Skip to main content Skip to main navigation menu Skip to site footer

Graphene Intercalated Multifunctional Polymer Networks as Acoustic Absorbers for Underwater Applications

  • Deepthi Anna Davida
  • Ananthakrishnan Pacheeri
  • Farsana Mampulliyalil
  • Neenu K V
  • Dhanyasree P.
  • P. M. Sabura Begum
  • Prasanth Raghavan
  • Prasanth Raghavan

Abstract

Multifunctional polymer networks fortified with the power of graphene and its derivatives as nano-inclusions have excellent sound absorption efficiency in broad frequency range, high loss factor, and matching impedance with that of water along with exceptional thermal, mechanical, and tribological properties are found to be the pre-eminent material for the underwater acoustic applications, particularly for the military tactics. To develop a stealthy underwater acoustic material, various factors need to be carefully considered, including matching acoustic impedance, glass transition temperature, loss factor, tan δ value, compression set and other mechanical properties, thermal stability, adhesion, and other tribological properties, which is briefly summarized in this review. Strategical development of hybrid nano-inclusions, viscoelastic polymer networks, nanocomposites as well as various interpenetrating polymer networks (IPNs), assiduous synthesis and surface modification of graphene are pivotal key approaches that need to be appraised. Simulation studies focusing on various potential models need to be developed for the feasibility studies and designing of the underwater acoustic material.

Section

References

  1. Allen, M. J., Tung, V. C., & Kaner, R. B. (2010). Honeycomb carbon: A review of graphene. Chemical Reviews. https://doi.org/10.1021/cr900070d
  2. Amutha Jeevakumari, S. A., Indhumathi, K., & Arun Prakash, V. R. (2020). Role of cobalt nanowire and graphene nanoplatelet on microwave shielding behavior of natural rubber composite in high frequency bands. Polymer Composites. https://doi.org/10.1002/pc.25718
  3. Andrews, D. R. (2003). Ultrasonics and Acoustics (R. A. B. T.-E. of P. S. and T. (Third E. Meyers (ed.); pp. 269–287). Academic Press. https://doi.org/https://doi.org/10.1016/B0-12-227410-5/00800-0
  4. Babul Reddy, A., Siva Mohan Reddy, G., Sivanjineyulu, V., Jayaramudu, J., Varaprasad, K., & Sadiku, E. R. (2015). Hydrophobic/Hydrophilic Nanostructured Polymer Blends. In Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems. https://doi.org/10.1016/B978-0-323-39408-6.00016-9
  5. Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. In Nature Materials. https://doi.org/10.1038/nmat3064
  6. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters. https://doi.org/10.1021/nl0731872
  7. Berry, V. (2013). Impermeability of graphene and its applications. In Carbon. https://doi.org/10.1016/j.carbon.2013.05.052
  8. Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., & Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications. https://doi.org/10.1016/j.ssc.2008.02.024
  9. Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A. C., Ruoff, R. S., & Pellegrini, V. (2015). Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. In Science. https://doi.org/10.1126/science.1246501
  10. Cacciotti, I., House, J. N., Mazzuca, C., Valentini, M., Madau, F., Palleschi, A., Straffi, P., & Nanni, F. (2015). Neat and GNPs loaded natural rubber fibers by electrospinning: Manufacturing and characterization. Materials and Design. https://doi.org/10.1016/j.matdes.2015.09.054
  11. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics. https://doi.org/10.1103/RevModPhys.81.109
  12. Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. https://doi.org/10.1016/j.carbon.2013.07.055
  13. Chen, X., Meng, L., Liu, Z., Yang, F., Jiang, X., & Yang, J. (2023). Multifunctional Integrated Underwater Sound Absorption Materials: A Review. In Applied Sciences (Switzerland). https://doi.org/10.3390/app13095368
  14. Cui, L., Liu, J., Wang, R., Liu, Z., & Yang, W. (2012). A facile “graft from” method to prepare molecular-level dispersed graphene-polymer composites. Journal of Polymer Science, Part A: Polymer Chemistry. https://doi.org/10.1002/pola.26264
  15. Dashtkar, A., Hadavinia, H., Barros-Rodriguez, J., Williams, N. A., Turner, M., & Vahid, S. (2021). Quantifying damping coefficient and attenuation at different frequencies for graphene modified polyurethane by drop ball test. Polymer Testing. https://doi.org/10.1016/j.polymertesting.2021.107267
  16. Dato, A., Lee, Z., Jeon, K. J., Erni, R., Radmilovic, V., Richardson, T. J., & Frenklach, M. (2009). Clean and highly ordered graphene synthesized in the gas phase. Chemical Communications. https://doi.org/10.1039/b911395a
  17. David, D. A., Naiker, V., Fatima, J. M. J., George, T., Dhawale, P. V, Supekar, M. V., Begum, P. M. S., Thakur, V. K., & Raghavan, P. (n.d.). Polymer Composites for Stealth Technology. In Progress in Polymer Research for Biomedical, Energy and Specialty Applications (pp. 383–420). CRC Press.
  18. Dhawale, P. V, David, D. A., Babu, A., Owuor, P. S., Machado, L. D., Thakur, V. K., George, J. J., & Raghavan, P. (n.d.). Thermally Conducting Graphene-Elastomer Nanocomposites: Preparation, Properties, and Applications. In Graphene-Rubber Nanocomposites (pp. 377–414). CRC Press.
  19. Ding, P., Zhang, J., Song, N., Tang, S., Liu, Y., & Shi, L. (2015). Growing polystyrene chains from the surface of graphene layers via RAFT polymerization and the influence on their thermal properties. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2014.11.020
  20. Elkasaby, M. A., Utkarsh, Syed, N. A., Rizvi, G., Mohany, A., & Pop-Iliev, R. (2020). Evaluation of electro-spun polymeric nanofibers for sound absorption applications. AIP Conference Proceedings. https://doi.org/10.1063/1.5142957
  21. Fabbri, P., Bassoli, E., Bon, S. B., & Valentini, L. (2012). Preparation and characterization of poly (butylene terephthalate)/grapheme composites by in-situ polymerization of cyclic butylene terephthalate. Polymer. https://doi.org/10.1016/j.polymer.2012.01.015
  22. Feicht, P., Biskupek, J., Gorelik, T. E., Renner, J., Halbig, C. E., Maranska, M., Puchtler, F., Kaiser, U., & Eigler, S. (2019). Brodie’s or Hummers’ Method: Oxidation Conditions Determine the Structure of Graphene Oxide. Chemistry - A European Journal. https://doi.org/10.1002/chem.201901499
  23. Freakley, P. K., & Wan Idris, W. Y. (1979). VISUALIZATION OF FLOW DURING THE PROCESSING OF RUBBER IN AN INTERNAL MIXER. Rubber Chem Technol. https://doi.org/10.5254/1.3535197
  24. Fu, Y. (2022). Synergism of Carbon Nanotubes and Graphene Nanoplates in Improving Underwater Sound Absorption Stability under High Pressure. ChemistrySelect. https://doi.org/10.1002/slct.202103222
  25. Fu, Y., Kabir, I. I., Yeoh, G. H., & Peng, Z. (2021). A review on polymer-based materials for underwater sound absorption. In Polymer Testing. https://doi.org/10.1016/j.polymertesting.2021.107115
  26. Garu, P. K., & Chaki, T. K. (2012). Acoustic and mechanical properties of neoprene rubber for encapsulation of underwater transducers. Intl. J. of Scientific Engineering and Technology, 1(5), 231–237.
  27. Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E. P., Nika, D. L., Balandin, A. A., Bao, W., Miao, F., & Lau, C. N. (2008). Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters. https://doi.org/10.1063/1.2907977
  28. Goken, J., Fayed, S., Schafer, H., & Enzenauer, J. (2018). A study on the correlation between wood moisture and the damping behaviour of the tonewood spruce. Acta Physica Polonica A. https://doi.org/10.12693/APhysPolA.133.1241
  29. Gong, L., Zhang, F., Peng, X., Scarpa, F., Huang, Z., Tao, G., Liu, H. Y., Zhou, H., & Zhou, H. (2022). Improving the damping properties of carbon fiber reinforced polymer composites by interfacial sliding of oriented multilayer graphene oxide. Composites Science and Technology. https://doi.org/10.1016/j.compscitech.2022.109309
  30. Gu, R., Xu, W. Z., & Charpentier, P. A. (2014). Synthesis of graphene-polystyrene nanocomposites via RAFT polymerization. Polymer. https://doi.org/10.1016/j.polymer.2014.08.064
  31. Guo, Y., Bao, C., Song, L., Yuan, B., & Hu, Y. (2011). In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie200152x
  32. Huang, C.-Y., Tsai, P.-Y., Gu, B. E., Hu, W. C., Jhao, J. S., Jhuang, G.-S., & Lee, Y.-L. (2016). The development of novel sound-absorbing and anti-corrosion nanocomposite coating. ECS Transactions, 72(17), 171.
  33. Huang, H., Chen, S., Wee, A. T. S., & Chen, W. (2021). Epitaxial growth of graphene on silicon carbide (SiC). In Graphene: Properties, Preparation, Characterization and Applications, Second Edition. https://doi.org/10.1016/B978-0-08-102848-3.00021-9
  34. Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chemical Society Reviews. https://doi.org/10.1039/c1cs15078b
  35. Jayakumari, V. G., Shamsudeen, R. K., Ramesh, R., & Mukundan, T. (2011). Modeling and validation of polyurethane based passive underwater acoustic absorber. The Journal of the Acoustical Society of America. https://doi.org/10.1121/1.3605670
  36. Jung, K. Il, Yoon, S. W., Cho, K. Y., & Park, J. K. (2002). Acoustic properties of nitrile butadiene rubber for underwater applications. Journal of Applied Polymer Science. https://doi.org/10.1002/app.10758
  37. Katsiropoulos, C. V., Pappas, P., Koutroumanis, N., Kokkinos, A., & Galiotis, C. (2022). Enhancement of damping response in polymers and composites by the addition of graphene nanoplatelets. Composites Science and Technology, 227, 109562. https://doi.org/https://doi.org/10.1016/j.compscitech.2022.109562
  38. Kiddell, S., Kazemi, Y., Sorken, J., & Naguib, H. (2023). Influence of Flash Graphene on the acoustic, thermal, and mechanical performance of flexible polyurethane foam. Polymer Testing. https://doi.org/10.1016/j.polymertesting.2022.107919
  39. Kinloch, I. A., Suhr, J., Lou, J., Young, R. J., & Ajayan, P. M. (2018). Composites with carbon nanotubes and graphene: An outlook. In Science. https://doi.org/10.1126/science.aat7439
  40. Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., & Lee, J. H. (2010). Recent advances in graphene based polymer composites. In Progress in Polymer Science (Oxford). https://doi.org/10.1016/j.progpolymsci.2010.07.005
  41. Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. https://doi.org/10.1126/science.1157996
  42. Lee, J., & Jung, I. (2019). Tuning sound absorbing properties of open cell polyurethane foam by impregnating graphene oxide. Applied Acoustics. https://doi.org/10.1016/j.apacoust.2019.02.029
  43. Lee, J., Kim, J., Shin, Y., Jeon, J., Kang, Y. J., & Jung, I. (2023). Multilayered graphene oxide impregnated polyurethane foam for ultimate sound absorbing performance: Algorithmic approach and experimental validation. Applied Acoustics. https://doi.org/10.1016/j.apacoust.2022.109194
  44. Li, B., Olson, E., Perugini, A., & Zhong, W. H. (2011). Simultaneous enhancements in damping and static dissipation capability of polyetherimide composites with organosilane surface modified graphene nanoplatelets. Polymer. https://doi.org/10.1016/j.polymer.2011.09.048
  45. Li, G. P., Han, L., Wang, H. Y., Ma, X. H., He, S. Y., Li, Y. T., & Ren, T. L. (2022). Mini-review: Novel Graphene-based Acoustic Devices. Sensors and Actuators Reports. https://doi.org/10.1016/j.snr.2022.100086
  46. Li, N., Wang, Z., Zhao, K., Shi, Z., Gu, Z., & Xu, S. (2010). Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon. https://doi.org/10.1016/j.carbon.2009.09.013
  47. Li, S., Zheng, J., Yan, J., Wu, Z., Zhou, Q., & Tan, L. (2018). Gate-Free Hydrogel-Graphene Transistors as Underwater Microphones. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.8b14034
  48. Li, Y., Wang, S., Peng, Q., Zhou, Z., Yang, Z., He, X., & Li, Y. (2019). Active control of graphene-based membrane-type acoustic metamaterials using a low voltage. Nanoscale. https://doi.org/10.1039/c9nr04931b
  49. Li, Y., Xu, F., Lin, Z., Sun, X., Peng, Q., Yuan, Y., Wang, S., Yang, Z., He, X., & Li, Y. (2017). Electrically and thermally conductive underwater acoustically absorptive graphene/rubber nanocomposites for multifunctional applications. Nanoscale, 9(38), 14476–14485. https://doi.org/10.1039/C7NR05189A
  50. Liu, F., & Zhang, Y. (2010). Substrate-free synthesis of large area, continuous multi-layer graphene film. Carbon. https://doi.org/10.1016/j.carbon.2010.02.033
  51. Liu, H., Gao, H., & Hu, G. (2019). Highly sensitive natural rubber/pristine graphene strain sensor prepared by a simple method. Composites Part B: Engineering. https://doi.org/10.1016/j.compositesb.2019.04.032
  52. Liu, J., Yang, W., Tao, L., Li, D., Boyer, C., & Davis, T. P. (2010). Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization. Journal of Polymer Science, Part A: Polymer Chemistry. https://doi.org/10.1002/pola.23802
  53. Liu, Lei, Chen, Y., Liu, H., Rehman, H. U., Chen, C., Kang, H., & Li, H. (2019). A graphene oxide and functionalized carbon nanotube based semi-open cellular network for sound absorption. Soft Matter. https://doi.org/10.1039/c8sm01326h
  54. Liu, Li, Ryu, S., Tomasik, M. R., Stolyarova, E., Jung, N., Hybertsen, M. S., Steigerwald, M. L., Brus, L. E., & Flynn, G. W. (2008). Graphene oxidation: Thickness-dependent etching and strong chemical doping. Nano Letters. https://doi.org/10.1021/nl0808684
  55. Lu, W., Qin, F., Zhang, Q., Remillat, C., Wang, H., Scarpa, F., & Peng, H. X. (2020). Engineering foam skeletons with multilayered graphene oxide coatings for enhanced energy dissipation. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2020.106035
  56. Mao, Y., Wen, S., Chen, Y., Zhang, F., Panine, P., Chan, T. W., Zhang, L., Liang, Y., & Liu, L. (2013). High performance graphene oxide based rubber composites. Scientific Reports. https://doi.org/10.1038/srep02508
  57. Mbayachi, V. B., Ndayiragije, E., Sammani, T., Taj, S., Mbuta, E. R., & khan, A. ullah. (2021). Graphene synthesis, characterization and its applications: A review. In Results in Chemistry. https://doi.org/10.1016/j.rechem.2021.100163
  58. Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., & Roth, S. (2007). The structure of suspended graphene sheets. Nature. https://doi.org/10.1038/nature05545
  59. Mohamad, N., Yaakub, J., Ab Maulod, H. E., Jeefferie, A. R., Yuhazri, M. Y., Lau, K. T., Ahsan, Q., Shueb, M. I., & Othman, R. (2017). Vibrational damping behaviors of graphene nanoplatelets reinforced NR/EPDM nanocomposites. Journal of Mechanical Engineering and Sciences. https://doi.org/10.15282/jmes.11.4.2017.28.0294
  60. Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A., & Geim, A. K. (2008). Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters. https://doi.org/10.1103/PhysRevLett.100.016602
  61. Muñoz, R., & Gómez-Aleixandre, C. (2013). Review of CVD synthesis of graphene. In Chemical Vapor Deposition. https://doi.org/10.1002/cvde.201300051
  62. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science. https://doi.org/10.1126/science.1156965
  63. Nautiyal, P., Boesl, B., & Agarwal, A. (2017). Harnessing Three Dimensional Anatomy of Graphene Foam to Induce Superior Damping in Hierarchical Polyimide Nanostructures. Small. https://doi.org/10.1002/smll.201603473
  64. Navidfar, A., & Trabzon, L. (2022). Fabrication and characterization of polyurethane hybrid nanocomposites: mechanical, thermal, acoustic, and dielectric properties. Emergent Materials. https://doi.org/10.1007/s42247-021-00315-1
  65. Novoselov, K. S., Jiang, Z., Zhang, Y., Morozov, S. V., Stormer, H. L., Zeitler, U., Maan, J. C., Boebinger, G. S., Kim, P., & Geim, A. K. (2007). Room-temperature quantum hall effect in graphene. Science. https://doi.org/10.1126/science.1137201
  66. Oh, J. H., Kim, J., Lee, H., Kang, Y., & Oh, I. K. (2018). Directionally Antagonistic Graphene Oxide-Polyurethane Hybrid Aerogel as a Sound Absorber. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.8b06361
  67. Oldfield, D. T., McCulloch, D. G., Huynh, C. P., Sears, K., & Hawkins, S. C. (2015). Multilayered graphene films prepared at moderate temperatures using energetic physical vapour deposition. Carbon. https://doi.org/10.1016/j.carbon.2015.06.071
  68. Pang, K., Liu, X., Pang, J., Samy, A., Xie, J., Liu, Y., Peng, L., Xu, Z., & Gao, C. (2022). Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums. Advanced Materials. https://doi.org/10.1002/adma.202103740
  69. Pious, D., Jacob, J., George, N., Bhagat, V., Chacko, T., & Jeyaraj, P. (2020). Vibro-acoustic behaviour of functionally graded graphene reinforced polymer nanocomposites. AIP Conference Proceedings. https://doi.org/10.1063/5.0004109
  70. Poh, H. L., Šaněk, F., Ambrosi, A., Zhao, G., Sofer, Z., & Pumera, M. (2012). Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale. https://doi.org/10.1039/c2nr30490b
  71. Polschikov, S. V., Nedorezova, P. M., Klyamkina, A. N., Kovalchuk, A. A., Aladyshev, A. M., Shchegolikhin, A. N., Shevchenko, V. G., & Muradyan, V. E. (2013). Composite materials of graphene nanoplatelets and polypropylene, prepared by in situ polymerization. Journal of Applied Polymer Science. https://doi.org/10.1002/app.37837
  72. Pop, E., Varshney, V., & Roy, A. K. (2012). Thermal properties of graphene: Fundamentals and applications. MRS Bulletin. https://doi.org/10.1557/mrs.2012.203
  73. Potts, J. R., Lee, S. H., Alam, T. M., An, J., Stoller, M. D., Piner, R. D., & Ruoff, R. S. (2011). Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon. https://doi.org/10.1016/j.carbon.2011.02.023
  74. Potts, J. R., Shankar, O., Du, L., & Ruoff, R. S. (2012). Processing-morphology-property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules. https://doi.org/10.1021/ma300706k
  75. Potts, J. R., Shankar, O., Murali, S., Du, L., & Ruoff, R. S. (2013). Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites. Composites Science and Technology. https://doi.org/10.1016/j.compscitech.2012.11.008
  76. Prabhu, S., Pai, A. B., Arora, G. S., Kusshal, M. R., Pandin, V., & Goutham, M. A. (2021). Design of Piezo-Resistive Type Acoustic Vector Sensor using Graphene for Underwater Applications. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899x/1045/1/012015
  77. Rafiee, M., Nitzsche, F., & Labrosse, M. R. (2019). Fabrication and experimental evaluation of vibration and damping in multiscale graphene/fiberglass/epoxy composites. Journal of Composite Materials. https://doi.org/10.1177/0021998318822708
  78. Rafiee, Mohammad, Nitzsche, F., & Labrosse, M. R. (2019). Processing, manufacturing, and characterization of vibration damping in epoxy composites modified with graphene nanoplatelets. Polymer Composites. https://doi.org/10.1002/pc.25251
  79. Rao, C. N. R., Biswas, K., Subrahmanyam, K. S., & Govindaraj, A. (2009). Graphene, the new nanocarbon. Journal of Materials Chemistry. https://doi.org/10.1039/b815239j
  80. Ray, S. S., Chen, S. S., Li, C. W., Nguyen, N. C., & Nguyen, H. T. (2016). A comprehensive review: Electrospinning technique for fabrication and surface modification of membranes for water treatment application. In RSC Advances. https://doi.org/10.1039/c6ra14952a
  81. Rodgers, B., & Waddell, W. (2013). The Science of Rubber Compounding. In The Science and Technology of Rubber. https://doi.org/10.1016/B978-0-12-394584-6.00009-1
  82. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., & Novoselov, K. S. (2007). Detection of individual gas molecules adsorbed on graphene. Nature Materials. https://doi.org/10.1038/nmat1967
  83. Shaid Sujon, M. A., Islam, A., & Nadimpalli, V. K. (2021). Damping and sound absorption properties of polymer matrix composites: A review. In Polymer Testing. https://doi.org/10.1016/j.polymertesting.2021.107388
  84. Sharma, G. S., Skvortsov, A., MacGillivray, I., & Kessissoglou, N. (2017). Acoustic performance of gratings of cylindrical voids in a soft elastic medium with a steel backing. The Journal of the Acoustical Society of America. https://doi.org/10.1121/1.4986941
  85. Sheehy, D. E., & Schmalian, J. (2009). Optical transparency of graphene as determined by the fine-structure constant. Physical Review B - Condensed Matter and Materials Physics. https://doi.org/10.1103/PhysRevB.80.193411
  86. Shen, Z., Li, J., Yi, M., Zhang, X., & Ma, S. (2011). Preparation of graphene by jet cavitation. Nanotechnology. https://doi.org/10.1088/0957-4484/22/36/365306
  87. Shevchenko, V. G., Polschikov, S. V., Nedorezova, P. M., Klyamkina, A. N., Shchegolikhin, A. N., Aladyshev, A. M., & Muradyan, V. E. (2012). In situ polymerized poly(propylene)/graphene nanoplatelets nanocomposites: Dielectric and microwave properties. Polymer. https://doi.org/10.1016/j.polymer.2012.09.018
  88. Shin, Y. J., Kwon, J. H., Kalon, G., Lam, K. T., Bhatia, C. S., Liang, G., & Yang, H. (2010). Ambipolar bistable switching effect of graphene. Applied Physics Letters. https://doi.org/10.1063/1.3532849
  89. Shinde, D. B., Debgupta, J., Kushwaha, A., Aslam, M., & Pillai, V. K. (2011). Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. Journal of the American Chemical Society. https://doi.org/10.1021/ja1101739
  90. Simón-Herrero, C., Peco, N., Romero, A., Valverde, J. L., & Sánchez-Silva, L. (2019). PVA/nanoclay/graphene oxide aerogels with enhanced sound absorption properties. Applied Acoustics. https://doi.org/10.1016/j.apacoust.2019.06.023
  91. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: Past, present and future. In Progress in Materials Science. https://doi.org/10.1016/j.pmatsci.2011.03.003
  92. Smitha Pai, B., Kamath, K., Lathakumari, K. R., Veera Pandi, N., & Goutham, M. A. (2023). Design, development, fabrication and evaluation of the dynamics of a graphene based underwater acoustic vector sensor: A simulation and experimental study. Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2023.114877
  93. Stoller, M. D., Park, S., Yanwu, Z., An, J., & Ruoff, R. S. (2008). Graphene-Based ultracapacitors. Nano Letters. https://doi.org/10.1021/nl802558y
  94. Subramanya, B., & Bhat, D. K. (2015). Novel one-pot green synthesis of graphene in aqueous medium under microwave irradiation using a regenerative catalyst and the study of its electrochemical properties. New Journal of Chemistry. https://doi.org/10.1039/c4nj01359j
  95. Terasawa, T. O., & Saiki, K. (2012). Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon. https://doi.org/10.1016/j.carbon.2011.09.047
  96. Tumnantong, D., Poompradub, S., & Prasassarakich, P. (2020). Poly(methyl methacrylate)-graphene emulsion prepared via RAFT polymerization and the properties of NR/PMMA-graphene composites. European Polymer Journal. https://doi.org/10.1016/j.eurpolymj.2020.109983
  97. Verdejo, R., Bernal, M. M., Romasanta, L. J., & Lopez-Manchado, M. A. (2011). Graphene filled polymer nanocomposites. Journal of Materials Chemistry. https://doi.org/10.1039/c0jm02708a
  98. Verdejo, R., Saiz-Arroyo, C., Carretero-Gonzalez, J., Barroso-Bujans, F., Rodriguez-Perez, M. A., & Lopez-Manchado, M. A. (2008). Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets. European Polymer Journal. https://doi.org/10.1016/j.eurpolymj.2008.06.033
  99. Verma, D., & Goh, K. L. (2018). Functionalized Graphene-Based Nanocomposites for Energy Applications. In Functionalized Graphene Nanocomposites and Their Derivatives: Synthesis, Processing and Applications. https://doi.org/10.1016/B978-0-12-814548-7.00011-8
  100. Wan, X., Chen, K., Liu, D., Chen, J., Miao, Q., & Xu, J. (2012). High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons. Chemistry of Materials. https://doi.org/10.1021/cm301993z
  101. Wang, C., Zhang, B., Li, Y., & Zhao, X. (2020). Suspended Graphene Hydroacoustic Sensor for Broadband Underwater Wireless Communications. IEEE Wireless Communications. https://doi.org/10.1109/MWC.001.2000056
  102. Wang, J., Shi, Z., Ge, Y., Wang, Y., Fan, J., & Yin, J. (2012). Solvent exfoliated graphene for reinforcement of PMMA composites prepared by in situ polymerization. Materials Chemistry and Physics. https://doi.org/10.1016/j.matchemphys.2012.06.017
  103. Wang, J. Y., Yang, S. Y., Huang, Y. L., Tien, H. W., Chin, W. K., & Ma, C. C. M. (2011). Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. Journal of Materials Chemistry. https://doi.org/10.1039/c1jm11766a
  104. Wang, X., Hu, Y., Song, L., Yang, H., Xing, W., & Lu, H. (2011). In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. Journal of Materials Chemistry. https://doi.org/10.1039/c0jm03710a
  105. Wasim, M., Sabir, A., Shafiq, M., & Jamil, T. (2018). Electrospinning: A Fiber Fabrication Technique for Water Purification. In Nanoscale Materials in Water Purification. https://doi.org/10.1016/B978-0-12-813926-4.00016-1
  106. Wen, J., Zhao, H., Lv, L., Yuan, B., Wang, G., & Wen, X. (2011). Effects of locally resonant modes on underwater sound absorption in viscoelastic materials. The Journal of the Acoustical Society of America. https://doi.org/10.1121/1.3621074
  107. Wu, C. M., & Chou, M. H. (2016). Sound absorption of electrospun polyvinylidene fluoride/graphene membranes. European Polymer Journal. https://doi.org/10.1016/j.eurpolymj.2016.07.001
  108. Wu, S., Peng, S., & Wang, C. H. (2018). Multifunctional polymer nanocomposites reinforced by aligned carbon nanomaterials. In Polymers. https://doi.org/10.3390/polym10050542
  109. Wu, Y., Sun, X., Wu, W., Liu, X., Lin, X., Shen, X., Wang, Z., Li, R. K. Y., Yang, Z., Lau, K. T., & Kim, J. K. (2017). Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites as excellent sound absorber. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2017.09.001
  110. Xiao, X., Xie, T., & Cheng, Y.-T. (2010). Self-healable graphene polymer composites. Journal of Materials Chemistry, 20(17), 3508–3514.
  111. Xu, H., Gong, L. X., Wang, X., Zhao, L., Pei, Y. B., Wang, G., Liu, Y. J., Wu, L. Bin, Jiang, J. X., & Tang, L. C. (2016). Influence of processing conditions on dispersion, electrical and mechanical properties of graphene-filled-silicone rubber composites. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2016.09.011
  112. Xu, J., Dang, D. K., Tran, V. T., Liu, X., Chung, J. S., Hur, S. H., Choi, W. M., Kim, E. J., & Kohl, P. A. (2014). Liquid-phase exfoliation of graphene in organic solvents with addition of naphthalene. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2013.12.009
  113. Xu, Y., Cao, H., Xue, Y., Li, B., & Cai, W. (2018). Liquid-phase exfoliation of graphene: An overview on exfoliation media, techniques, and challenges. In Nanomaterials. https://doi.org/10.3390/nano8110942
  114. Xu, Z, & Gao, C. (2010). In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules. https://doi.org/10.1021/ma1009337
  115. Xu, Zhichao, Zhang, Z., Wang, J., Chen, X., & Huang, Q. (2020). Acoustic analysis of functionally graded porous graphene reinforced nanocomposite plates based on a simple quasi-3D HSDT. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2020.107151
  116. Yang, P., Wu, J., Zhao, R., & Han, J. (2020). Study of high frequency acoustic directional transmission model based on graphene structure. AIP Advances. https://doi.org/10.1063/1.5143330
  117. Yi, M., & Shen, Z. (2015). A review on mechanical exfoliation for the scalable production of graphene. In Journal of Materials Chemistry A. https://doi.org/10.1039/c5ta00252d
  118. Yoon, G., Seo, D. H., Ku, K., Kim, J., Jeon, S., & Kang, K. (2015). Factors affecting the exfoliation of graphite intercalation compounds for graphene synthesis. Chemistry of Materials. https://doi.org/10.1021/cm504511b
  119. Yu, P., Lowe, S. E., Simon, G. P., & Zhong, Y. L. (2015). Electrochemical exfoliation of graphite and production of functional graphene. In Current Opinion in Colloid and Interface Science. https://doi.org/10.1016/j.cocis.2015.10.007
  120. Yuan, B., Jiang, W., Jiang, H., Chen, M., & Liu, Y. (2018). Underwater acoustic properties of graphene nanoplatelet-modified rubber. Journal of Reinforced Plastics and Composites. https://doi.org/10.1177/0731684418754411
  121. Yuan, W., Chen, J., & Shi, G. (2014). Nanoporous graphene materials. In Materials Today. https://doi.org/10.1016/j.mattod.2014.01.021
  122. Zárate, I. A., Aguilar-Bolados, H., Yazdani-Pedram, M., Pizarro, G. D. C., & Neira-Carrillo, A. (2020). In vitro hyperthermia evaluation of electrospun polymer composite fibers loaded with reduced graphene oxide. Polymers, 12(11), 1–16. https://doi.org/10.3390/polym12112663
  123. Zhan, Y., Wu, J., Xia, H., Yan, N., Fei, G., & Yuan, G. (2011). Dispersion and exfoliation of graphene in rubber by an ultrasonically- assisted latex mixing and in situ reduction process. Macromolecular Materials and Engineering. https://doi.org/10.1002/mame.201000358
  124. Zhang, H. Bin, Zheng, W. G., Yan, Q., Yang, Y., Wang, J. W., Lu, Z. H., Ji, G. Y., & Yu, Z. Z. (2010). Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer. https://doi.org/10.1016/j.polymer.2010.01.027
  125. Zhang, Y., & Cho, U. R. (2018). Enhanced thermo-physical properties of nitrile-butadiene rubber nanocomposites filled with simultaneously reduced and functionalized graphene oxide. Polymer Composites. https://doi.org/10.1002/pc.24335
  126. Zhang, Z., Zhao, Y., & Gao, N. (2023). Recent study progress of underwater sound absorption coating. In Engineering Reports. https://doi.org/10.1002/eng2.12627
  127. Zheng, W., Lu, X., & Wong, S. C. (2004). Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. Journal of Applied Polymer Science. https://doi.org/10.1002/app.13460
  128. Zhu, M., Du, Z., Yin, Z., Zhou, W., Liu, Z., Tsang, S. H., & Teo, E. H. T. (2016). Low-Temperature in Situ Growth of Graphene on Metallic Substrates and Its Application in Anticorrosion. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.5b09453
  129. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials. https://doi.org/10.1002/adma.201001068
  130. Zong, D., Cao, L., Yin, X., Si, Y., Zhang, S., Yu, J., & Ding, B. (2021). Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nature Communications. https://doi.org/10.1038/s41467-021-26890-9

How to Cite

Graphene Intercalated Multifunctional Polymer Networks as Acoustic Absorbers for Underwater Applications. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1802

How to Cite

Graphene Intercalated Multifunctional Polymer Networks as Acoustic Absorbers for Underwater Applications. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1802

HTML
302

Total
167

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Deepthi Anna Davida, Ananthakrishnan Pacheeri, Farsana Mampulliyalil, Neenu K V, Dhanyasree P., P. M. Sabura Begum , Prasanth Raghavan, Prasanth Raghavan

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.