Graphene Intercalated Multifunctional Polymer Networks as Acoustic Absorbers for Underwater Applications
Abstract
Multifunctional polymer networks fortified with the power of graphene and its derivatives as nano-inclusions have excellent sound absorption efficiency in broad frequency range, high loss factor, and matching impedance with that of water along with exceptional thermal, mechanical, and tribological properties are found to be the pre-eminent material for the underwater acoustic applications, particularly for the military tactics. To develop a stealthy underwater acoustic material, various factors need to be carefully considered, including matching acoustic impedance, glass transition temperature, loss factor, tan δ value, compression set and other mechanical properties, thermal stability, adhesion, and other tribological properties, which is briefly summarized in this review. Strategical development of hybrid nano-inclusions, viscoelastic polymer networks, nanocomposites as well as various interpenetrating polymer networks (IPNs), assiduous synthesis and surface modification of graphene are pivotal key approaches that need to be appraised. Simulation studies focusing on various potential models need to be developed for the feasibility studies and designing of the underwater acoustic material.
References
- Allen, M. J., Tung, V. C., & Kaner, R. B. (2010). Honeycomb carbon: A review of graphene. Chemical Reviews. https://doi.org/10.1021/cr900070d
- Amutha Jeevakumari, S. A., Indhumathi, K., & Arun Prakash, V. R. (2020). Role of cobalt nanowire and graphene nanoplatelet on microwave shielding behavior of natural rubber composite in high frequency bands. Polymer Composites. https://doi.org/10.1002/pc.25718
- Andrews, D. R. (2003). Ultrasonics and Acoustics (R. A. B. T.-E. of P. S. and T. (Third E. Meyers (ed.); pp. 269–287). Academic Press. https://doi.org/https://doi.org/10.1016/B0-12-227410-5/00800-0
- Babul Reddy, A., Siva Mohan Reddy, G., Sivanjineyulu, V., Jayaramudu, J., Varaprasad, K., & Sadiku, E. R. (2015). Hydrophobic/Hydrophilic Nanostructured Polymer Blends. In Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems. https://doi.org/10.1016/B978-0-323-39408-6.00016-9
- Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. In Nature Materials. https://doi.org/10.1038/nmat3064
- Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters. https://doi.org/10.1021/nl0731872
- Berry, V. (2013). Impermeability of graphene and its applications. In Carbon. https://doi.org/10.1016/j.carbon.2013.05.052
- Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., & Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications. https://doi.org/10.1016/j.ssc.2008.02.024
- Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A. C., Ruoff, R. S., & Pellegrini, V. (2015). Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. In Science. https://doi.org/10.1126/science.1246501
- Cacciotti, I., House, J. N., Mazzuca, C., Valentini, M., Madau, F., Palleschi, A., Straffi, P., & Nanni, F. (2015). Neat and GNPs loaded natural rubber fibers by electrospinning: Manufacturing and characterization. Materials and Design. https://doi.org/10.1016/j.matdes.2015.09.054
- Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics. https://doi.org/10.1103/RevModPhys.81.109
- Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. https://doi.org/10.1016/j.carbon.2013.07.055
- Chen, X., Meng, L., Liu, Z., Yang, F., Jiang, X., & Yang, J. (2023). Multifunctional Integrated Underwater Sound Absorption Materials: A Review. In Applied Sciences (Switzerland). https://doi.org/10.3390/app13095368
- Cui, L., Liu, J., Wang, R., Liu, Z., & Yang, W. (2012). A facile “graft from” method to prepare molecular-level dispersed graphene-polymer composites. Journal of Polymer Science, Part A: Polymer Chemistry. https://doi.org/10.1002/pola.26264
- Dashtkar, A., Hadavinia, H., Barros-Rodriguez, J., Williams, N. A., Turner, M., & Vahid, S. (2021). Quantifying damping coefficient and attenuation at different frequencies for graphene modified polyurethane by drop ball test. Polymer Testing. https://doi.org/10.1016/j.polymertesting.2021.107267
- Dato, A., Lee, Z., Jeon, K. J., Erni, R., Radmilovic, V., Richardson, T. J., & Frenklach, M. (2009). Clean and highly ordered graphene synthesized in the gas phase. Chemical Communications. https://doi.org/10.1039/b911395a
- David, D. A., Naiker, V., Fatima, J. M. J., George, T., Dhawale, P. V, Supekar, M. V., Begum, P. M. S., Thakur, V. K., & Raghavan, P. (n.d.). Polymer Composites for Stealth Technology. In Progress in Polymer Research for Biomedical, Energy and Specialty Applications (pp. 383–420). CRC Press.
- Dhawale, P. V, David, D. A., Babu, A., Owuor, P. S., Machado, L. D., Thakur, V. K., George, J. J., & Raghavan, P. (n.d.). Thermally Conducting Graphene-Elastomer Nanocomposites: Preparation, Properties, and Applications. In Graphene-Rubber Nanocomposites (pp. 377–414). CRC Press.
- Ding, P., Zhang, J., Song, N., Tang, S., Liu, Y., & Shi, L. (2015). Growing polystyrene chains from the surface of graphene layers via RAFT polymerization and the influence on their thermal properties. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2014.11.020
- Elkasaby, M. A., Utkarsh, Syed, N. A., Rizvi, G., Mohany, A., & Pop-Iliev, R. (2020). Evaluation of electro-spun polymeric nanofibers for sound absorption applications. AIP Conference Proceedings. https://doi.org/10.1063/1.5142957
- Fabbri, P., Bassoli, E., Bon, S. B., & Valentini, L. (2012). Preparation and characterization of poly (butylene terephthalate)/grapheme composites by in-situ polymerization of cyclic butylene terephthalate. Polymer. https://doi.org/10.1016/j.polymer.2012.01.015
- Feicht, P., Biskupek, J., Gorelik, T. E., Renner, J., Halbig, C. E., Maranska, M., Puchtler, F., Kaiser, U., & Eigler, S. (2019). Brodie’s or Hummers’ Method: Oxidation Conditions Determine the Structure of Graphene Oxide. Chemistry - A European Journal. https://doi.org/10.1002/chem.201901499
- Freakley, P. K., & Wan Idris, W. Y. (1979). VISUALIZATION OF FLOW DURING THE PROCESSING OF RUBBER IN AN INTERNAL MIXER. Rubber Chem Technol. https://doi.org/10.5254/1.3535197
- Fu, Y. (2022). Synergism of Carbon Nanotubes and Graphene Nanoplates in Improving Underwater Sound Absorption Stability under High Pressure. ChemistrySelect. https://doi.org/10.1002/slct.202103222
- Fu, Y., Kabir, I. I., Yeoh, G. H., & Peng, Z. (2021). A review on polymer-based materials for underwater sound absorption. In Polymer Testing. https://doi.org/10.1016/j.polymertesting.2021.107115
- Garu, P. K., & Chaki, T. K. (2012). Acoustic and mechanical properties of neoprene rubber for encapsulation of underwater transducers. Intl. J. of Scientific Engineering and Technology, 1(5), 231–237.
- Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E. P., Nika, D. L., Balandin, A. A., Bao, W., Miao, F., & Lau, C. N. (2008). Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters. https://doi.org/10.1063/1.2907977
- Goken, J., Fayed, S., Schafer, H., & Enzenauer, J. (2018). A study on the correlation between wood moisture and the damping behaviour of the tonewood spruce. Acta Physica Polonica A. https://doi.org/10.12693/APhysPolA.133.1241
- Gong, L., Zhang, F., Peng, X., Scarpa, F., Huang, Z., Tao, G., Liu, H. Y., Zhou, H., & Zhou, H. (2022). Improving the damping properties of carbon fiber reinforced polymer composites by interfacial sliding of oriented multilayer graphene oxide. Composites Science and Technology. https://doi.org/10.1016/j.compscitech.2022.109309
- Gu, R., Xu, W. Z., & Charpentier, P. A. (2014). Synthesis of graphene-polystyrene nanocomposites via RAFT polymerization. Polymer. https://doi.org/10.1016/j.polymer.2014.08.064
- Guo, Y., Bao, C., Song, L., Yuan, B., & Hu, Y. (2011). In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie200152x
- Huang, C.-Y., Tsai, P.-Y., Gu, B. E., Hu, W. C., Jhao, J. S., Jhuang, G.-S., & Lee, Y.-L. (2016). The development of novel sound-absorbing and anti-corrosion nanocomposite coating. ECS Transactions, 72(17), 171.
- Huang, H., Chen, S., Wee, A. T. S., & Chen, W. (2021). Epitaxial growth of graphene on silicon carbide (SiC). In Graphene: Properties, Preparation, Characterization and Applications, Second Edition. https://doi.org/10.1016/B978-0-08-102848-3.00021-9
- Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chemical Society Reviews. https://doi.org/10.1039/c1cs15078b
- Jayakumari, V. G., Shamsudeen, R. K., Ramesh, R., & Mukundan, T. (2011). Modeling and validation of polyurethane based passive underwater acoustic absorber. The Journal of the Acoustical Society of America. https://doi.org/10.1121/1.3605670
- Jung, K. Il, Yoon, S. W., Cho, K. Y., & Park, J. K. (2002). Acoustic properties of nitrile butadiene rubber for underwater applications. Journal of Applied Polymer Science. https://doi.org/10.1002/app.10758
- Katsiropoulos, C. V., Pappas, P., Koutroumanis, N., Kokkinos, A., & Galiotis, C. (2022). Enhancement of damping response in polymers and composites by the addition of graphene nanoplatelets. Composites Science and Technology, 227, 109562. https://doi.org/https://doi.org/10.1016/j.compscitech.2022.109562
- Kiddell, S., Kazemi, Y., Sorken, J., & Naguib, H. (2023). Influence of Flash Graphene on the acoustic, thermal, and mechanical performance of flexible polyurethane foam. Polymer Testing. https://doi.org/10.1016/j.polymertesting.2022.107919
- Kinloch, I. A., Suhr, J., Lou, J., Young, R. J., & Ajayan, P. M. (2018). Composites with carbon nanotubes and graphene: An outlook. In Science. https://doi.org/10.1126/science.aat7439
- Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., & Lee, J. H. (2010). Recent advances in graphene based polymer composites. In Progress in Polymer Science (Oxford). https://doi.org/10.1016/j.progpolymsci.2010.07.005
- Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. https://doi.org/10.1126/science.1157996
- Lee, J., & Jung, I. (2019). Tuning sound absorbing properties of open cell polyurethane foam by impregnating graphene oxide. Applied Acoustics. https://doi.org/10.1016/j.apacoust.2019.02.029
- Lee, J., Kim, J., Shin, Y., Jeon, J., Kang, Y. J., & Jung, I. (2023). Multilayered graphene oxide impregnated polyurethane foam for ultimate sound absorbing performance: Algorithmic approach and experimental validation. Applied Acoustics. https://doi.org/10.1016/j.apacoust.2022.109194
- Li, B., Olson, E., Perugini, A., & Zhong, W. H. (2011). Simultaneous enhancements in damping and static dissipation capability of polyetherimide composites with organosilane surface modified graphene nanoplatelets. Polymer. https://doi.org/10.1016/j.polymer.2011.09.048
- Li, G. P., Han, L., Wang, H. Y., Ma, X. H., He, S. Y., Li, Y. T., & Ren, T. L. (2022). Mini-review: Novel Graphene-based Acoustic Devices. Sensors and Actuators Reports. https://doi.org/10.1016/j.snr.2022.100086
- Li, N., Wang, Z., Zhao, K., Shi, Z., Gu, Z., & Xu, S. (2010). Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon. https://doi.org/10.1016/j.carbon.2009.09.013
- Li, S., Zheng, J., Yan, J., Wu, Z., Zhou, Q., & Tan, L. (2018). Gate-Free Hydrogel-Graphene Transistors as Underwater Microphones. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.8b14034
- Li, Y., Wang, S., Peng, Q., Zhou, Z., Yang, Z., He, X., & Li, Y. (2019). Active control of graphene-based membrane-type acoustic metamaterials using a low voltage. Nanoscale. https://doi.org/10.1039/c9nr04931b
- Li, Y., Xu, F., Lin, Z., Sun, X., Peng, Q., Yuan, Y., Wang, S., Yang, Z., He, X., & Li, Y. (2017). Electrically and thermally conductive underwater acoustically absorptive graphene/rubber nanocomposites for multifunctional applications. Nanoscale, 9(38), 14476–14485. https://doi.org/10.1039/C7NR05189A
- Liu, F., & Zhang, Y. (2010). Substrate-free synthesis of large area, continuous multi-layer graphene film. Carbon. https://doi.org/10.1016/j.carbon.2010.02.033
- Liu, H., Gao, H., & Hu, G. (2019). Highly sensitive natural rubber/pristine graphene strain sensor prepared by a simple method. Composites Part B: Engineering. https://doi.org/10.1016/j.compositesb.2019.04.032
- Liu, J., Yang, W., Tao, L., Li, D., Boyer, C., & Davis, T. P. (2010). Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization. Journal of Polymer Science, Part A: Polymer Chemistry. https://doi.org/10.1002/pola.23802
- Liu, Lei, Chen, Y., Liu, H., Rehman, H. U., Chen, C., Kang, H., & Li, H. (2019). A graphene oxide and functionalized carbon nanotube based semi-open cellular network for sound absorption. Soft Matter. https://doi.org/10.1039/c8sm01326h
- Liu, Li, Ryu, S., Tomasik, M. R., Stolyarova, E., Jung, N., Hybertsen, M. S., Steigerwald, M. L., Brus, L. E., & Flynn, G. W. (2008). Graphene oxidation: Thickness-dependent etching and strong chemical doping. Nano Letters. https://doi.org/10.1021/nl0808684
- Lu, W., Qin, F., Zhang, Q., Remillat, C., Wang, H., Scarpa, F., & Peng, H. X. (2020). Engineering foam skeletons with multilayered graphene oxide coatings for enhanced energy dissipation. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2020.106035
- Mao, Y., Wen, S., Chen, Y., Zhang, F., Panine, P., Chan, T. W., Zhang, L., Liang, Y., & Liu, L. (2013). High performance graphene oxide based rubber composites. Scientific Reports. https://doi.org/10.1038/srep02508
- Mbayachi, V. B., Ndayiragije, E., Sammani, T., Taj, S., Mbuta, E. R., & khan, A. ullah. (2021). Graphene synthesis, characterization and its applications: A review. In Results in Chemistry. https://doi.org/10.1016/j.rechem.2021.100163
- Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., & Roth, S. (2007). The structure of suspended graphene sheets. Nature. https://doi.org/10.1038/nature05545
- Mohamad, N., Yaakub, J., Ab Maulod, H. E., Jeefferie, A. R., Yuhazri, M. Y., Lau, K. T., Ahsan, Q., Shueb, M. I., & Othman, R. (2017). Vibrational damping behaviors of graphene nanoplatelets reinforced NR/EPDM nanocomposites. Journal of Mechanical Engineering and Sciences. https://doi.org/10.15282/jmes.11.4.2017.28.0294
- Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A., & Geim, A. K. (2008). Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters. https://doi.org/10.1103/PhysRevLett.100.016602
- Muñoz, R., & Gómez-Aleixandre, C. (2013). Review of CVD synthesis of graphene. In Chemical Vapor Deposition. https://doi.org/10.1002/cvde.201300051
- Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science. https://doi.org/10.1126/science.1156965
- Nautiyal, P., Boesl, B., & Agarwal, A. (2017). Harnessing Three Dimensional Anatomy of Graphene Foam to Induce Superior Damping in Hierarchical Polyimide Nanostructures. Small. https://doi.org/10.1002/smll.201603473
- Navidfar, A., & Trabzon, L. (2022). Fabrication and characterization of polyurethane hybrid nanocomposites: mechanical, thermal, acoustic, and dielectric properties. Emergent Materials. https://doi.org/10.1007/s42247-021-00315-1
- Novoselov, K. S., Jiang, Z., Zhang, Y., Morozov, S. V., Stormer, H. L., Zeitler, U., Maan, J. C., Boebinger, G. S., Kim, P., & Geim, A. K. (2007). Room-temperature quantum hall effect in graphene. Science. https://doi.org/10.1126/science.1137201
- Oh, J. H., Kim, J., Lee, H., Kang, Y., & Oh, I. K. (2018). Directionally Antagonistic Graphene Oxide-Polyurethane Hybrid Aerogel as a Sound Absorber. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.8b06361
- Oldfield, D. T., McCulloch, D. G., Huynh, C. P., Sears, K., & Hawkins, S. C. (2015). Multilayered graphene films prepared at moderate temperatures using energetic physical vapour deposition. Carbon. https://doi.org/10.1016/j.carbon.2015.06.071
- Pang, K., Liu, X., Pang, J., Samy, A., Xie, J., Liu, Y., Peng, L., Xu, Z., & Gao, C. (2022). Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums. Advanced Materials. https://doi.org/10.1002/adma.202103740
- Pious, D., Jacob, J., George, N., Bhagat, V., Chacko, T., & Jeyaraj, P. (2020). Vibro-acoustic behaviour of functionally graded graphene reinforced polymer nanocomposites. AIP Conference Proceedings. https://doi.org/10.1063/5.0004109
- Poh, H. L., Šaněk, F., Ambrosi, A., Zhao, G., Sofer, Z., & Pumera, M. (2012). Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale. https://doi.org/10.1039/c2nr30490b
- Polschikov, S. V., Nedorezova, P. M., Klyamkina, A. N., Kovalchuk, A. A., Aladyshev, A. M., Shchegolikhin, A. N., Shevchenko, V. G., & Muradyan, V. E. (2013). Composite materials of graphene nanoplatelets and polypropylene, prepared by in situ polymerization. Journal of Applied Polymer Science. https://doi.org/10.1002/app.37837
- Pop, E., Varshney, V., & Roy, A. K. (2012). Thermal properties of graphene: Fundamentals and applications. MRS Bulletin. https://doi.org/10.1557/mrs.2012.203
- Potts, J. R., Lee, S. H., Alam, T. M., An, J., Stoller, M. D., Piner, R. D., & Ruoff, R. S. (2011). Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon. https://doi.org/10.1016/j.carbon.2011.02.023
- Potts, J. R., Shankar, O., Du, L., & Ruoff, R. S. (2012). Processing-morphology-property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules. https://doi.org/10.1021/ma300706k
- Potts, J. R., Shankar, O., Murali, S., Du, L., & Ruoff, R. S. (2013). Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites. Composites Science and Technology. https://doi.org/10.1016/j.compscitech.2012.11.008
- Prabhu, S., Pai, A. B., Arora, G. S., Kusshal, M. R., Pandin, V., & Goutham, M. A. (2021). Design of Piezo-Resistive Type Acoustic Vector Sensor using Graphene for Underwater Applications. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899x/1045/1/012015
- Rafiee, M., Nitzsche, F., & Labrosse, M. R. (2019). Fabrication and experimental evaluation of vibration and damping in multiscale graphene/fiberglass/epoxy composites. Journal of Composite Materials. https://doi.org/10.1177/0021998318822708
- Rafiee, Mohammad, Nitzsche, F., & Labrosse, M. R. (2019). Processing, manufacturing, and characterization of vibration damping in epoxy composites modified with graphene nanoplatelets. Polymer Composites. https://doi.org/10.1002/pc.25251
- Rao, C. N. R., Biswas, K., Subrahmanyam, K. S., & Govindaraj, A. (2009). Graphene, the new nanocarbon. Journal of Materials Chemistry. https://doi.org/10.1039/b815239j
- Ray, S. S., Chen, S. S., Li, C. W., Nguyen, N. C., & Nguyen, H. T. (2016). A comprehensive review: Electrospinning technique for fabrication and surface modification of membranes for water treatment application. In RSC Advances. https://doi.org/10.1039/c6ra14952a
- Rodgers, B., & Waddell, W. (2013). The Science of Rubber Compounding. In The Science and Technology of Rubber. https://doi.org/10.1016/B978-0-12-394584-6.00009-1
- Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., & Novoselov, K. S. (2007). Detection of individual gas molecules adsorbed on graphene. Nature Materials. https://doi.org/10.1038/nmat1967
- Shaid Sujon, M. A., Islam, A., & Nadimpalli, V. K. (2021). Damping and sound absorption properties of polymer matrix composites: A review. In Polymer Testing. https://doi.org/10.1016/j.polymertesting.2021.107388
- Sharma, G. S., Skvortsov, A., MacGillivray, I., & Kessissoglou, N. (2017). Acoustic performance of gratings of cylindrical voids in a soft elastic medium with a steel backing. The Journal of the Acoustical Society of America. https://doi.org/10.1121/1.4986941
- Sheehy, D. E., & Schmalian, J. (2009). Optical transparency of graphene as determined by the fine-structure constant. Physical Review B - Condensed Matter and Materials Physics. https://doi.org/10.1103/PhysRevB.80.193411
- Shen, Z., Li, J., Yi, M., Zhang, X., & Ma, S. (2011). Preparation of graphene by jet cavitation. Nanotechnology. https://doi.org/10.1088/0957-4484/22/36/365306
- Shevchenko, V. G., Polschikov, S. V., Nedorezova, P. M., Klyamkina, A. N., Shchegolikhin, A. N., Aladyshev, A. M., & Muradyan, V. E. (2012). In situ polymerized poly(propylene)/graphene nanoplatelets nanocomposites: Dielectric and microwave properties. Polymer. https://doi.org/10.1016/j.polymer.2012.09.018
- Shin, Y. J., Kwon, J. H., Kalon, G., Lam, K. T., Bhatia, C. S., Liang, G., & Yang, H. (2010). Ambipolar bistable switching effect of graphene. Applied Physics Letters. https://doi.org/10.1063/1.3532849
- Shinde, D. B., Debgupta, J., Kushwaha, A., Aslam, M., & Pillai, V. K. (2011). Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. Journal of the American Chemical Society. https://doi.org/10.1021/ja1101739
- Simón-Herrero, C., Peco, N., Romero, A., Valverde, J. L., & Sánchez-Silva, L. (2019). PVA/nanoclay/graphene oxide aerogels with enhanced sound absorption properties. Applied Acoustics. https://doi.org/10.1016/j.apacoust.2019.06.023
- Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: Past, present and future. In Progress in Materials Science. https://doi.org/10.1016/j.pmatsci.2011.03.003
- Smitha Pai, B., Kamath, K., Lathakumari, K. R., Veera Pandi, N., & Goutham, M. A. (2023). Design, development, fabrication and evaluation of the dynamics of a graphene based underwater acoustic vector sensor: A simulation and experimental study. Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2023.114877
- Stoller, M. D., Park, S., Yanwu, Z., An, J., & Ruoff, R. S. (2008). Graphene-Based ultracapacitors. Nano Letters. https://doi.org/10.1021/nl802558y
- Subramanya, B., & Bhat, D. K. (2015). Novel one-pot green synthesis of graphene in aqueous medium under microwave irradiation using a regenerative catalyst and the study of its electrochemical properties. New Journal of Chemistry. https://doi.org/10.1039/c4nj01359j
- Terasawa, T. O., & Saiki, K. (2012). Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon. https://doi.org/10.1016/j.carbon.2011.09.047
- Tumnantong, D., Poompradub, S., & Prasassarakich, P. (2020). Poly(methyl methacrylate)-graphene emulsion prepared via RAFT polymerization and the properties of NR/PMMA-graphene composites. European Polymer Journal. https://doi.org/10.1016/j.eurpolymj.2020.109983
- Verdejo, R., Bernal, M. M., Romasanta, L. J., & Lopez-Manchado, M. A. (2011). Graphene filled polymer nanocomposites. Journal of Materials Chemistry. https://doi.org/10.1039/c0jm02708a
- Verdejo, R., Saiz-Arroyo, C., Carretero-Gonzalez, J., Barroso-Bujans, F., Rodriguez-Perez, M. A., & Lopez-Manchado, M. A. (2008). Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets. European Polymer Journal. https://doi.org/10.1016/j.eurpolymj.2008.06.033
- Verma, D., & Goh, K. L. (2018). Functionalized Graphene-Based Nanocomposites for Energy Applications. In Functionalized Graphene Nanocomposites and Their Derivatives: Synthesis, Processing and Applications. https://doi.org/10.1016/B978-0-12-814548-7.00011-8
- Wan, X., Chen, K., Liu, D., Chen, J., Miao, Q., & Xu, J. (2012). High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons. Chemistry of Materials. https://doi.org/10.1021/cm301993z
- Wang, C., Zhang, B., Li, Y., & Zhao, X. (2020). Suspended Graphene Hydroacoustic Sensor for Broadband Underwater Wireless Communications. IEEE Wireless Communications. https://doi.org/10.1109/MWC.001.2000056
- Wang, J., Shi, Z., Ge, Y., Wang, Y., Fan, J., & Yin, J. (2012). Solvent exfoliated graphene for reinforcement of PMMA composites prepared by in situ polymerization. Materials Chemistry and Physics. https://doi.org/10.1016/j.matchemphys.2012.06.017
- Wang, J. Y., Yang, S. Y., Huang, Y. L., Tien, H. W., Chin, W. K., & Ma, C. C. M. (2011). Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. Journal of Materials Chemistry. https://doi.org/10.1039/c1jm11766a
- Wang, X., Hu, Y., Song, L., Yang, H., Xing, W., & Lu, H. (2011). In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. Journal of Materials Chemistry. https://doi.org/10.1039/c0jm03710a
- Wasim, M., Sabir, A., Shafiq, M., & Jamil, T. (2018). Electrospinning: A Fiber Fabrication Technique for Water Purification. In Nanoscale Materials in Water Purification. https://doi.org/10.1016/B978-0-12-813926-4.00016-1
- Wen, J., Zhao, H., Lv, L., Yuan, B., Wang, G., & Wen, X. (2011). Effects of locally resonant modes on underwater sound absorption in viscoelastic materials. The Journal of the Acoustical Society of America. https://doi.org/10.1121/1.3621074
- Wu, C. M., & Chou, M. H. (2016). Sound absorption of electrospun polyvinylidene fluoride/graphene membranes. European Polymer Journal. https://doi.org/10.1016/j.eurpolymj.2016.07.001
- Wu, S., Peng, S., & Wang, C. H. (2018). Multifunctional polymer nanocomposites reinforced by aligned carbon nanomaterials. In Polymers. https://doi.org/10.3390/polym10050542
- Wu, Y., Sun, X., Wu, W., Liu, X., Lin, X., Shen, X., Wang, Z., Li, R. K. Y., Yang, Z., Lau, K. T., & Kim, J. K. (2017). Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites as excellent sound absorber. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2017.09.001
- Xiao, X., Xie, T., & Cheng, Y.-T. (2010). Self-healable graphene polymer composites. Journal of Materials Chemistry, 20(17), 3508–3514.
- Xu, H., Gong, L. X., Wang, X., Zhao, L., Pei, Y. B., Wang, G., Liu, Y. J., Wu, L. Bin, Jiang, J. X., & Tang, L. C. (2016). Influence of processing conditions on dispersion, electrical and mechanical properties of graphene-filled-silicone rubber composites. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2016.09.011
- Xu, J., Dang, D. K., Tran, V. T., Liu, X., Chung, J. S., Hur, S. H., Choi, W. M., Kim, E. J., & Kohl, P. A. (2014). Liquid-phase exfoliation of graphene in organic solvents with addition of naphthalene. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2013.12.009
- Xu, Y., Cao, H., Xue, Y., Li, B., & Cai, W. (2018). Liquid-phase exfoliation of graphene: An overview on exfoliation media, techniques, and challenges. In Nanomaterials. https://doi.org/10.3390/nano8110942
- Xu, Z, & Gao, C. (2010). In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules. https://doi.org/10.1021/ma1009337
- Xu, Zhichao, Zhang, Z., Wang, J., Chen, X., & Huang, Q. (2020). Acoustic analysis of functionally graded porous graphene reinforced nanocomposite plates based on a simple quasi-3D HSDT. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2020.107151
- Yang, P., Wu, J., Zhao, R., & Han, J. (2020). Study of high frequency acoustic directional transmission model based on graphene structure. AIP Advances. https://doi.org/10.1063/1.5143330
- Yi, M., & Shen, Z. (2015). A review on mechanical exfoliation for the scalable production of graphene. In Journal of Materials Chemistry A. https://doi.org/10.1039/c5ta00252d
- Yoon, G., Seo, D. H., Ku, K., Kim, J., Jeon, S., & Kang, K. (2015). Factors affecting the exfoliation of graphite intercalation compounds for graphene synthesis. Chemistry of Materials. https://doi.org/10.1021/cm504511b
- Yu, P., Lowe, S. E., Simon, G. P., & Zhong, Y. L. (2015). Electrochemical exfoliation of graphite and production of functional graphene. In Current Opinion in Colloid and Interface Science. https://doi.org/10.1016/j.cocis.2015.10.007
- Yuan, B., Jiang, W., Jiang, H., Chen, M., & Liu, Y. (2018). Underwater acoustic properties of graphene nanoplatelet-modified rubber. Journal of Reinforced Plastics and Composites. https://doi.org/10.1177/0731684418754411
- Yuan, W., Chen, J., & Shi, G. (2014). Nanoporous graphene materials. In Materials Today. https://doi.org/10.1016/j.mattod.2014.01.021
- Zárate, I. A., Aguilar-Bolados, H., Yazdani-Pedram, M., Pizarro, G. D. C., & Neira-Carrillo, A. (2020). In vitro hyperthermia evaluation of electrospun polymer composite fibers loaded with reduced graphene oxide. Polymers, 12(11), 1–16. https://doi.org/10.3390/polym12112663
- Zhan, Y., Wu, J., Xia, H., Yan, N., Fei, G., & Yuan, G. (2011). Dispersion and exfoliation of graphene in rubber by an ultrasonically- assisted latex mixing and in situ reduction process. Macromolecular Materials and Engineering. https://doi.org/10.1002/mame.201000358
- Zhang, H. Bin, Zheng, W. G., Yan, Q., Yang, Y., Wang, J. W., Lu, Z. H., Ji, G. Y., & Yu, Z. Z. (2010). Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer. https://doi.org/10.1016/j.polymer.2010.01.027
- Zhang, Y., & Cho, U. R. (2018). Enhanced thermo-physical properties of nitrile-butadiene rubber nanocomposites filled with simultaneously reduced and functionalized graphene oxide. Polymer Composites. https://doi.org/10.1002/pc.24335
- Zhang, Z., Zhao, Y., & Gao, N. (2023). Recent study progress of underwater sound absorption coating. In Engineering Reports. https://doi.org/10.1002/eng2.12627
- Zheng, W., Lu, X., & Wong, S. C. (2004). Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. Journal of Applied Polymer Science. https://doi.org/10.1002/app.13460
- Zhu, M., Du, Z., Yin, Z., Zhou, W., Liu, Z., Tsang, S. H., & Teo, E. H. T. (2016). Low-Temperature in Situ Growth of Graphene on Metallic Substrates and Its Application in Anticorrosion. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.5b09453
- Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials. https://doi.org/10.1002/adma.201001068
- Zong, D., Cao, L., Yin, X., Si, Y., Zhang, S., Yu, J., & Ding, B. (2021). Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nature Communications. https://doi.org/10.1038/s41467-021-26890-9
How to Cite
How to Cite
Search Panel
Downloads
Article Details
Most Read This Month
License
Copyright (c) 2024 Deepthi Anna Davida, Ananthakrishnan Pacheeri, Farsana Mampulliyalil, Neenu K V, Dhanyasree P., P. M. Sabura Begum , Prasanth Raghavan, Prasanth Raghavan
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.