Skip to main content Skip to main navigation menu Skip to site footer

Effect of MWCNTs on static, dynamic, and wear performance of Vacuum Assisted Resin Infusion Molding (VARIM) processed glass fabric-epoxy polymer composites

  • Dikshant Malhotra
  • Mayank Agrawal
  • RT Durai Prabhakaran

Abstract

In the present work, MWCNTs were used in wt.% of 0.075, 0.15, and 0.3 in epoxy resin, and then glass fabric-epoxy polymer (GF-EP) composites were fabricated using VARIM setup. The mechanical and wear properties of GF-EP composites were compared with and without the addition of MWCNTs. Maximum improvement in tensile and flexural performance was seen in GF-EP composites at 0.15 weight percent MWCNT addition compared to a neat GF-EP one, based on static testing such as tensile and flexural tests. High-cycle fatigue test results show a relatively higher cycle count with 0.15 wt.% MWCNTs addition in the GF-EP composite compared to the GF-EP without the addition of MWCNTs. The wear performance also improved with a lower friction coefficient as well as a lower track depth and width for MWCNTs with added GF-EP than plain GF-EP composite. Therefore, in addition to decreasing surface softening and improving the wear performance of glass fabric epoxy composites, MWCNTs (0.15 weight percent) increased the interfacial adhesion at the fiber-matrix interface. This study establishes an optimum ratio of 0.15 wt.% of MWCNTs addition in glass fabric-epoxy polymer composites for enhancement in their mechanical and wear performance.

Section

References

  1. Barrena, M. I., Gómez de Salazar, J. M., Soria, A., & Cañas, R. (2014). Improved of the wear resistance of carbon nanofiber/epoxy nanocomposite by a surface functionalization of the reinforcement. Applied Surface Science, 289, 124–128. https://doi.org/10.1016/j.apsusc.2013.10.118.
  2. Burrego, L. P., Costa, J. D. M., Ferreira, J. A. M., & Silva, H. (2014). Fatigue behavior of glass fibre reinforced epoxy composites enhanced with nanoparticles. Composites Part B, 62, 65-72. https://doi.org/10.1016/j.compositesb.2014.02.016.
  3. Chanda, A., Sinha, S. K., & Datla, N. V. (2019). Tribological studies of epoxy-carbon nanofiber composites-Effect of nanofiber alignment using AC electric field. Tribology International, 138, 450-462. https://doi.org/10.1016/j.triboint.2019.06.014.
  4. Cui, L., Geng, H., Wang, W., Chen, L., & Gao, J. (2013). Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites. Carbon, 54, 277-282. https://doi.org/10.1016/j.carbon.2012.11.039.
  5. Dehrooyeh, S., Vaseghi, M., Sohrabian, M., & Sameezadeh, M. (2021). Glass fiber/carbon nanotube/epoxy hybrid composites: Achieving superior mechanical properties. Mechanics of Materials, 161, 104025. https://doi.org/10.1016/j.mechmat.2021.104025.
  6. Ding, J. H., Rahman, U. O., Peng, W. J., Dou, H. M., & Yu, H. B. (2018). A novel hydroxyl epoxy phosphate monomer enhancing the anticorrosive performance of waterborne graphene/ epoxy coatings. Applied Surface Science, 427, 981–991. https://doi.org/10.1016/j.apsusc.2017.08.224.
  7. Grimmer, C. S., & Dharan, C. K. H. (2009). High-cycle fatigue life extension of glass fiber/polymer composites with carbon nanotubes. Journal of Wuhan University of Technology- Mat. Sci. Ed., 24, 167-173. https://doi.org/10.1007/s11595-009-2167-4.
  8. Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., … & Verpost, I. (2010). Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Composites Science and Technology, 70, 1346-1352. https://doi.org/10.1016/j.compscitech.2010.04.010.
  9. He, Y. X., Chen, G. W., Zhang, L., Sang, Y. F., Lu. C., Yao, D. H., & Zhang Y. Q. (2014). Role of functionalized multiwalled carbon nanotubes on mechanical properties of epoxy-based composites at cryogenic temperature. High Performance Polymers, 26, 922–934. DOI: 10.1177/0954008314534279.
  10. Kumar, V., Kumar, A., Han, S. S., & Park, S. (2021). RTV silicone rubber composites reinforced with carbon nanotubes, titanium dioxide and their hybrid: Mechanical and piezoelectric actuation performance. Nano Materials Science, 3, 233-240. https://doi.org/10.1016/j.nanoms.2020.12.002.
  11. Kumar, V., Kumar, A., Alam, M. N., & Park S. (2022). Effect of graphite nanoplatelets surface area on mechanical, properties of room temperature vulcanised silicone rubber nanocomposites. Journal of Applied Polymer Science, 139, e52503. https://doi.org/10.1002/app.52503.
  12. Liao, D., Huang, B., Liu, J., Bian, X., Zhao, F., & Wang, J. (2023). Failure analysis of glass fiber reinforced composite pipe for high pressure sewage transport. Engineering Failure Analysis, 144, 106938. https://doi.org/10.1016/j.engfailanal.2022.106938.
  13. Li, W., He, D., Dang, Z., & Bai, J. (2014). In situ damage sensing in the glass fabric reinforced epoxy composites containing CNT-Al2O3 hybrids. Composites Science and Technology, 99, 8-14. https://doi.org/10.1016/j.compscitech.2014.05.005.
  14. Panchagnula, K. K., & Kappan, P. (2019). Improvement in the mechanical properties of neat GFRPs with multi-walled CNTs. Journal of Materials Research and Technology, 8, 366-376. https://doi.org/10.1016/j.jmrt.2018.02.009.
  15. Pothnis, J. R., Kalyanasundram, D., & Gururaja, S. (2021). Enhancement of open hole tensile strength via alignment of carbon nanotubes infused in glass fiber-epoxy-CNT multiscale composites. Composites Part A: Applied Science and Manufacturing, 140, 106155. https://doi.org/10.1016/j.compositesa.2020.106155.
  16. Prusty, R.K., Rathore, D. K., Shukla, M. J., & Ray, B. C. (2015). Flexural behavior of CNT-filled glass/epoxy composites in an in-situ environment emphasizing temperature variation. Composites Part B: Engineering, 83, 166-174. https://doi.org/10.1016/j.compositesb.2015.08.035.
  17. Rathore, D. K., Prusty, R. K., Kumar, D. S., & Ray, B, C. (2016). Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content. Composites Part A: Applied Science and Manufacturing 2016, 84, 364-376. https://doi.org/10.1016/j.compositesa.2016.02.020.
  18. Shivamurthy, B., Anandhan, S., Bhat, K. U., & Thimappa, B. H. S. (2020). Structure-property relationship of glass fabric/MWCNT/epoxy multilayered laminates. Composites Communications, 22, 100460. https://doi.org/10.1016/j.coco.2020.100460.
  19. Singh, K. K., Chaudhary, S. K., & Venugopal, R. (2019). Enhancement of flexural strength of glass fiber reinforced polymer laminates using multiwall carbon nanotube. Polymer Engineering and Science Special Issue: Films and Membranes, 59(S1), E248-E261. https://doi.org/10.1002/pen.24929.
  20. Tomasz, M., Szymon, D., Bartosz, B., Joanna, W., Pawel. Z., & Grzegorz, L. (2012). Flexural and compressive residual strength of composite bars subjected to harsh environments. Engineering Failure Analysis, 133, 105958. https://doi.org/10.1016/j.engfailanal.2021.105958.
  21. Upadhyay, R. K., & Kumar, A. (2019). Epoxy-graphene-MoS2 composites with improved tribological behavior under dry sliding contact. Tribology International, 130, 106–118. https://doi.org/10.1016/j.triboint.2018.09.016.
  22. Verma, P., Kumar, A., Chauhan, S. S., Verma, M., Malik, R. S., & Choudhary, V. (2018). Industrially viable technique for the preparation of HDPE/Fly ash composites at high loading: Thermal, Mechanical, and rheological interpretations. Journal of Applied Polymer Science, 135, 45995. https://doi.org/10.1002/app.45995.
  23. Weikang, L., Dichiara, A., Zha, J., Su, Z., & Bai, J. (2014). On improvement of mechanical and thermos-mechanical properties of glass fabric /epoxy composites by incorporating CNT-Al2O3 hybrids. Composites Science and Technology, 103, 36-43. https://doi.org/10.1016/j.compscitech.2014.08.016.
  24. Yuxin, H., Wu, D., Zhou, M., Liu, H., Zhang, L., Chen, Q., … & Guo, Z. (2020). Effect of MoO3/carbon nanotubes on friction and wear performance of glass fabric-reinforced epoxy composites under dry sliding. Applied Surface Science, 506, 144946. https://doi.org/10.1016/j.apsusc.2019.144946.
  25. Zeng, S., Duan, P., Shen, M., Xue, Y., Lu, F., & Yang, L. (2019). Interface enhancement of glass fiber fabric/epoxy composites by modifying fibers with functionalised MWCNTs. Composite Interfaces, 26, 291-308. https://doi.org/10.1080/09276440.2018.1499354

How to Cite

Effect of MWCNTs on static, dynamic, and wear performance of Vacuum Assisted Resin Infusion Molding (VARIM) processed glass fabric-epoxy polymer composites. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1829

How to Cite

Effect of MWCNTs on static, dynamic, and wear performance of Vacuum Assisted Resin Infusion Molding (VARIM) processed glass fabric-epoxy polymer composites. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1829

HTML
105

Total
42

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Dikshant Malhotra, Mayank Agrawal, RT Durai Prabhakaran

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Similar Articles

1-10 of 36

You may also start an advanced similarity search for this article.