Skip to main content Skip to main navigation menu Skip to site footer

Mycofabrication of Iron Nanoparticles: Applications and Future Prospectus

  • Ruchi Vyas
  • Manisha Mathur
  • Anuradha Singh
  • Nupur Mathur

Abstract

This review article is concerned with the environmentally benign manufacturing of nanoparticles using microorganisms, particularly fungi. To create nanoparticles, scientists and researchers have Used a variety of physical and chemical processes and procedures. However, these types of nanoparticles are not environmentally friendly and frequently allow for the release of hazardous substances, which could have a negative impact on both humans and the environment. As a result, it is crucial to develop affordable and eco-friendly nanoparticle synthesis techniques and adopt green syntheses by utilizing natural microorganisms like bacteria, fungi, algae, etc.  Fungi are the main focus for shaping these materials into nanoparticles since they can help cut processing time and manufacture nanoparticles in the proper size and form. They are the favored biological materials as the synthesized nanoparticles are non-toxic, thus energy efficiency is improved along with reduced environmental pollution. This is also the main justification for using fungal microorganisms in the synthesis of nanoparticles to produce ideal and non-toxic materials, which can assist in lessening the effects on the environment, improving energy efficiency, and reducing environmental pollution. The biological mechanism by which fungi synthesize iron nanoparticles, the development of diverse forms of iron nanoparticles by fungi, and the use of novel nanoparticles in the currently emerging industry are the main focus of this review.

Section

References

  1. Mansoori, G. A., & Soelaiman, T. F. (2005). Nanotechnology--An introduction for the standards community. ASTM International
  2. Pietro-Souza, W., de Campos Pereira, F., Mello, I. S., Stachack, F. F. F., Terezo, A. J., da Cunha, C. N., ... & Soares, M. A. (2020). Mercury resistance and bioremediation mediated by endophytic fungi. Chemosphere, 240, 124874.
  3. Jain, N., Bhargava, A., Majumdar, S., Tarafdar, J. C., & Panwar, J. (2011). Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale, 3(2), 635-641.
  4. Hanafy, M. H. (2018). Myconanotechnology in veterinary sector: Status quo and future perspectives. International Journal of Veterinary Science and Medicine, 6(2), 270-273.
  5. Khandel, P., & Shahi, S. K. (2018). Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges. Journal of Nanostructure in Chemistry, 8, 369-391.
  6. Guilger-Casagrande, M., & Lima, R. D. (2019). Synthesis of silver nanoparticles mediated by fungi: a review. Frontiers in bioengineering and biotechnology, 7, 287.
  7. Castro-Longoria, E.; Moreno-Velásquez, S.D.; Vilchis-Nestor, A.R.; Arenas-Berumen, E.;Avalos-Borja, M. Production of Platinum Nanoparticles and Nanoaggregates Using Neurospora crassa. J. Microbiol. Biotechnol. 2012, 22, 1000–1004.
  8. Dorcheh, S. K., & Vahabi, K. (2016). Biosynthesis of nanoparticles by fungi: large-scale production. Fungal metabolites, 5, 1-20.
  9. Elegbede, J. A., Ajayi, V. A., & Lateef, A. (2021). Microbial valorization of corncob: Novel route for biotechnological products for sustainable bioeconomy. Environmental Technology & Innovation, 24, 102073.
  10. Bourzama, G., Ouled-Haddar, H., Marrouche, M., & Aliouat, A. (2021). Iron uptake by fungi isolated from arcelor mittal-annaba-in the northeast of Algeria. Brazilian Journal of Poultry Science, 23.
  11. Mughal, B., Zaidi, S. Z. J., Zhang, X., & Hassan, S. U. (2021). Biogenic nanoparticles: Synthesis, characterisation and applications. Applied Sciences, 11(6), 2598.
  12. Siddiqi, K. S., & Husen, A. (2016). Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale research letters, 11(1), 1-13.
  13. Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of nanobiotechnology, 3, 1-7.
  14. Asmathunisha, N., & Kathiresan, K. (2013). A review on biosynthesis of nanoparticles by marine organisms. Colloids and Surfaces B: Biointerfaces, 103, 283-287.
  15. Sharma, N. C., Sahi, S. V., Nath, S., Parsons, J. G., Gardea-Torresde, J. L., & Pal, T. (2007). Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environmental science & technology, 41(14), 5137-5142.
  16. Vigneshwaran, N., Kathe, A. A., Varadarajan, P. V., Nachane, R. P., & Balasubramanya, R. H. (2006). Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids and Surfaces B: Biointerfaces, 53(1), 55-59.
  17. Blackwell, M. (2011). The Fungi: 1, 2, 3… 5.1 million species?. American journal of botany, 98(3), 426-438.
  18. Sastry, M., Ahmad, A., Khan, M. I., & Kumar, R. (2003). Biosynthesis of metal nanoparticles using fungi and actinomycete. Current science, 162-170.
  19. Castro-Longoria, E., Vilchis-Nestor, A. R., & Avalos-Borja, M. (2011). Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids and surfaces B: Biointerfaces, 83(1), 42-48.
  20. Volesky, B., & Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnology progress, 11(3), 235-250.
  21. Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., Ramani, R., Srinivas, V., & Sastry, M. (2003). Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology, 14(7), 824.
  22. Bharde, A., Rautaray, D., Bansal, V., Ahmad, A., Sarkar, I., Yusuf, S. M., ... & Sastry, M. (2006). Extracellular biosynthesis of magnetite using fungi. Small, 2(1), 135-141.
  23. Kaul, R. K., Kumar, P., Burman, U., Joshi, P., Agrawal, A., Raliya, R., & Tarafdar, J. C. (2012). Magnesium and iron nanoparticles production using microorganisms and various salts. Materials Science-Poland, 30, 254-258.
  24. Pavani, K. V., & Kumar, N. S. (2013). Adsorption of iron and synthesis of iron nanoparticles by Aspergillus species kvp 12. Am J Nanomater, 1(2), 24-26.
  25. Mohamed, Y. M., Azzam, A. M., Amin, B. H., & Safwat, N. A. (2015). Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. African Journal of Biotechnology, 14(14), 1234-1241.
  26. Chaudhary, P., Ahamad, L., Chaudhary, A., Kumar, G., Chen, W. J., & Chen, S. (2023). Nanoparticle-mediated bioremediation as a powerful weapon in the removal of environmental pollutants. Journal of Environmental Chemical Engineering, 109-115.
  27. Ali, M., Ramirez, P., Nguyen, H. Q., Nasir, S., Cervera, J., Mafe, S., & Ensinger, W. (2012). Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: experimental and theoretical characterization. ACS nano, 6(4), 3631-3640.
  28. Saravanakumar, K., Chelliah, R., MubarakAli, D., Oh, D. H., Kathiresan, K., & Wang, M. H. (2019). Unveiling the potentials of biocompatible silver nanoparticles on human lung carcinoma A549 cells and Helicobacter pylori. Scientific reports, 9(1), 1-8.
  29. Manik, G., & Ramasubbu, R. (2021). Biosynthesis of Iron nanoparticles from Pleurotus florida and its antimicrobial activity against selected human pathogens. Indian Journal of Pharmaceutical Sciences, 83(1), 45-51.
  30. Adeleye, T. M., Kareem, S. O., & Kekere-Ekun, A. A. (2020, March). Optimization studies on biosynthesis of iron nanoparticles using Rhizopus stolonifer. In IOP Conference Series: Materials Science and Engineering (Vol. 805, No. 1, p. 012037). IOP Publishing.
  31. Mahanty, S., Bakshi, M., Ghosh, S., Chatterjee, S., Bhattacharyya, S., Das, P., ... & Chaudhuri, P. (2019). Green synthesis of iron oxide nanoparticles mediated by filamentous fungi isolated from Sundarban mangrove ecosystem, India. BioNanoScience, 9, 637-651.
  32. Madivoli, E. S., Kareru, P. G., Maina, E. G., Nyabola, A. O., Wanakai, S. I., & Nyang’au, J. O. (2019). Biosynthesis of iron nanoparticles using Ageratum conyzoides extracts, their antimicrobial and photocatalytic activity. SN Applied Sciences, 1, 1-11.
  33. Tarafdar, J. C., & Raliya, R. (2013). Rapid, low-cost, and ecofriendly approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9. Journal of Nanoparticles, 2013, 1-4.
  34. Mathur, P., Saini, S., Paul, E., Sharma, C., & Mehtani, P. (2021). Endophytic fungi mediated synthesis of iron nanoparticles: Characterization and application in methylene blue decolorization. Current Research in Green and Sustainable Chemistry, 4-10.
  35. Abdeen, S., Isaac, R. R., Geo, S., Sornalekshmi, S., Rose, A., & Praseetha, P. K. (2013). Evaluation of Antimicrobial Activity of Biosynthesized Iron and Silver Nanoparticles Using the Fungi Fusarium Oxysporum and Actinomycetes sp. on Human Pathogens. Nano Biomedicine & Engineering, 5(1).
  36. Sidkey, N. (2020). biosynthesis, characterization and antimicrobial activity of iron oxide nanoparticles synthesized by fungi. Al-Azhar Journal of Pharmaceutical Sciences, 62(2), 164-179.
  37. Sayed, H., Sadek, H., Abdel-Aziz, M., Mahmoud, N., Sabry, W., Genidy, G., & Maher, M. (2021). Biosynthesis of iron oxide nanoparticles from fungi isolated from deteriorated historical gilded cartonnage and its application in cleaning. Egyptian Journal of Archaeological and Restoration Studies, 11(2), 129-145.
  38. Abdeen, M., Sabry, S., Ghozlan, H., El-Gendy, A. A., & Carpenter, E. E. (2016). Microbial-physical synthesis of Fe and Fe 3 O 4 magnetic nanoparticles using Aspergillus niger YESM1 and supercritical condition of ethanol. Journal of Nanomaterials, 2016.
  39. Bharde, A., Rautaray, D., Bansal, V., Ahmad, A., Sarkar, I., Yusuf, S. M., ... & Sastry, M. (2006). Extracellular biosynthesis of magnetite using fungi. Small, 2(1), 135-141.
  40. Pattanayak, D. S., Pal, D., Thakur, C., Kumar, S., & Devnani, G. L. (2021). Bio-synthesis of iron nanoparticles for environmental remediation: Status till date. Materials Today: Proceedings, 44, 3150-3155.
  41. Montiel Schneider, M. G., Martín, M. J., Otarola, J., Vakarelska, E., Simeonov, V., Lassalle, V., & Nedyalkova, M. (2022). Biomedical applications of iron oxide nanoparticles: Current insights progress and perspectives. Pharmaceutics, 14(1), 204.
  42. Keshk, S. M., El‐Zahhar, A. A., Haija, M. A., & Bondock, S. (2019). Synthesis of a magnetic nanoparticles/dialdehyde starch‐based composite film for food packaging. Starch‐Stärke, 71(1-2), 1800035.
  43. Jafarzadeh, S., Salehabadi, A., Nafchi, A. M., Oladzadabbasabadi, N., & Jafari, S. M. (2021). Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties. Trends in Food Science & Technology, 116, 218-231.
  44. Mary, T. R. N., & Jayavel, R. (2022). Fabrication of chitosan/Cashew Nut Shell Liquid/plant extracts-based bio-formulated nanosheets with embedded iron oxide nanoparticles as multi-functional barrier resist eco-packaging material. Applied Nanoscience, 12(5), 1719-1730.
  45. Wang, M., Hu, M., Hu, B., Guo, C., Song, Y., Jia, Q., ... & Fang, S. (2019). Bimetallic cerium and ferric oxides nanoparticles embedded within mesoporous carbon matrix: electrochemical immunosensor for sensitive detection of carbohydrate antigen 19-9. Biosensors and Bioelectronics, 135, 22-29.
  46. Puspasari, V., Ridhova, A., Hermawan, A., Amal, M. I., & Khan, M. M. (2022). ZnO-based antimicrobial coatings for biomedical applications. Bioprocess and Biosystems Engineering, 45(9), 1421-1445.
  47. El Messaoudi, N., El Khomri, M., Chegini, Z. G., Bouich, A., Dbik, A., Bentahar, S., ... & Lacherai, A. (2022). Dye removal from aqueous solution using nanocomposite synthesized from oxalic acid-modified agricultural solid waste and ZnFe 2 O 4 nanoparticles. Nanotechnology for Environmental Engineering, 7, 1-15. Mittapally S, Aziz A, Student A, Afnan AA. A review on nanotechnology in cosmetics. Pharma Innov Int J. 2019;8(4):668–671.
  48. Marinescu, L., Ficai, D., Oprea, O., Marin, A., Ficai, A., Andronescu, E., & Holban, A. M. (2020). Optimized synthesis approaches of metal nanoparticles with antimicrobial applications. Journal of Nanomaterials, 2020, 1-14.
  49. Canu, I. G., Schulte, P. A., Riediker, M., Fatkhutdinova, L., & Bergamaschi, E. (2017). Methodological, political and legal issues in the assessment of the effects of nanotechnology on human health. J Epidemiol Community Health.
  50. Müller, R. H., & Pyo, S. M. (2019). Why nanotechnology in dermal products?—Advantages, challenges, and market aspects. Nanocosmetics: From Ideas to Products, 347-359.
  51. Nasrollahzadeh, M., Sajjadi, M., Sajadi, S. M., & Issaabadi, Z. (2019). Green nanotechnology. In Interface science and technology (Vol. 28, pp. 145-198). Elsevier.
  52. Fouda, A., Hassan, S. E. D., Saied, E., & Azab, M. S. (2021). An eco-friendly approach to textile and tannery wastewater treatment using maghemite nanoparticles (γ-Fe2O3-NPs) fabricated by Penicillium expansum strain (Kw). Journal of Environmental Chemical Engineering, 9(1), 104693.
  53. Syed, A., & Ahmad, A. (2012). Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 97, 27-31.
  54. Baymiller M., Huang F., Rogelj S. (2017). Rapid one-step synthesis of gold nanoparticles using the ubiquitous coenzyme NADH. Matters. 2017, 1–4. 10.19185/matters.201705000007
  55. Gudikandula K., Vadapally P., Charya M. A. S. (2017). Biogenic synthesis of silver nanoparticles from white rot fungi: their characterization and antibacterial studies. Open Nano 2, 64–78. 10.1016/j.onano.2017.07.002
  56. Elgorban A. M., Aref S. M., Seham S. M., Elhindi K. M., Bahkali A. H., Sayed S. R., et al. (2016). Extracellular synthesis of silver nanoparticles using Aspergillus versicolor and evaluation of their activity on plant pathogenic fungi. Mycosphere 7, 844–852.
  57. Gherbawy, Y. A., Shalaby, I. M., El-Sadek, M. S., Elhariry, H. M., & Abdelilah, B. A. (2013). The anti-fasciolasis properties of silver nanoparticles produced by Trichoderma harzianum and their improvement of the anti-fasciolasis drug triclabendazole. International journal of molecular sciences, 14(11), 21887–21898. https://doi.org/10.3390/ijms141121887
  58. Sundaravadivelan C., Padmanabhan M. N. (2014). Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environ. Sci. Pollut. Res. 21, 4624–4633. 10.1007/s11356-013-2358-6
  59. Wang, H., Yuan, X., Zeng, G., Wu, Y., Liu, Y., Jiang, Q., & Gu, S. (2015). Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Advances in colloid and interface science, 221, 41-59.
  60. Zaera, F. (2013). Nanostructured materials for applications in heterogeneous catalysis. Chemical Society Reviews, 42(7), 2746-2762.

How to Cite

Mycofabrication of Iron Nanoparticles: Applications and Future Prospectus. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1808

How to Cite

Mycofabrication of Iron Nanoparticles: Applications and Future Prospectus. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1808

HTML
172

Total
136

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Ruchi Vyas, Manisha Mathur, Anuradha Singh, Nupur Mathur

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.