Skip to main content Skip to main navigation menu Skip to site footer

Process optimization for biogenesis of silver nanoparticles from Aspergillus flavus GGRK1 culture filtrate: Characterization and Its antibacterial efficacy

  • Divya Naini
  • Guddu Kumar Gupta
  • Gaurav Rawat
  • Sonia Kapoor
  • Rajeev Kumar Kapoor

Abstract

The cell-free culture filtrate (CF) of Aspergillus flavus GGRK1 could mediate the synthesis of silver nanoparticles using silver nitrate. Extracellular extract of Aspergillus flavus GGRK1 was a significant reductant for the reduction of silver nanoparticles due to presence of metabolites or other bioactive compounds. After the reduction of Ag (I) ions to Ag by the fungal CF, a dark brown color was obtained which indicated the biosynthesis of AgNPs. The maximum AgNPs were synthesized at the CCD-optimized condition of AgNO3 conc. of 4.189 mM, CFC 0.905 mL, and reaction time 8.17 h. The biosynthesized AgNPs had a zeta size of 119.4 nm diameter. The FTIR study revealed the significant efficacy of functional groups associated with the biosynthesized AgNPs. Additionally, the XRD study revealed a crystalline nature of biosynthesized AgNPs along very good correlation with FCC lattice. The biosynthesized nanoparticles showed significant antibacterial activity against gram-positive and gram-negative bacteria. As a result, the maximum ZOI was obtained at 150 µl/ml against all the tested organisms such as B. subtilis MTCC 121, S. aureus MTCC 96, E coli MTCC 443 and P. aeruginosa MTCC 424 with 18 mm, 20 mm, 14 mm, and 18 mm, respectively.

Section

References

  1. Al-Shmgani, H. S. A., Mohammed, W. H., Sulaiman, G. M., & Saadoon, A. H. (2017). Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artificial Cells, Nanomedicine and Biotechnology, 45(6), 1234–1240. https://doi.org/10.1080/21691401.2016.1220950
  2. Balavandy, S. K., Shameli, K., Biak, D. R. B. A., & Abidin, Z. Z. (2014). Stirring time effect of silver nanoparticles prepared in glutathione mediated by green method. Chemistry Central Journal, 8(1). https://doi.org/10.1186/1752-153X-8-11
  3. Bhainsa, K. C., & D’Souza, S. F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces, 47(2), 160–164. https://doi.org/10.1016/j.colsurfb.2005.11.026
  4. Chauhan, A., Anand, J., Parkash, V., & Rai, N. (2023). Biogenic synthesis: a sustainable approach for nanoparticle synthesis mediated by fungi. In Inorganic and Nano-Metal Chemistry (Vol. 53, Issue 5, pp. 460–473). Taylor and Francis Ltd. https://doi.org/10.1080/24701556.2021.2025078
  5. Dhillon, G. S., Brar, S. K., Kaur, S., & Verma, M. (2012). Green approach for nanoparticle biosynthesis by fungi: Current trends and applications. In Critical Reviews in Biotechnology (Vol. 32, Issue 1, pp. 49–73). https://doi.org/10.3109/07388551.2010.550568
  6. Elgorban, A. M., Al-Rahmah, A. N., Sayed, S. R., Hirad, A., Mostafa, A. A. F., & Bahkali, A. H. (2016). Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnology and Biotechnological Equipment, 30(2), 299–304. https://doi.org/10.1080/13102818.2015.1133255
  7. Elshafei, A. M., Othman, A. M., Elsayed, M. A., Al-Balakocy, N. G., & Hassan, M. M. (2021). Green synthesis of silver nanoparticles using Aspergillus oryzae NRRL447 exogenous proteins: Optimization via central composite design, characterization and biological applications. Environmental Nanotechnology, Monitoring, and Management, 16, 100553. https://doi.org/10.1016/j.enmm.2021.100553
  8. Farrag, H. M. M., Mostafa, F. A. A. M., Mohamed, M. E., & Huseein, E. A. M. (2020). Green biosynthesis of silver nanoparticles by Aspergillus niger and its antiamoebic effect against Allovahlkampfia spelaea trophozoite and cyst. Experimental Parasitology, 219, 108031. https://doi.org/10.1016/j.exppara.2020.108031
  9. Ferreyra Maillard, A. P. V., Espeche, J. C., Maturana, P., Cutro, A. C., & Hollmann, A. (2021). Zeta potential beyond materials science: Applications to bacterial systems and to the development of novel antimicrobials. In Biochimica et Biophysica Acta - Biomembranes (Vol. 1863, Issue 6). https://doi.org/10.1016/j.bbamem.2021.183597
  10. Gecer, E. N., & Erenler, R. (2023). Biogenic synthesis of silver nanoparticles using Echium vulgare: Characterisation, quantitative analysis of bioactive compounds, antioxidant activity, and catalytic degradation. Journal of the Indian Chemical Society, 100(5), 101003. https://doi.org/10.1016/j.jics.2023.101003
  11. Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes-A review. In Colloids and Surfaces B: Biointerfaces (Vol. 121, pp. 474–483). https://doi.org/10.1016/j.colsurfb.2014.05.027
  12. Ifijen, I. H., Maliki, M., & Anegbe, B. (2022). Synthesis, photocatalytic degradation and antibacterial properties of selenium or silver doped zinc oxide nanoparticles: A detailed review. In OpenNano (Vol. 8). https://doi.org/10.1016/j.onano.2022.100082
  13. Jiang, J., Oberdörster, G., & Biswas, P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 11(1), 77–89. https://doi.org/10.1007/S11051-008-9446-4
  14. Kalimuthu, K., Suresh Babu, R., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B: Biointerfaces, 65(1), 150–153. https://doi.org/10.1016/j.colsurfb.2008.02.018
  15. Kapoor, R. T., Salvadori, M. R., Rafatullah, M., Siddiqui, M. R., Khan, M. A., & Alshareef, S. A. (2021). Exploration of Microbial Factories for Synthesis of Nanoparticles – A Sustainable Approach for Bioremediation of Environmental Contaminants. In Frontiers in Microbiology (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2021.658294
  16. Khandel, P., & Shahi, S. K. (2018). Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges. In Journal of Nanostructure in Chemistry (Vol. 8, Issue 4, pp. 369–391). Springer Medizin. https://doi.org/10.1007/s40097-018-0285-2
  17. Kumar, S. A., Abyaneh, M. K., Gosavi, S. W., Kulkarni, S. K., Pasricha, R., Ahmad, A., & Khan, M. I. (2007). Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO 3. Biotechnology Letters, 29(3), 439–445. https://doi.org/10.1007/s10529-006-9256-7
  18. Lee, H. J., Lee, G., Jang, N. R., Yun, J. H., Song, J. Y., & Kim, B. S. (2011). Biological synthesis of copper nanoparticles using plant extract. Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011, 1, 371–374.
  19. Ma, L., Su, W., Liu, J. X., Zeng, X. X., Huang, Z., Li, W., Liu, Z. C., & Tang, J. X. (2017). Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Materials Science and Engineering C, 77, 963–971. https://doi.org/10.1016/j.msec.2017.03.294
  20. Majeed, S., Abdullah, M. S. bin, Nanda, A., & Ansari, M. T. (2016). In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999). Journal of Taibah University for Science, 10(4), 614–620. https://doi.org/10.1016/j.jtusci.2016.02.010
  21. Maliszewska, I., & Sadowski, Z. (2009). Synthesis and antibacterial activity of silver nanoparticles. Journal of Physics: Conference Series, 146. https://doi.org/10.1088/1742-6596/146/1/012024
  22. Mansouri, S. S., & Ghader, S. (2009). Experimental study on the effect of different parameters on the size and shape of triangular silver nanoparticles prepared by a simple and rapid method in an aqueous solution. Arabian Journal of Chemistry, 2(1), 47–53. https://doi.org/10.1016/j.arabjc.2009.07.004
  23. Mostafa, F. (2017). Biosynthesis of Silver Nanoparticles by Pathogenic and Nonpathogenic Strains of Fusarium oxysporum f. sp. lycopersici. Egyptian Journal of Botany, 57(2), 345–350. https://doi.org/10.21608/ejbo.2017.789.1048
  24. Muñoz, A. J., Espínola, F., Ruiz, E., Cuartero, M., & Castro, E. (2022). Biotechnological use of the ubiquitous fungus Penicillium sp. 8L2: Biosorption of Ag(I) and synthesis of silver nanoparticles. Journal of Environmental Management, 316, 115281. https://doi.org/10.1016/j.jenvman.2022.115281
  25. Naveen, N., Kumar, R., Balaji, S., Uma, T. S., Natrajan, T. S., & Sehgal, P. K. (2010). Synthesis of nonwoven nanofibers by electrospinning - A promising biomaterial for tissue engineering and drug delivery. Advanced Engineering Materials, 12(8). https://doi.org/10.1002/ADEM.200980067
  26. Nayak, R. R., Pradhan, N., Behera, D., Pradhan, K. M., Mishra, S., Sukla, L. B., & Mishra, B. K. (2011). Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: The process and optimization. Journal of Nanoparticle Research, 13(8), 3129–3137. https://doi.org/10.1007/s11051-010-0208-8
  27. Neethu, S., Midhun, S. J., Sunil, M. A., Soumya, S., Radhakrishnan, E. K., & Jyothis, M. (2018). Efficient visible-light-induced synthesis of silver nanoparticles by Penicillium polonium ARA 10 isolated from Chetomorpha antenna and its antibacterial efficacy against Salmonella enterica serovar Typhimurium. Journal of Photochemistry and Photobiology B: Biology, 180, 175–185. https://doi.org/10.1016/j.jphotobiol.2018.02.005
  28. Omran, B. A., Nassar, H. N., Fatthallah, N. A., Hamdy, A., El-Shatoury, E. H., & El-Gendy, N. S. (2018). Characterization and antimicrobial activity of silver nanoparticles mycosynthesized by Aspergillus brasiliensis. Journal of Applied Microbiology, 125(2), 370–382. https://doi.org/10.1111/jam.13776
  29. Othman, A. M., Elsayed, M. A., Al-Balakocy, N. G., Hassan, M. M., & Elshafei, A. M. (2019). Biosynthesis and characterization of silver nanoparticles induced by fungal proteins and their application in different biological activities. Journal of Genetic Engineering and Biotechnology, 17(1), 1–13. https://doi.org/10.1186/s43141-019-0008-1
  30. Othman, A. M., Elsayed, M. A., Al-Balakocy, N. G., Hassan, M. M., & Elshafei, A. M. (2021). Biosynthesized silver nanoparticles by Aspergillus terreus NRRL265 for imparting durable antimicrobial finishing to polyester cotton blended fabrics: Statistical optimization, characterization, and antitumor activity evaluation. Biocatalysis and Agricultural Biotechnology, 31, 101908. https://doi.org/10.1016/j.bcab.2021.101908
  31. Ottoni, C. A., Simões, M. F., Fernandes, S., dos Santos, J. G., da Silva, E. S., de Souza, R. F. B., & Maiorano, A. E. (2017). Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express, 7(1). https://doi.org/10.1186/S13568-017-0332-2
  32. Qiao, Z. P., Wang, M. Y., Liu, J. F., & Wang, Q. Z. (2022). Green synthesis of silver nanoparticles using a novel endophytic fungus Letendraea sp. WZ07: Characterization and evaluation of antioxidant, antibacterial, and catalytic activities (3-in-1 system). Inorganic Chemistry Communications, 138, 109301. https://doi.org/10.1016/j.inoche.2022.109301
  33. Raheman, F., Raheman, F., Deshmukh, S., Ingle, A., Gade, A., & Rai, M. (2011). Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Researchgate.NetF Raheman, S Deshmukh, A Ingle, A Gade, M RaiNano Biomed Eng, 2011•researchgate.Net, 2011(3), 174–178. https://doi.org/10.5101/nbe.v3i3.p174-178
  34. Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. In Biotechnology Advances (Vol. 27, Issue 1, pp. 76–83). https://doi.org/10.1016/j.biotechadv.2008.09.002
  35. Rashidipour, M., & Heydari, R. (2014). Biosynthesis of silver nanoparticles using extract of olive leaf: synthesis and in vitro cytotoxic effect on MCF-7 cells. Journal of Nanostructure in Chemistry, 4(3). https://doi.org/10.1007/S40097-014-0112-3
  36. Rose, G. K., Soni, R., Rishi, P., & Soni, S. K. (2019). Optimization of the biological synthesis of silver nanoparticles using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens. Green Processing and Synthesis, 8(1), 144–156. https://doi.org/10.1515/gps-2018-0042
  37. Rudrappa, M., Rudayni, H. A., Assiri, R. A., Bepari, A., Basavarajappa, D. S., Nagaraja, S. K., Chakraborty, B., Swamy, P. S., Agadi, S. N., Niazi, S. K., & Nayaka, S. (2022). Plumeria alba-Mediated Green Synthesis of Silver Nanoparticles Exhibits Antimicrobial Effect and Anti-Oncogenic Activity against Glioblastoma U118 MG Cancer Cell Line. Nanomaterials, 12(3). https://doi.org/10.3390/nano12030493
  38. Saxena, J., & Ayushi, K. M. (2023). Evaluation of Sclerotinia sclerotiorum MTCC 8785 as a biological agent for the synthesis of silver nanoparticles and assessment of their antifungal potential against Trichoderma harzianum MTCC 801. Environmental Research, 216, 114752. https://doi.org/10.1016/j.envres.2022.114752
  39. Schröfel, A., Kratošová, G., Šafařík, I., Šafaříková, M., Raška, I., & Shor, L. M. (2014). Applications of biosynthesized metallic nanoparticles - A review. In Acta Biomaterialia (Vol. 10, Issue 10, pp. 4023–4042). https://doi.org/10.1016/j.actbio.2014.05.022
  40. Sheikh, H., & Awad, M. F. (2022). Biogenesis of nanoparticles with inhibitory effects on aflatoxin B1 production by Aspergillus flavus. Electronic Journal of Biotechnology, 60, 26–35. https://doi.org/10.1016/j.ejbt.2022.09.003
  41. Shinde, M. U., Patwekar, M., Patwekar, F., Bajaber, M. A., Medikeri, A., Mohammad, F. S., Mukim, M., Soni, S., Mallick, J., & Jawaid, T. (2022). Nanomaterials: A Potential Hope for Life Sciences from Bench to Bedside. In Journal of Nanomaterials (Vol. 2022). https://doi.org/10.1155/2022/5968131
  42. Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 16(1). https://doi.org/10.1186/S12951-018-0408-4
  43. Singh, R., Shedbalkar, U. U., Wadhwani, S. A., & Chopade, B. A. (2015). Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Applied Microbiology and Biotechnology, 99(11), 4579–4593. https://doi.org/10.1007/S00253-015-6622-1
  44. Skanda, S., Bharadwaj, P. S. J., Datta Darshan, V. M., Sivaramakrishnan, V., & Vijayakumar, B. S. (2022). Proficient mycogenic synthesis of silver nanoparticles by soil derived fungus Aspergillus melleus SSS-10 with cytotoxic and antibacterial potency. Journal of Microbiological Methods, 199, 106517. https://doi.org/10.1016/j.mimet.2022.106517
  45. Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177–182. https://doi.org/10.1016/j.jcis.2004.02.012
  46. Sreenivasa, N., Meghashyama, B. P., Pallavi, S. S., Bidhayak, C., Dattatraya, A., Muthuraj, R., Shashiraj, K. N., Halaswamy, H., Dhanyakumara, S. B., & Vaishnavi, M. D. (2021). Biogenic synthesis of silver nanoparticles using Paenibacillus sp. in-vitro and their antibacterial, anticancer activity assessment against human colon tumour cell line. Journal of Environmental Biology, 42(1), 118–127. https://doi.org/10.22438/JEB/42/1/MRN-1401
  47. Sulaiman, G. M., Hussien, H. T., & Saleem, M. M. N. M. (2015). Biosynthesis of silver nanoparticles synthesized by Aspergillus flavus and their antioxidant, antimicrobial and cytotoxicity properties. Bulletin of Materials Science, 38(3), 639–644. https://doi.org/10.1007/s12034-015-0905-0
  48. Syed, A., Saraswati, S., Kundu, G. C., & Ahmad, A. (2013). Biological synthesis of silver nanoparticles using the fungus Humicola sp. And evaluation of their cytoxicity using normal and cancer cell lines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 114, 144–147. https://doi.org/10.1016/j.saa.2013.05.030
  49. Thomas, S., Nair, S. K., Jamal, E. M. A., Al-Harthi, S. H., Varma, M. R., & Anantharaman, M. R. (2008). Size-dependent surface plasmon resonance in silver silica nanocomposites. Nanotechnology, 19(7). https://doi.org/10.1088/0957-4484/19/7/075710
  50. Venkatesan, B., Subramanian, V., Tumala, A., & Vellaichamy, E. (2014). Rapid synthesis of biocompatible silver nanoparticles using aqueous extract of Rosa damascena petals and evaluation of their anticancer activity. Asian Pacific Journal of Tropical Medicine, 7(S1), S294–S300. https://doi.org/10.1016/S1995-7645(14)60249-2
  51. Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V., Nachane, R. P., Paralikar, K. M., & Balasubramanya, R. H. (2007). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials Letters, 61(6), 1413–1418. https://doi.org/10.1016/j.matlet.2006.07.042
  52. Wang, D., Xue, B., Wang, L., Zhang, Y., Liu, L., & Zhou, Y. (2021). Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-89854-5
  53. Wei, S., Wang, Y., Tang, Z., Hu, J., Su, R., Lin, J., Zhou, T., Guo, H., Wang, N., & Xu, R. (2020). A size-controlled green synthesis of silver nanoparticles by using the berry extract ofSea Buckthornand their biological activities. New Journal of Chemistry, 44(22), 9304–9312. https://doi.org/10.1039/d0nj01335h
  54. Zainab, S., Jadoon, M., Sikandar, S., & Ali, N. (2023). Thermomyces lanuginosus: A prospective thermophilic fungus for green synthesis and stabilization of BioAgNPs through glucoamylase. Materials Chemistry and Physics, 297, 127442. https://doi.org/10.1016/j.matchemphys.2023.127442

How to Cite

Naini, D., Gupta, G. K., Rawat, G., Kapoor, S., & Kapoor, R. K. (2024). Process optimization for biogenesis of silver nanoparticles from Aspergillus flavus GGRK1 culture filtrate: Characterization and Its antibacterial efficacy. Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1798

HTML
124

Total
79

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Divya Naini, Guddu Kumar Gupta, Gaurav Rawat, Sonia Kapoor, Rajeev Kumar Kapoor

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.