Improving the Stability of Ink-Jet Printed Red QLEDs By Optimizing The Device Fabrication Process
Abstract
Red-light emitting Cadmium Sulfide0.8 Selenide0.2 /Zinc Sulfide (CdS0.8Se0.2/ZnS) based quantum dots (QDs) were synthesized by hot injection method and utilized as the emissive layer in the quantum dot light emitting diode (QLED) with the device structure of Indium Tin Oxide/Poly(3,4-ethylenedioxythiophene): Polystyrene Sulfonate /Polyvinylcarbazole(or Poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidin)/QD/ZincOxide/LithiumFluoride/ Aluminum [ITO/ PEDOT: PSS/PVK(or p-TPD)/QD/ZnO/LiF/Al]. QD inks were formulated and prepared in octane: decane; (1/1, v/v) solvent system and mixed with the nonionic surfactant, TritonX-100, to make the QD inks inkjet printable. In addition to the inkjet printing technique, spin coating was also employed to form the QD emissive layer for comparing device performance. Compared to the p-TPD-based QLED device, the PVK-based device fabricated via spin coating exhibited ~6-fold higher performance in terms of luminance and efficiency values. In the case of using the ink-jet printer, ~2-fold higher maximum luminance value and slightly lower external quantum efficiency at the lower current density region were obtained in the p-TPD-based device. Furthermore, compared to the PVK layer, the p-TPD layer provided higher device stability regardless of the coating method at the higher current density regions. We suggest that the coating method applied and the choice of hole transport layer (HTL) materials may control the device parameters.
References
- Cho, H., Kwak, J., Lim, J., Park, M., Lee, D., Bae, W. K., Kim, Y. S., Char, K., Lee, S., & Lee, C. (2015). Soft Contact Transplanted Nanocrystal Quantum Dots for Light- Emitting Diodes: Effect of Surface Energy on Device Performance. ACS Applied Materials and Interfaces, 7, 10828–10833. https://doi.org/10.1021/acsami.5b01738
- Diker, H., Bozkurt, H., & Varlikli, C. (2020). Dispersion stability of amine modified graphene oxides and their utilization in solution processed blue OLED. Chemical Engineering Journal, 381, 122716. https://doi.org/10.1016/j.cej.2019.122716
- García de Arquer, F. P., Talapin, D. V., Klimov, V. I., Arakawa, Y., Bayer, M., & Sargent, E. H. (2021). Semiconductor quantum dots: Technological progress and future challenges. Science, 373(6555), eaaz8541. https://doi.org/10.1126/science.aaz8541
- Gupta, S. K., Shankar, B., Taube, W. R., Singh, J., & Akhtar, J. (2014). Capacitance-conductance spectroscopic investigation of interfacial oxide layer in Ni/4H-SiC (0 0 0 1) Schottky diode. Physica B: Condensed Matter, 434(1), 44–50. https://doi.org/10.1016/j.physb.2013.10.042
- Haverinen, H. M., Myllylä, R. A., & Jabbour, G. E. (2009). Inkjet printing of light emitting quantum dots. Applied Physics Letters, 94(7), 073108. https://doi.org/10.1063/1.3085771
- Jia, S., Tang, H., Ma, J., Ding, S., Qu, X., Xu, B., Wu, Z., Li, G., Liu, P., Wang, K., & Sun, X. W. (2021). High Performance Inkjet-Printed Quantum-Dot Light-Emitting Diodes with High Operational Stability. Advanced Optical Materials, 9(22), 1–10. https://doi.org/10.1002/adom.202101069
- Jiang, C., Zhong, Z., Liu, B., He, Z., Zou, J., Wang, L., Wang, J., Peng, J., & Cao, Y. (2016). Coffee-Ring-Free Quantum Dot Thin Film Using Inkjet Printing from a Mixed-Solvent System on Modified ZnO Transport Layer for Light- Emitting Devices. ACS Applied Materials and Interfaces, 8, 26162–26168. https://doi.org/10.1021/acsami.6b08679
- Kim, B. H., Onses, M. S., Lim, J. Bin, Nam, S., Oh, N., Kim, H., Yu, K. J., Lee, J. W., Kim, J.-H., Kang, S.-K., Lee, C. H., Lee, J., Shin, J. H., Kim, N. H., Cecilia Leal, Shim, M., & Rogers, J. A. (2015). High-Resolution Patterns of Quantum Dots Formed by Electrohydrodynamic Jet Printing for Light-Emitting Diodes. Nano Letters, 15, 969–973. https://doi.org/10.1021/nl503779e
- Kim, J. H., Kang, Y. J., & Chin, B. D. (2021). Solvent mixture formulation for orthogonal inkjet processing and uniform pixel patterning of quantum dot light-emitting diode. Journal of the Korean Physical Society, 78(11), 1116–1127. https://doi.org/10.1007/s40042-021-00153-8
- Kim, T.-H., Cho, K.-S., Lee, E. K., Lee, S. J., Chae, J., Kim, J., Kim, D. H., Kwon, J.-Y., Amaratunga, G., Lee, S. Y., Choi, B. L., Kuk, Y., Kim, J. M., Kim, K., & Light-emitting. (2011). Full-colour quantum dot displays fabricated by transfer printing. Nature Photonics, 5, 176–182. https://doi.org/10.1038/nphoton.2011.12
- Lee, K. H., Han, C. Y., Kang, H. D., Ko, H., Lee, C., Lee, J., Myoung, N. S., Yim, S. Y., & Yang, H. (2015). Highly Efficient, Color-Reproducible Full-Color Electroluminescent Devices Based on Red/Green/Blue Quantum Dot-Mixed Multilayer. ACS Nano, 9(11), 10941–10949. https://doi.org/10.1021/acsnano.5b05513
- Li, G., Huang, J., Li, Y., Tang, J., & Jiang, Y. (2019). Highly bright and low turn-on voltage CsPbBr3 quantum dot LEDs via conjugation molecular ligand exchange. Nano Research, 12(1), 109–114. https://doi.org/10.1007/s12274-018-2187-5
- Li, H., Duan, Y., Shao, Z., Zhang, G., Li, H., Huang, Y. A., & Yin, Z. (2020). High-Resolution Pixelated Light Emitting Diodes Based on Electrohydrodynamic Printing and Coffee-Ring-Free Quantum Dot Film. Advanced Materials Technologies, 5(10), 1–6. https://doi.org/10.1002/admt.202000401
- Li, J., Jin, H., Wang, K., Xie, D., Xu, D., Xu, X., & Xu, G. (2016). High luminance of CuInS2-based yellow quantum dot light emitting diodes fabricated by all-solution processing. RSC Advances, 6(76), 72462–72470. https://doi.org/10.1039/c6ra14241a
- Li, Y. F., Feng, J., & Sun, H. B. (2019). Perovskite quantum dots for light-emitting devices. Nanoscale, 11(41), 19119–19139. https://doi.org/10.1039/c9nr06191f
- Lin, C., Hung, C., Kuo, P., & Cheng, M. (2010). Display Technology Letters. Journal of Display Technology, 8(12), 681–683. https://doi.org/10.1109/JDT.2009.2039019
- Liu, Y., Li, F., Xu, Z., Zheng, C., Guo, T., Xie, X., Qian, L., Fu, D., & Yan, X. (2017). Efficient All-Solution Processed Quantum Dot Light Emitting Diodes Based on Inkjet Printing Technique. ACS Applied Materials and Interfaces, 9, 25506–25512. https://doi.org/10.1021/acsami.7b05381
- Ozguler, S., Diker, H., Unluturk, S. S., Ozcelik, S., & Varlikli, C. (2020). Reducing the Efficiency Roll Off and Applied Potential-Induced Color Shifts in CdSe@ZnS/ZnS-Based Light-Emitting Diodes. The Journal of Physical Chemistry C, 124, 14847-14854. https://doi.org/10.1021/acs.jpcc.0c02769
- Pal, N. K., & Kryschi, C. (2015). A facile one-pot synthesis of blue and red luminescent thiol stabilized gold nanoclusters: A thorough optical and microscopy study. Physical Chemistry Chemical Physics, 17(33), 21423–21431. https://doi.org/10.1039/c5cp01773d
- Peng, X., Yuan, J., Shen, S., Gao, M., Chesman, A. S. R., Yin, H., Cheng, J., Zhang, Q., & Angmo, D. (2017). Perovskite and Organic Solar Cells Fabricated by Inkjet Printing: Progress and Prospects. Advanced Functional Materials, 27(41), 1703704. https://doi.org/10.1002/adfm.201703704
- Singh, K., Kumar, A., Pandey, S. K., Awasthi, S., Gupta, S. P. & Mishra, P. (2020). Interpretation of Adsorption Behavior of Carboxymethyl Cellulose onto Functionalized Accurel Polymeric Surface. Industrial & Engineering Chemistry Research, 59(43),19102-19116. https://doi.org/10.1021/acs.iecr.0c03894
- Sun, Y., Su, Q., Zhang, H., Wang, F., Zhang, S., & Chen, S. (2019). Investigation on Thermally Induced Efficiency Roll-Off: Toward Efficient and Ultrabright Quantum-Dot Light-Emitting Diodes. ACS Nano, 13, 11433–11442. https://doi.org/10.1021/acsnano.9b04879
- Xie, L., Yang, J., Zhao, W., Yi, Y. Q. Q., Liu, Y., Su, W., Li, Q., Lei, W., & Cui, Z. (2022). High-Performance Inkjet-Printed Blue QLED Enabled by Crosslinked and Intertwined Hole Transport Layer. Advanced Optical Materials, 10(21), 1–9. https://doi.org/10.1002/adom.202200935
- Xie, Q., Wu, D., Wang, X., Li, Y., Fang, F., Wang, Z., Ma, Y., Su, M., Peng, S., Liu, H., Wang, K., & Sun, X. W. (2019). Branched capping ligands improve the stability of cesium lead halide (CsPbBr3) perovskite quantum dots. Journal of Materials Chemistry C, 7(36), 11251–11257. https://doi.org/10.1039/c9tc03377g
- Xiong, X., Wei, C., Xie, L., Chen, M., Tang, P., Shen, W., Deng, Z., Li, X., Duan, Y., Su, W., Zeng, H., & Cui, Z. (2019). Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface. Organic Electronics, 73, 247–254. https://doi.org/10.1016/j.orgel.2019.06.016
- Yang, P., Zhang, L., Kang, D. J., Strahl, R., & Kraus, T. (2020). High-Resolution Inkjet Printing of Quantum Dot Light-Emitting Microdiode Arrays. Advanced Optical Materials, 8(1), 1–7. https://doi.org/10.1002/adom.201901429
- Yang, X., Zhang, Z. H., Ding, T., Wang, N., Chen, G., Dang, C., Demir, H. V., & Sun, X. W. (2018). High-efficiency all-inorganic full-colour quantum dot light-emitting diodes. Nano Energy, 46, 229–233. https://doi.org/10.1016/j.nanoen.2018.02.002
- Yang, Y., Qin, H., Jiang, M., Lin, L., Fu, T., Dai, X., Zhang, Z., Niu, Y., Cao, H., Jin, Y., Zhao, F., & Peng, X. (2016). Entropic Ligands for Nanocrystals: From Unexpected Solution Properties to Outstanding Processability. Nano Letters, 16(4), 2133–2138. https://doi.org/10.1021/acs.nanolett.6b00730
- Yi, Y. Q. Q., & Su, W. (2023). Cross-linking strategies for hole transport/emissive layers in quantum-dot light-emitting diodes. Materials Chemistry Frontiers, 7(23), 6130–6140. https://doi.org/10.1039/d3qm00831b
- Zhan, S., Suh, Y. H., Fan, X. B., Yang, J., Ni, L., Kim, Y., Jo, J. W., Choi, H. W., Jung, S. M., Shin, D. W., Lee, S., & Kim, J. M. (2022). Inkjet-printed multi-color arrays based on eco-friendly quantum dot light emitting diodes with tailored hole transport layer. Journal of the Society for Information Display, 30(10), 748–757. https://doi.org/10.1002/jsid.1133
- Zhu, T., Shanmugasundaram, K., Price, S. C., Ruzyllo, J., Zhang, F., Xu, J., Mohney, S. E., Zhang, Q., & Wang, A. Y. (2008). Mist fabrication of light emitting diodes with colloidal nanocrystal quantum dots. Applied Physics Letters, 92(2), 10–13. https://doi.org/10.1063/1.2834734
How to Cite
How to Cite
Downloads
Article Details
Most Read This Month
License
Copyright (c) 2024 Halide Diker, Secil Sevim Unluturk, Serdar Ozcelik, Canan Varlikli
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.