Skip to main content Skip to main navigation menu Skip to site footer

Improving the Stability of Ink-Jet Printed Red QLEDs By Optimizing The Device Fabrication Process

  • Halide Diker
  • Secil Sevim Unluturk
  • Serdar Ozcelik
  • Canan Varlikli

Abstract

Red-light emitting Cadmium Sulfide0.8 Selenide0.2 /Zinc Sulfide (CdS0.8Se0.2/ZnS) based quantum dots (QDs) were synthesized by hot injection method and utilized as the emissive layer in the quantum dot light emitting diode (QLED) with the device structure of Indium Tin Oxide/Poly(3,4-ethylenedioxythiophene): Polystyrene Sulfonate /Polyvinylcarbazole(or Poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidin)/QD/ZincOxide/LithiumFluoride/ Aluminum [ITO/ PEDOT: PSS/PVK(or p-TPD)/QD/ZnO/LiF/Al]. QD inks were formulated and prepared in octane: decane; (1/1, v/v) solvent system and mixed with the nonionic surfactant, TritonX-100, to make the QD inks inkjet printable. In addition to the inkjet printing technique, spin coating was also employed to form the QD emissive layer for comparing device performance. Compared to the p-TPD-based QLED device, the PVK-based device fabricated via spin coating exhibited ~6-fold higher performance in terms of luminance and efficiency values. In the case of using the ink-jet printer, ~2-fold higher maximum luminance value and slightly lower external quantum efficiency at the lower current density region were obtained in the p-TPD-based device. Furthermore, compared to the PVK layer, the p-TPD layer provided higher device stability regardless of the coating method at the higher current density regions. We suggest that the coating method applied and the choice of hole transport layer (HTL) materials may control the device parameters.

Section

References

  1. Cho, H., Kwak, J., Lim, J., Park, M., Lee, D., Bae, W. K., Kim, Y. S., Char, K., Lee, S., & Lee, C. (2015). Soft Contact Transplanted Nanocrystal Quantum Dots for Light- Emitting Diodes: Effect of Surface Energy on Device Performance. ACS Applied Materials and Interfaces, 7, 10828–10833. https://doi.org/10.1021/acsami.5b01738
  2. Diker, H., Bozkurt, H., & Varlikli, C. (2020). Dispersion stability of amine modified graphene oxides and their utilization in solution processed blue OLED. Chemical Engineering Journal, 381, 122716. https://doi.org/10.1016/j.cej.2019.122716
  3. García de Arquer, F. P., Talapin, D. V., Klimov, V. I., Arakawa, Y., Bayer, M., & Sargent, E. H. (2021). Semiconductor quantum dots: Technological progress and future challenges. Science, 373(6555), eaaz8541. https://doi.org/10.1126/science.aaz8541
  4. Gupta, S. K., Shankar, B., Taube, W. R., Singh, J., & Akhtar, J. (2014). Capacitance-conductance spectroscopic investigation of interfacial oxide layer in Ni/4H-SiC (0 0 0 1) Schottky diode. Physica B: Condensed Matter, 434(1), 44–50. https://doi.org/10.1016/j.physb.2013.10.042
  5. Haverinen, H. M., Myllylä, R. A., & Jabbour, G. E. (2009). Inkjet printing of light emitting quantum dots. Applied Physics Letters, 94(7), 073108. https://doi.org/10.1063/1.3085771
  6. Jia, S., Tang, H., Ma, J., Ding, S., Qu, X., Xu, B., Wu, Z., Li, G., Liu, P., Wang, K., & Sun, X. W. (2021). High Performance Inkjet-Printed Quantum-Dot Light-Emitting Diodes with High Operational Stability. Advanced Optical Materials, 9(22), 1–10. https://doi.org/10.1002/adom.202101069
  7. Jiang, C., Zhong, Z., Liu, B., He, Z., Zou, J., Wang, L., Wang, J., Peng, J., & Cao, Y. (2016). Coffee-Ring-Free Quantum Dot Thin Film Using Inkjet Printing from a Mixed-Solvent System on Modified ZnO Transport Layer for Light- Emitting Devices. ACS Applied Materials and Interfaces, 8, 26162–26168. https://doi.org/10.1021/acsami.6b08679
  8. Kim, B. H., Onses, M. S., Lim, J. Bin, Nam, S., Oh, N., Kim, H., Yu, K. J., Lee, J. W., Kim, J.-H., Kang, S.-K., Lee, C. H., Lee, J., Shin, J. H., Kim, N. H., Cecilia Leal, Shim, M., & Rogers, J. A. (2015). High-Resolution Patterns of Quantum Dots Formed by Electrohydrodynamic Jet Printing for Light-Emitting Diodes. Nano Letters, 15, 969–973. https://doi.org/10.1021/nl503779e
  9. Kim, J. H., Kang, Y. J., & Chin, B. D. (2021). Solvent mixture formulation for orthogonal inkjet processing and uniform pixel patterning of quantum dot light-emitting diode. Journal of the Korean Physical Society, 78(11), 1116–1127. https://doi.org/10.1007/s40042-021-00153-8
  10. Kim, T.-H., Cho, K.-S., Lee, E. K., Lee, S. J., Chae, J., Kim, J., Kim, D. H., Kwon, J.-Y., Amaratunga, G., Lee, S. Y., Choi, B. L., Kuk, Y., Kim, J. M., Kim, K., & Light-emitting. (2011). Full-colour quantum dot displays fabricated by transfer printing. Nature Photonics, 5, 176–182. https://doi.org/10.1038/nphoton.2011.12
  11. Lee, K. H., Han, C. Y., Kang, H. D., Ko, H., Lee, C., Lee, J., Myoung, N. S., Yim, S. Y., & Yang, H. (2015). Highly Efficient, Color-Reproducible Full-Color Electroluminescent Devices Based on Red/Green/Blue Quantum Dot-Mixed Multilayer. ACS Nano, 9(11), 10941–10949. https://doi.org/10.1021/acsnano.5b05513
  12. Li, G., Huang, J., Li, Y., Tang, J., & Jiang, Y. (2019). Highly bright and low turn-on voltage CsPbBr3 quantum dot LEDs via conjugation molecular ligand exchange. Nano Research, 12(1), 109–114. https://doi.org/10.1007/s12274-018-2187-5
  13. Li, H., Duan, Y., Shao, Z., Zhang, G., Li, H., Huang, Y. A., & Yin, Z. (2020). High-Resolution Pixelated Light Emitting Diodes Based on Electrohydrodynamic Printing and Coffee-Ring-Free Quantum Dot Film. Advanced Materials Technologies, 5(10), 1–6. https://doi.org/10.1002/admt.202000401
  14. Li, J., Jin, H., Wang, K., Xie, D., Xu, D., Xu, X., & Xu, G. (2016). High luminance of CuInS2-based yellow quantum dot light emitting diodes fabricated by all-solution processing. RSC Advances, 6(76), 72462–72470. https://doi.org/10.1039/c6ra14241a
  15. Li, Y. F., Feng, J., & Sun, H. B. (2019). Perovskite quantum dots for light-emitting devices. Nanoscale, 11(41), 19119–19139. https://doi.org/10.1039/c9nr06191f
  16. Lin, C., Hung, C., Kuo, P., & Cheng, M. (2010). Display Technology Letters. Journal of Display Technology, 8(12), 681–683. https://doi.org/10.1109/JDT.2009.2039019
  17. Liu, Y., Li, F., Xu, Z., Zheng, C., Guo, T., Xie, X., Qian, L., Fu, D., & Yan, X. (2017). Efficient All-Solution Processed Quantum Dot Light Emitting Diodes Based on Inkjet Printing Technique. ACS Applied Materials and Interfaces, 9, 25506–25512. https://doi.org/10.1021/acsami.7b05381
  18. Ozguler, S., Diker, H., Unluturk, S. S., Ozcelik, S., & Varlikli, C. (2020). Reducing the Efficiency Roll Off and Applied Potential-Induced Color Shifts in CdSe@ZnS/ZnS-Based Light-Emitting Diodes. The Journal of Physical Chemistry C, 124, 14847-14854. https://doi.org/10.1021/acs.jpcc.0c02769
  19. Pal, N. K., & Kryschi, C. (2015). A facile one-pot synthesis of blue and red luminescent thiol stabilized gold nanoclusters: A thorough optical and microscopy study. Physical Chemistry Chemical Physics, 17(33), 21423–21431. https://doi.org/10.1039/c5cp01773d
  20. Peng, X., Yuan, J., Shen, S., Gao, M., Chesman, A. S. R., Yin, H., Cheng, J., Zhang, Q., & Angmo, D. (2017). Perovskite and Organic Solar Cells Fabricated by Inkjet Printing: Progress and Prospects. Advanced Functional Materials, 27(41), 1703704. https://doi.org/10.1002/adfm.201703704
  21. Singh, K., Kumar, A., Pandey, S. K., Awasthi, S., Gupta, S. P. & Mishra, P. (2020). Interpretation of Adsorption Behavior of Carboxymethyl Cellulose onto Functionalized Accurel Polymeric Surface. Industrial & Engineering Chemistry Research, 59(43),19102-19116. https://doi.org/10.1021/acs.iecr.0c03894
  22. Sun, Y., Su, Q., Zhang, H., Wang, F., Zhang, S., & Chen, S. (2019). Investigation on Thermally Induced Efficiency Roll-Off: Toward Efficient and Ultrabright Quantum-Dot Light-Emitting Diodes. ACS Nano, 13, 11433–11442. https://doi.org/10.1021/acsnano.9b04879
  23. Xie, L., Yang, J., Zhao, W., Yi, Y. Q. Q., Liu, Y., Su, W., Li, Q., Lei, W., & Cui, Z. (2022). High-Performance Inkjet-Printed Blue QLED Enabled by Crosslinked and Intertwined Hole Transport Layer. Advanced Optical Materials, 10(21), 1–9. https://doi.org/10.1002/adom.202200935
  24. Xie, Q., Wu, D., Wang, X., Li, Y., Fang, F., Wang, Z., Ma, Y., Su, M., Peng, S., Liu, H., Wang, K., & Sun, X. W. (2019). Branched capping ligands improve the stability of cesium lead halide (CsPbBr3) perovskite quantum dots. Journal of Materials Chemistry C, 7(36), 11251–11257. https://doi.org/10.1039/c9tc03377g
  25. Xiong, X., Wei, C., Xie, L., Chen, M., Tang, P., Shen, W., Deng, Z., Li, X., Duan, Y., Su, W., Zeng, H., & Cui, Z. (2019). Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface. Organic Electronics, 73, 247–254. https://doi.org/10.1016/j.orgel.2019.06.016
  26. Yang, P., Zhang, L., Kang, D. J., Strahl, R., & Kraus, T. (2020). High-Resolution Inkjet Printing of Quantum Dot Light-Emitting Microdiode Arrays. Advanced Optical Materials, 8(1), 1–7. https://doi.org/10.1002/adom.201901429
  27. Yang, X., Zhang, Z. H., Ding, T., Wang, N., Chen, G., Dang, C., Demir, H. V., & Sun, X. W. (2018). High-efficiency all-inorganic full-colour quantum dot light-emitting diodes. Nano Energy, 46, 229–233. https://doi.org/10.1016/j.nanoen.2018.02.002
  28. Yang, Y., Qin, H., Jiang, M., Lin, L., Fu, T., Dai, X., Zhang, Z., Niu, Y., Cao, H., Jin, Y., Zhao, F., & Peng, X. (2016). Entropic Ligands for Nanocrystals: From Unexpected Solution Properties to Outstanding Processability. Nano Letters, 16(4), 2133–2138. https://doi.org/10.1021/acs.nanolett.6b00730
  29. Yi, Y. Q. Q., & Su, W. (2023). Cross-linking strategies for hole transport/emissive layers in quantum-dot light-emitting diodes. Materials Chemistry Frontiers, 7(23), 6130–6140. https://doi.org/10.1039/d3qm00831b
  30. Zhan, S., Suh, Y. H., Fan, X. B., Yang, J., Ni, L., Kim, Y., Jo, J. W., Choi, H. W., Jung, S. M., Shin, D. W., Lee, S., & Kim, J. M. (2022). Inkjet-printed multi-color arrays based on eco-friendly quantum dot light emitting diodes with tailored hole transport layer. Journal of the Society for Information Display, 30(10), 748–757. https://doi.org/10.1002/jsid.1133
  31. Zhu, T., Shanmugasundaram, K., Price, S. C., Ruzyllo, J., Zhang, F., Xu, J., Mohney, S. E., Zhang, Q., & Wang, A. Y. (2008). Mist fabrication of light emitting diodes with colloidal nanocrystal quantum dots. Applied Physics Letters, 92(2), 10–13. https://doi.org/10.1063/1.2834734

How to Cite

Improving the Stability of Ink-Jet Printed Red QLEDs By Optimizing The Device Fabrication Process. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1822

How to Cite

Improving the Stability of Ink-Jet Printed Red QLEDs By Optimizing The Device Fabrication Process. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1822

HTML
337

Total
276

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Halide Diker, Secil Sevim Unluturk, Serdar Ozcelik, Canan Varlikli

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.