressure sewage transport. Engineering Failure Analysis, 144, 106938. https://doi.org/10.1016/j.engfailanal.2022.106938.
- Li, W., He, D., Dang, Z., & Bai, J. (2014). In situ damage sensing in the glass fabric reinforced epoxy composites containing CNT-Al2O3 hybrids. Composites Science and Technology, 99, 8-14. https://doi.org/10.1016/j.compscitech.2014.05.005.
- Panchagnula, K. K., & Kappan, P. (2019). Improvement in the mechanical properties of neat GFRPs with multi-walled CNTs. Journal of Materials Research and Technology, 8, 366-376. https://doi.org/10.1016/j.jmrt.2018.02.009.
- Pothnis, J. R., Kalyanasundram, D., & Gururaja, S. (2021). Enhancement of open hole tensile strength via alignment of carbon nanotubes infused in glass fiber-epoxy-CNT multiscale composites. Composites Part A: Applied Science and Manufacturing, 140, 106155. https://doi.org/10.1016/j.compositesa.2020.106155.
- Prusty, R.K., Rathore, D. K., Shukla, M. J., & Ray, B. C. (2015). Flexural behavior of CNT-filled glass/epoxy composites in an in-situ environment emphasizing temperature variation. Composites Part B: Engineering, 83, 166-174. https://doi.org/10.1016/j.compositesb.2015.08.035.
- Rathore, D. K., Prusty, R. K., Kumar, D. S., & Ray, B, C. (2016). Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content. Composites Part A: Applied Science and Manufacturing 2016, 84, 364-376. https://doi.org/10.1016/j.compositesa.2016.02.020.
- Shivamurthy, B., Anandhan, S., Bhat, K. U., & Thimappa, B. H. S. (2020). Structure-property relationship of glass fabric/MWCNT/epoxy multilayered laminates. Composites Communications, 22, 100460. https://doi.org/10.1016/j.coco.2020.100460.
- Singh, K. K., Chaudhary, S. K., & Venugopal, R. (2019). Enhancement of flexural strength of glass fiber reinforced polymer laminates using multiwall carbon nanotube. Polymer Engineering and Science Special Issue: Films and Membranes, 59(S1), E248-E261. https://doi.org/10.1002/pen.24929.
- Tomasz, M., Szymon, D., Bartosz, B., Joanna, W., Pawel. Z., & Grzegorz, L. (2012). Flexural and compressive residual strength of composite bars subjected to harsh environments. Engineering Failure Analysis, 133, 105958. https://doi.org/10.1016/j.engfailanal.2021.105958.
- Upadhyay, R. K., & Kumar, A. (2019). Epoxy-graphene-MoS2 composites with improved tribological behavior under dry sliding contact. Tribology International, 130, 106–118. https://doi.org/10.1016/j.triboint.2018.09.016.
- Verma, P., Kumar, A., Chauhan, S. S., Verma, M., Malik, R. S., & Choudhary, V. (2018). Industrially viable technique for the preparation of HDPE/Fly ash composites at high loading: Thermal, Mechanical, and rheological interpretations. Journal of Applied Polymer Science, 135, 45995. https://doi.org/10.1002/app.45995.
- Weikang, L., Dichiara, A., Zha, J., Su, Z., & Bai, J. (2014). On improvement of mechanical and thermos-mechanical properties of glass fabric /epoxy composites by incorporating CNT-Al2O3 hybrids. Composites Science and Technology, 103, 36-43. https://doi.org/10.1016/j.compscitech.2014.08.016.
- Yuxin, H., Wu, D., Zhou, M., Liu, H., Zhang, L., Chen, Q., … & Guo, Z. (2020). Effect of MoO3/carbon nanotubes on friction and wear performance of glass fabric-reinforced epoxy composites under dry sliding. Applied Surface Science, 506, 144946. https://doi.org/10.1016/j.apsusc.2019.144946.
- Zeng, S., Duan, P., Shen, M., Xue, Y., Lu, F., & Yang, L. (2019). Interface enhancement of glass fiber fabric/epoxy composites by modifying fibers with functionalised MWCNTs. Composite Interfaces, 26, 291-308. https://doi.org/10.1080/09276440.2018.1499354
How to Cite
How to Cite
Downloads
Article Details
Most Read This Month
License
Copyright (c) 2024 Dikshant Malhotra, Mayank Agrawal, RT Durai Prabhakaran
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.