Skip to main content Skip to main navigation menu Skip to site footer

A review of Pharmaceuticals removal from water resources using magnetic iron-based nanomaterials

  • George William Atwoki Nyakairu
  • Zaccheus Shehu

Abstract

The presence of pharmaceuticals in water resources is a growing concern worldwide due to their potential health impacts on aquatic life and humans. Therefore, there is a need to develop effective and sustainable technologies for removing these contaminants from water and wastewater. Magnetic nanomaterials have emerged as promising materials for this purpose due to their fast kinetics, easy magnetic separation, and reuse. This review is important as it highlights the significance of developing sustainable technologies using magnetic iron-based nanomaterials for removing pharmaceutical contaminants from water resources. This review investigated the application of magnetic nanomaterials for removing pharmaceuticals from water resources through adsorption and advanced oxidation processes. Here, the synthesis and characterization of magnetic nanomaterials and analytical detection techniques were evaluated. The review findings indicate that magnetic nanomaterials effectively removed pharmaceuticals from water through adsorption and advanced oxidation processes. More importantly, the removal processes remained effective for many cycles. However, only 22% of the studies demonstrated the application of magnetic nanomaterials on real water samples, as 78% stopped at experiments using distilled water in the laboratory. Further research on multi-component systems and real water samples is necessary to fully evaluate the potential of magnetic nanomaterials for pharmaceutical removal from water resources.

Section

References

  1. Abdel Maksoud, M. I. A., Elgarahy, A. M., Farrell, C., Al-Muhtaseb, A. H., Rooney, D. W., & Osman, A. I. (2020). Insight on water remediation application using magnetic nanomaterials and biosorbents. Coordination Chemistry Reviews, 403, 213096. https://doi.org/10.1016/j.ccr.2019.213096
  2. Ajala, O. J., Nwosu, F. O., & Ahmed, R. K. (2018). Adsorption of atrazine from aqueous solution using unmodified and modified bentonite clays. Applied Water Science, 8(7), 1–11. https://doi.org/10.1007/s13201-018-0855-y
  3. Akawa, M. N., Dimpe, K. M., & Nomngongo, P. N. (2020). Amine-functionalized magnetic activated carbon as an adsorbent for preconcentration and determination of acidic drugs in environmental water samples using HPLC-DAD. Open Chemistry, 18(1), 1218–1229. https://doi.org/10.1515/chem-2020-0162
  4. Akawa, M. N., Dimpe, K. M., & Nomngongo, P. N. (2021). Ultrasonic assisted magnetic solid phase extraction based on the use of magnetic waste-tyre derived activated carbon modified with methyltrioctylammonium chloride adsorbent for the preconcentration and analysis of non-steroidal anti-inflammatory drugs in . Arabian Journal of Chemistry, 14(9), 103329. https://doi.org/10.1016/j.arabjc.2021.103329
  5. Akkari, M., Aranda, P., Belver, C., Bedia, J., Ben Haj Amara, A., & Ruiz-Hitzky, E. (2018). Reprint of ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater. Applied Clay Science, 160, 3–8. https://doi.org/10.1016/j.clay.2018.02.027
  6. Al-Anazi, A., Abdelraheem, W. H., Scheckel, K., Nadagouda, M. N., O’Shea, K., & Dionysiou, D. D. (2020a). Novel franklinite-like synthetic zinc-ferrite redox nanomaterial: synthesis, and evaluation for degradation of diclofenac in water. Applied Catalysis B: Environmental, 275, 1–23. https://doi.org/10.1016/j.apcatb.2020.119098
  7. Al-Anazi, A., Abdelraheem, W. H., Scheckel, K., Nadagouda, M. N., O’Shea, K., & Dionysiou, D. D. (2020b). Novel franklinite-like synthetic zinc-ferrite redox nanomaterial: synthesis, and evaluation for degradation of diclofenac in water. Applied Catalysis B: Environmental, 275. https://doi.org/10.1016/j.apcatb.2020.119098
  8. Al-Khazrajy, O. S. A., & Boxall, A. B. A. (2016). Risk-based prioritization of pharmaceuticals in the natural environment in Iraq. Environmental Science and Pollution Research, 23(15), 15712–15726. https://doi.org/10.1007/s11356-016-6679-0
  9. Al-maadheed, S., Goktepe, I., Binti, A., Lati, A., & Shomar, B. (2019). Journal of Water Process Engineering Antibiotics in hospital e ffl uent and domestic wastewater treatment plants in. Journal of Water Process Engineering, 28, 60–68. https://doi.org/10.1016/j.jwpe.2019.01.005
  10. Amraei, B., Kalantary, R. R., Jafari, A. J., & Gholami, M. (2016). Efficiency of CuFe2O4 Bimetallic in Removing Amoxicillin from Aqueous Solutions. J Mazandaran Univ Med Sci, 27(147), 259–275.
  11. Aragaw, T. A., Bogale, F. M., & Aragaw, B. A. (2021). Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. Journal of Saudi Chemical Society, 25(8), 101280. https://doi.org/10.1016/j.jscs.2021.101280
  12. Ashfaq, M., Nawaz, K., Rasool, S., Mustafa, G., Saif-ur-rehman, M., Faizan, M., Sun, Q., & Yu, C. (2016). Occurrence and ecological risk assessment of fluoroquinolone antibiotics in hospital waste of Lahore , Pakistan. Environmental Toxicology and Pharmacology, 42, 16–22. https://doi.org/10.1016/j.etap.2015.12.015
  13. Attia, T. M. S., Hu, X. L., & Qiang, Y. Da. (2013). Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies. Chemosphere, 93, 2076–2085. https://doi.org/10.1016/j.chemosphere.2013.07.046
  14. Balakrishnan, R. M., Ilango, I., Gamana, G., Bui, X. T., & Pugazhendhi, A. (2021). Cobalt ferrite nanoparticles and peroxymonosulfate system for the removal of ampicillin from aqueous solution. Journal of Water Process Engineering, 40, 1–10. https://doi.org/10.1016/j.jwpe.2020.101823
  15. Bao, X., Qiang, Z., Chang, J., Ben, W., & Qu, J. (2014). Synthesis of carbon-coated magnetic nanocomposite ( Fe 3 O 4 @ C ) and its application for sulfonamide antibiotics removal from water. Journal of Environmental Sciences, 26(5), 962–969. https://doi.org/10.1016/S1001-0742(13)60485-4
  16. Bao, X., Qiang, Z., Ling, W., & Chang, J. H. (2013). Sonohydrothermal synthesis of MFe2O4 magnetic nanoparticles for adsorptive removal of tetracyclines from water. Separation and Purification Technology, 117, 104–110. https://doi.org/10.1016/j.seppur.2013.03.046
  17. Baresel, C., Cousins, A. P., Ek, M., Ejhed, H., Allard, A.-S., Magnér, J., Westling, K., Fortkamp, U., Wahlberg, C., Hörsing, M., & Söhr, S. (2015). Pharmaceutical residues and other emerging substances in the effluent of sewage treatment plants Review on concentrations, quantification, behaviour, and removal options. In Number B (Issue April). www.ivl.se
  18. Bhattacharya, S., Saha, I., Mukhopadhyay, A., Chattopadhyay, D., & Chand, U. (2013). Role of nanotechnology in water treatment and purification: Potential applications and implications. International Journal of Chemical Science and Technology, 3(3), 59–64.
  19. Buriánková, I., Kuchta, P., Molíková, A., Sovová, K., Výravský, D., Rulík, M., Novák, D., Lochman, J., & Vítˇezová, M. (2021). Antibiotic Resistance in Wastewater and Its Impact on a Receiving River: A Case Study of WWTP Brno-Modˇrice, Czech Republic. Water, 13, 1–18. https://doi.org/10.3390/w13162309
  20. Chakraborty, A., Samriti, Ruzimuradov, O., Gupta, R. K., Cho, J., & Prakash, J. (2022). TiO2 nanoflower photocatalysts: Synthesis, modifications and applications in wastewater treatment for removal of emerging organic pollutants. Environmental Research, 212. https://doi.org/10.1016/j.envres.2022.113550
  21. Chen, L., Ding, D., Liu, C., Cai, H., Qu, Y., Yang, S., Gao, Y., & Cai, T. (2018). Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: A comparative study and mechanistic consideration. Chemical Engineering Journal, 334, 273–284. https://doi.org/10.1016/j.cej.2017.10.040
  22. Choina, J., Bagabas, A., Fischer, C., Flechsig, G., Kosslick, H., Alshammari, A., & Schulz, A. (2014). The influence of the textural properties of ZnO nanoparticles onadsorption and photocatalytic remediation of water frompharmaceuticals. Catalysis Today, 1–8. https://doi.org/10.1016/j.cattod.2014.05.014
  23. Cusioli, L. F., Quesada, H. B., de Brito Portela Castro, A. L., Gomes, R. G., & Bergamasco, R. (2020). Development of a new low-cost adsorbent functionalized with iron nanoparticles for removal of metformin from contaminated water. Chemosphere, 247, 125852. https://doi.org/10.1016/j.chemosphere.2020.125852
  24. D’Cruz, B., Madkour, M., Amin, M. O., & Al-Hetlani, E. (2020). Efficient and recoverable magnetic AC-Fe3O4 nanocomposite for rapid removal of promazine from wastewater. Materials Chemistry and Physics, 240(August 2019), 122109. https://doi.org/10.1016/j.matchemphys.2019.122109
  25. Dada, A. O., Inyinbor, A. A., Bello, O. S., & Tokula, B. E. (2021). Novel plantain peel activated carbon – supported zinc oxide nanocomposites ( PPAC ‑ ZnO ‑ NC ) for adsorption of chloroquine synthetic pharmaceutical used for COVID ‑ 19 treatment. Biomass Conversion and Biorefinery, 1–13. https://doi.org/10.1007/s13399-021-01828-9
  26. Dalahmeh, S., Björnberg, E., Elenström, A. K., Niwagaba, C. B., & Komakech, A. J. (2020). Pharmaceutical pollution of water resources in Nakivubo wetlands and Lake Victoria, Kampala, Uganda. Science of the Total Environment, 710, 1–8. https://doi.org/10.1016/j.scitotenv.2019.136347
  27. Dehghan, S., Kakavandi, B., & Kalantary, R. R. (2018). Heterogeneous sonocatalytic degradation of amoxicillin using ZnO@Fe3O4 magnetic nanocomposite: Influential factors, reusability and mechanisms. Journal of Molecular Liquids, 264, 98–109. https://doi.org/10.1016/j.molliq.2018.05.020
  28. Deng, Y., & Zhao, R. (2015). Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Current Pollution Reports, 1(3), 167–176. https://doi.org/10.1007/s40726-015-0015-z
  29. Diwan, V., Tamhankar, A. J., Aggarwal, M., Sen, S., Khandal, R. K., & Lundborg, C. S. (2009). Detection of antibiotics in hospital effluents in India Detection of antibiotics in hospital effluents in India. CURRENT SCIENCE, 97(12), 1752–1755.
  30. Duan, H., Hu, X., & Sun, Z. (2019). Magnetic zeolite imidazole framework material-8 as an effective and recyclable adsorbent for removal of ceftazidime from aqueous solution. Journal of Hazardous Materials, 1–8. https://doi.org/10.1016/j.jhazmat.2019.121406
  31. Folarin, O., Otitoloju, A., Amaeze, N., & Saliu, J. (2019). Occurrence of Acetaminophen , Amoxicillin , Diclofenac and Methylparaben in Lagos and Ologe Lagoons , Lagos , Nigeria. J. Appl. Sci. Environ. Manage., 23(12), 2143–2149. https://doi.org/https://dx.doi.org/10.4314/jasem.v23i12.10
  32. Foroughi, M., Hossein, M., Azqhandi, A., & Kakhki, S. (2019). Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@PEI--CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN). Journal of Hazardous Materials, 1–39. https://doi.org/10.1016/j.jhazmat.2019.121769
  33. Ghosh, S., Badruddoza, A. Z. M., Hidajat, K., & Uddin, M. S. (2013). Adsorptive removal of emerging contaminants from water using superparamagnetic Fe3O4 nanoparticles bearing aminated β-cyclodextrin. Journal of Environmental Chemical Engineering, 1(3), 122–130. https://doi.org/10.1016/j.jece.2013.04.004
  34. Golovko, O., Kumar, V., Fedorova, G., Randak, T., & Grabic, R. (2014). Seasonal changes in antibiotics , antidepressants / psychiatric drugs , antihistamines and lipid regulators in a wastewater treatment plant. CHEMOSPHERE, 111, 418–426. https://doi.org/10.1016/j.chemosphere.2014.03.132
  35. Gros, M., Rodríguez-mozaz, S., & Barceló, D. (2013). Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital , urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. Journal of Chromatography A, 1292, 173–188. https://doi.org/10.1016/j.chroma.2012.12.072
  36. Guerra, P., Kim, M., Shah, A., Alaee, M., & Smyth, S. A. (2014). Occurrence and fate of antibiotic , analgesic / anti-in fl ammatory , and antifungal compounds in fi ve wastewater treatment processes. Science of the Total Environment, The, 473–474, 235–243. https://doi.org/10.1016/j.scitotenv.2013.12.008
  37. Gumbi, B. P., Moodley, B., Birungi, G., & Ndungu, P. G. (2016). Detection and quanti fi cation of acidic drug residues in South African surface water using gas chromatography-mass spectrometry. Chemosphere, 1–9. https://doi.org/10.1016/j.chemosphere.2016.10.105
  38. Guo, H., Ma, F., Feng, X., Lou, X., & Tade, M. O. (2013). Application of iron oxide based nanomaterials (NMs) in magnetic assisted chemical separation (MACS) processes for water/wastewater treatment. Advanced Materials Research, 610–613, 1242–1251. https://doi.org/10.4028/www.scientific.net/AMR.610-613.1242
  39. Hanna, N., Sun, P., Sun, Q., Li, X., Yang, X., Ji, X., Zou, H., Ottoson, J., Nilsson, L. E., Berglund, B., Dyar, O. J., Tamhankar, A. J., & Stålsby Lundborg, C. (2018). Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk. Environment International, 114, 131–142. https://doi.org/10.1016/j.envint.2018.02.003
  40. Hayasi, M., & Saadatjoo, N. (2017). Preparation of magnetic nanoparticles functionalized with novel adsorbents for removal of pharmaceuticals from aqueous solutions. Adv Polym Technol., 1–13. https://doi.org/10.1002/adv.21852
  41. Hlengwa, N. B., & Mahlambi, P. N. (2020). SPE-LC-PDA method development and application for the analysis of selected pharmaceuticals in river and wastewater samples from South Africa. Water SA, 46(3), 514–522. https://doi.org/10.17159/wsa/2020.v46.i3.8662
  42. Hojamberdiev, M., Czech, B., G€oktas, A. C., Yubuta, K., & Kadirova, Z. C. (2020). SnO 2 @ ZnS photocatalyst with enhanced photocatalytic activity for the degradation of selected pharmaceuticals and personal care products in model wastewater. Journal of Alloys and Compounds, 827, 1–13. https://doi.org/10.1016/j.jallcom.2020.154339
  43. Hou, L., Wang, L., Royer, S., & Zhang, H. (2015). Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. In Journal of Hazardous Materials (Vol. 302). Elsevier B.V. https://doi.org/10.1016/j.jhazmat.2015.09.033
  44. Huang, L., Mao, N., Yan, Q., Zhang, D., & Shuai, Q. (2020). Magnetic Covalent Organic Frameworks for the Removal of Diclofenac Sodium from Water. ACS Applied Nano Materials, 3(1), 319–326. https://doi.org/10.1021/acsanm.9b01969
  45. Jang, J., Shahzad, A., Woo, S. H., & Lee, D. S. (2020). Magnetic Ti3C2Tx (Mxene) for diclofenac degradation via the ultraviolet/chlorine advanced oxidation process. Environmental Research, 182, 1–10. https://doi.org/10.1016/j.envres.2019.108990
  46. Jennifer, A., Oluseyi, T., Drage, D. S., Harrad, S., & Abdallah, M. A. (2020). Occurrence , seasonal variation and human exposure to pharmaceuticals and personal care products in surface water , groundwater and drinking water in Lagos State , Nigeria. Emerging Contaminants, 6, 124–132. https://doi.org/10.1016/j.emcon.2020.02.004
  47. Jonidi Jafari, A., Kakavandi, B., Jaafarzadeh, N., Rezaei Kalantary, R., Ahmadi, M., & Akbar Babaei, A. (2017). Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: Adsorption and degradation studies. Journal of Industrial and Engineering Chemistry, 45, 323–333. https://doi.org/10.1016/j.jiec.2016.09.044
  48. K’oreje, K. O., Demeestere, K., De Wispelaere, P., Vergeynst, L., Dewulf, J., & Van Langenhove, H. (2012). From multi-residue screening to target analysis of pharmaceuticals in water: Development of a new approach based on magnetic sector mass spectrometry and application in the Nairobi River basin, Kenya. Science of the Total Environment, 437, 153–164. https://doi.org/10.1016/j.scitotenv.2012.07.052
  49. K’oreje, K. O., Kandie, F. J., Vergeynst, L., Abira, M. A., Van Langenhove, H., Okoth, M., & Demeestere, K. (2018). Occurrence, fate and removal of pharmaceuticals, personal care products and pesticides in wastewater stabilization ponds and receiving rivers in the Nzoia Basin, Kenya. Science of the Total Environment, 637–638, 336–348. https://doi.org/10.1016/j.scitotenv.2018.04.331
  50. K’oreje, K. O., Vergeynst, L., Ombaka, D., De Wispelaere, P., Okoth, M., Van Langenhove, H., & Demeestere, K. (2016). Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere, 149, 238–244. https://doi.org/10.1016/j.chemosphere.2016.01.095
  51. Kakavandi, B., Esrafili, A., Mohseni-Bandpi, A., Jafari, A. J., & Kalantary, R. R. (2014). Magnetic Fe3O4@C nanoparticles as adsorbents for removal of amoxicillin from aqueous solution. Water Science and Technology, 69(1), 147–155. https://doi.org/10.2166/wst.2013.568
  52. Kakavandi, B., Takdastan, A., Jaafarzadeh, N., Azizi, M., Mirzaei, A., & Azari, A. (2016). Application of Fe3O4@C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method. Journal of Photochemistry and Photobiology A: Chemistry, 314, 178–188. https://doi.org/10.1016/j.jphotochem.2015.08.008
  53. Kapelewska, J., Kotowska, U., Karpi, J., Kowalczuk, D., Arciszewska, A., & Anna, Ś. (2018). Occurrence , removal , mass loading and environmental risk assessment of emerging organic contaminants in leachates , groundwaters and wastewaters. Microchemical Journal, 137, 292–301. https://doi.org/10.1016/j.microc.2017.11.008
  54. Kar, P., Aggarwal, D., Shukla, K., & Gupta, R. K. (2022). Defect State Modulation of TiO 2 Nanostructures for Photocatalytic Abatement of Emerging Pharmaceutical Pollutant in Wastewater Effluent . Advanced Energy and Sustainability Research, 3(5), 2100162. https://doi.org/10.1002/aesr.202100162
  55. Kar, P., Shukla, K., Jain, P., & Gupta, R. K. (2021). An activated carbon fiber supported Fe2O3@bismuth carbonate heterojunction for enhanced visible light degradation of emerging pharmaceutical pollutants. Reaction Chemistry and Engineering, 6(11). https://doi.org/10.1039/d1re00250c
  56. Karthikeyan, K. G., & Meyer, M. T. (2006). Occurrence of antibiotics in wastewater treatment facilities in Wisconsin , USA. Science of the Total Environment, 361, 196–207. https://doi.org/10.1016/j.scitotenv.2005.06.030
  57. Kaushik, J., Kumar, V., Garg, A. K., Dubey, P., Tripathi, K. M., & Sonkar, S. K. (2021). Bio-mass derived functionalized graphene aerogel: A sustainable approach for the removal of multiple organic dyes and their mixtures. New Journal of Chemistry, 45(20), 9073–9083. https://doi.org/10.1039/d1nj00470k
  58. Kollarahithlu, S. C., & Balakrishnan, R. M. (2019). Adsorption of ibuprofen using cysteine-modified silane-coated magnetic nanomaterial. Environmental Science and Pollution Research, 26(33), 34117–34126. https://doi.org/10.1007/s11356-018-3272-8
  59. Kommineni, S., Chowdhury, Z., Kavanaugh, M., Mishra, D., & Crouè, J. P. (2008). Advanced oxidation of methyl-tertiary butyl ether: Pilot study findings and full-scale implications. Journal of Water Supply: Research and Technology - AQUA, 57(6), 403–418. https://doi.org/10.2166/aqua.2008.094
  60. Kosma, C. I., Lambropoulou, D. A., & Albanis, T. A. (2014). Investigation of PPCPs in wastewater treatment plants in Greece : Occurrence , removal and environmental risk assessment. Science of the Total Environment, 466–467, 421–438. https://doi.org/10.1016/j.scitotenv.2013.07.044
  61. Kumar, A., Khan, M., Zeng, X., & Lo, I. M. C. (2018). Development of g-C3N4/TiO2/Fe3O4@SiO2 heterojunction via sol-gel route: A magnetically recyclable direct contact Z-scheme nanophotocatalyst for enhanced photocatalytic removal of ibuprofen from real sewage effluent under visible light. Chemical Engineering Journal, 353, 645–656. https://doi.org/10.1016/j.cej.2018.07.153
  62. Kumar, A., Kumar, A., Sharma, G., Al-Muhtaseb, A. H., Naushad, M., Ghfar, A. A., & Stadler, F. J. (2018). Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chemical Engineering Journal, 334, 462–478. https://doi.org/10.1016/j.cej.2017.10.049
  63. Lai, C., Huang, F., Zeng, G., Huang, D., Qin, L., Cheng, M., Zhang, C., Li, B., Yi, H., Liu, S., Li, L., & Chen, L. (2019). Fabrication of novel magnetic MnFe2O4/bio-char composite and heterogeneous photo-Fenton degradation of tetracycline in near neutral pH. Chemosphere, 224, 910–921. https://doi.org/10.1016/j.chemosphere.2019.02.193
  64. Lamayi, D. W., Shehu, Z., Kwarson, P. S., & Clay, M. (2018). Aqueous Phase Removal of Fluoride as Fluorosis agent Using Montmorillonite Clay as a Natural Nanoadsorbent. Nanochemistry Research, 3(2), 219–226. https://doi.org/10.22036/ncr.2018.02.012
  65. Leonel, A. G., Mansur, A. A. P., & Mansur, H. S. (2021). Advanced Functional Nanostructures based on Magnetic Iron Oxide Nanomaterials for Water Remediation: A Review. Water Research, 190, 116693. https://doi.org/10.1016/j.watres.2020.116693
  66. Li, C. M., Chen, C. H., & Chen, W. H. (2016). Different influences of nanopore dimension and pH between chlorpheniramine adsorptions on graphene oxide-iron oxide suspension and particle. Chemical Engineering Journal, 307, 447–455. https://doi.org/10.1016/j.cej.2016.08.107
  67. Li, J., Chen, Y., Wu, Q., Wu, J., & Xu, Y. (2019). Synthesis of sea-urchin-like Fe3O4/SnO2 heterostructures and its application for environmental remediation by removal of p-chlorophenol. Journal of Materials Science, 54(2), 1341–1350. https://doi.org/10.1007/s10853-018-2899-7
  68. Li, J., Ng, D. H. L., Ma, R., Zuo, M., & Song, P. (2017). Eggshell membrane-derived MgFe2O4 for pharmaceutical antibiotics removal and recovery from water. Chemical Engineering Research and Design, 126, 123–133. https://doi.org/10.1016/j.cherd.2017.07.005
  69. Li, J., Zhou, Q., Liu, Y., & Lei, M. (2017). Recyclable nanoscale zero-valent iron-based magnetic polydopamine coated nanomaterials for the adsorption and removal of phenanthrene and anthracene. Science and Technology of Advanced Materials, 18(1), 3–16. https://doi.org/10.1080/14686996.2016.1246941
  70. Li, M. fang, Liu, Y. guo, Zeng, G. ming, Liu, S. bo, Hu, X. jiang, Shu, D., Jiang, L. hua, Tan, X. fei, Cai, X. xi, & Yan, Z. li. (2017). Tetracycline absorbed onto nitrilotriacetic acid-functionalized magnetic graphene oxide: Influencing factors and uptake mechanism. Journal of Colloid and Interface Science, 485, 269–279. https://doi.org/10.1016/j.jcis.2016.09.037
  71. Lima, M. J., Leblebici, M. E., Dias, M. M., Lopes, J. C. B., Silva, C. G., Silva, A. M. T., & Faria, J. L. (2014). Continuous flow photo-Fenton treatment of ciprofloxacin in aqueous solutions using homogeneous and magnetically recoverable catalysts. Environmental Science and Pollution Research, 21(19), 11116–11125. https://doi.org/10.1007/s11356-014-2515-6
  72. Liu, Y., Liu, R., Li, M., Yu, F., & He, C. (2019). Removal of pharmaceuticals by novel magnetic genipin-crosslinked chitosan/graphene oxide-SO3H composite. Carbohydrate Polymers, 220(February), 141–148. https://doi.org/10.1016/j.carbpol.2019.05.060
  73. Liu, Y., & Wang, J. (2023). Multivalent metal catalysts in Fenton/Fenton-like oxidation system: A critical review. In Chemical Engineering Journal (Vol. 466). https://doi.org/10.1016/j.cej.2023.143147
  74. Liu, Y., Zhao, Y., & Wang, J. (2021). Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. Journal of Hazardous Materials, 404, 124191. https://doi.org/10.1016/j.jhazmat.2020.124191
  75. Liyanage, A. S., Canaday, S., Pittman, C. U., & Mlsna, T. (2020). Rapid remediation of pharmaceuticals from wastewater using magnetic Fe3O4/Douglas fir biochar adsorbents. Chemosphere, 258, 1–39. https://doi.org/10.1016/j.chemosphere.2020.127336
  76. Lorenzo, P., Adriana, A., Jessica, S., Carles, B., Pierre, S., & Marta, L. (2018). Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem. Chemosphere, 206, 70–82. https://doi.org/10.1016/j.chemosphere.2018.04.163
  77. Lu, L., Li, J., Yu, J., Song, P., & Ng, D. H. L. (2016). A hierarchically porous MgFe2O4/γ-Fe2O3 magnetic microspheres for efficient removals of dye and pharmaceutical from water. Chemical Engineering Journal, 283, 524–534. https://doi.org/10.1016/j.cej.2015.07.081
  78. Madikizela, L. M., Mdluli, P. S., & Chimuka, L. (2017). An initial assessment of naproxen, ibuprofen and diclofenac in ladysmith water resources in South Africa using molecularly imprinted solid-phase extraction followed by high performance liquid chromatography-photodiode array detection. South African Journal of Chemistry, 70, 145–153. https://doi.org/10.17159/0379-4350/2017/v70a21
  79. Mahmoud, M. E., Saad, S. R., El-Ghanam, A. M., & Mohamed, R. H. A. (2021). Developed magnetic Fe3O4–MoO3-AC nanocomposite for effective removal of ciprofloxacin from water. Materials Chemistry and Physics, 257(April 2020), 123454. https://doi.org/10.1016/j.matchemphys.2020.123454
  80. Malakootian, M., Nasiri, A., Asadipour, A., Faraji, M., & Kargar, E. (2019). A facile and green method for synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin removal from aqueous media. MethodsX, 6, 1575–1580. https://doi.org/10.1016/j.mex.2019.06.018
  81. Malakootian, M., Nasiri, A., & Mahdizadeh, H. (2018). Preparation of CoFe 2 O 4 /activated carbon@chitosan as a new magnetic nanobiocomposite for adsorption of ciprofloxacin in aqueous solutions. Water Science and Technology, 78(10), 2158–2170. https://doi.org/10.2166/wst.2018.494
  82. Malakootian, M., & Shiri, M. A. (2021). Investigating the removal of tetracycline antibiotic from aqueous solution using synthesized Fe 3 O 4 @ Cuttlebone magnetic nanocomposite Investigating the removal of tetracycline antibiotic from aqueous solution using synthesized Fe 3 O 4 @ Cuttlebone ma. Desalination and Water Treatment, 221, 343–358. https://doi.org/10.5004/dwt.2021.27033
  83. Mao, H., Wang, S., Lin, J., Wang, Z., & Ren, J. (2016). Modification of a magnetic carbon composite for ciprofloxacin adsorption. Journal of Environmental Sciences, 1–9. https://doi.org/10.1016/j.jes.2016.05.048
  84. Marinin, A. (2012). Synthesis and characterization of superparamagnetic iron oxide nanoparticles coated with silica.
  85. Mashile, G. P., Dimpe, K. M., & Nomngongo, P. N. (2020). A Biodegradable Magnetic Nanocomposite as a Superabsorbent for the Simultaneous Removal of Selected Fluoroquinolones from Environmental Water Matrices: Isotherm, Kinetics, Thermodynamic Studies and Cost Analysis. Polymers, 12, 1–25. https://doi.org/10.3390/polym12051102
  86. Migowska, N., Caban, M., Stepnowski, P., & Kumirska, J. (2012). Science of the Total Environment Simultaneous analysis of non-steroidal anti-in fl ammatory drugs and estrogenic hormones in water and wastewater samples using gas chromatography – mass spectrometry and gas chromatography with electron capture detection. Science of the Total Environment, 441, 77–88. https://doi.org/10.1016/j.scitotenv.2012.09.043
  87. Mirzaei, R., Yunesian, M., Nasseri, S., Gholami, M., & Jalilzadeh, E. (2018). Occurrence and fate of most prescribed antibiotics in different water environments of Tehran , Iran. Science of the Total Environment, 619–620, 446–459. https://doi.org/10.1016/j.scitotenv.2017.07.272
  88. Mohammadi, Z., Kelishami, A. R., & Ashrafi, A. (2021). Application of Ni0.5Zn0.5Fe2O4 magnetic nanoparticles for diclofenac adsorption: isotherm, kinetic and thermodynamic investigation. Water Science & Technology, 1265–1277. https://doi.org/10.2166/wst.2021.049
  89. Mohapatra, S., Huang, C., Mukherji, S., & Padhye, L. P. (2016). Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere, 159, 526–535. https://doi.org/10.1016/j.chemosphere.2016.06.047
  90. Mostafaloo, R., Asadi-Ghalhari, M., Izanloo, H., & Zayadi, A. (2020). Photocatalytic degradation of ciprofloxacin antibiotic from aqueous solution by BiFeO3 nanocomposites using response surface methodology. Global Journal of Environmental Science and Management, 6(2), 191–202. https://doi.org/10.22034/gjesm.2020.02.05
  91. Murata, A., Takada, H., Mutoh, K., Hosoda, H., Harada, A., & Nakada, N. (2011). Nationwide monitoring of selected antibiotics: Distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers. Science of the Total Environment, 409(24), 5305–5312. https://doi.org/10.1016/j.scitotenv.2011.09.014
  92. Mylon, S. E., Chen, K. L., & Elimelech, M. (2004). Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: Implications to iron depletion in estuaries. Langmuir, 20(21). https://doi.org/10.1021/la049153g
  93. Nantaba, F., Wasswa, J., Kylin, H., Palm, W., Bouwman, H., & Kümmerer, K. (2020). Occurrence , distribution , and ecotoxicological risk assessment of selected pharmaceutical compounds in water from Lake Victoria , Uganda. Chemosphere, 239, 1–11. https://doi.org/10.1016/j.chemosphere.2019.124642
  94. Nasiri, A., Malakootian, M., Shiri, M. A., & Yazdanpanah, G. (2021). CoFe 2 O 4 @ methylcellulose synthesized as a new magnetic nanocomposite to tetracycline adsorption : modeling , analysis , and optimization by response surface methodology. Journal of Polymer Research, 28, 192–216. https://doi.org/10.1007/s10965-021-02540-y
  95. Nasiri, A., Tamaddon, F., Hossein, M. M., Amiri Gharaghani, M., & Asadipour, A. (2019). Magnetic nano-biocomposite CuFe2 O4 @methylcellulose (MC) prepared as a new nano-photocatalyst for degradation of ciprofloxacin from aqueous solution. Environmental Health Engineering and Management, 6(1), 41–51. https://doi.org/10.15171/ehem.2019.05
  96. Nasiri, A., Tamaddon, F., Mosslemin, M. H., & Faraji, M. (2019). A microwave assisted method to synthesize nanoCoFe2O4@methyl cellulose as a novel metal-organic framework for antibiotic degradation. MethodsX, 6, 1557–1563. https://doi.org/10.1016/j.mex.2019.06.017
  97. Nawaz, M., Shahzad, A., Tahir, K., Kim, J., Moztahida, M., Jang, J., Alam, M. B., Lee, S. H., Jung, H. Y., & Lee, D. S. (2019). Photo-Fenton reaction for the degradation of sulfamethoxazole using a multi-walled carbon nanotube-NiFe2O4 composite. Chemical Engineering Journal, 382, 1–12. https://doi.org/10.1016/j.cej.2019.123053
  98. Nguyen, C., Giang, D., Sebesvari, Z., Renaud, F., & Rosendahl, I. (2015). Occurrence and Dissipation of the Antibiotics Trimethoprim , and Enrofloxacin in the Mekong Delta , Vietnam. PLoS ONE, 10(7), 1–24. https://doi.org/10.1371/journal.pone.0131855
  99. Niu, H., Zhang, D., Zhang, S., Zhang, X., Meng, Z., & Cai, Y. (2011). Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole. Journal of Hazardous Materials, 190(1–3), 559–565. https://doi.org/10.1016/j.jhazmat.2011.03.086
  100. Nodeh, M. K. M., Radfard, M., Ali, L., Nodeh, & Rashidi, Z. & H. (2018). Enhanced removal of naproxen from wastewater using silica magnetic nanoparticles decorated onto graphene oxide ; parametric and equilibrium study. Separation Science and Technology, 1–10. https://doi.org/10.1080/01496395.2018.1457054
  101. Noroozi, R., Gholami, M., Farzadkia, M., & Jonidi Jafari, A. (2020). Catalytic potential of CuFe2O4/GO for activation of peroxymonosulfate in metronidazole degradation: study of mechanisms. Journal of Environmental Health Science and Engineering, 18(2), 947–960. https://doi.org/10.1007/s40201-020-00518-4
  102. Oliveira, V. L., Pereira, M. C., Aquino, S. F., Oliveira, L. C. A., Correa, S., Ramalho, T. C., Gurgel, L. V. A., & Silva, A. C. (2017). Adsorption of diclofenac on a magnetic adsorbent based on maghemite: experimental and theoretical studies. New Journal of Chemistry, 1–14. https://doi.org/10.1039/C7NJ03214E
  103. Olusegun, S. J., Larrea, G., Osial, M., Jackowska, K., & Krysinski, P. (2021). Photocatalytic degradation of antibiotics by superparamagnetic iron oxide nanoparticles. Tetracycline case. Catalysts, 11(10), 1–17. https://doi.org/10.3390/catal11101243
  104. Olusegun, S. J., & Mohallem, N. D. S. (2020). Comparative adsorption mechanism of doxycycline and Congo red using synthesized kaolinite supported CoFe 2 O 4 nanoparticles *. Environmental Pollution, 260, 1–11. https://doi.org/10.1016/j.envpol.2020.114019
  105. Omar, T. F. T., Zaharin, A., Yusoff, F., & Mustafa, S. (2019). Occurrence and level of emerging organic contaminant in fi sh and mollusk from Klang River estuary , Malaysia and assessment on human health risk. Environmental Pollution, 248, 763–773. https://doi.org/10.1016/j.envpol.2019.02.060
  106. Omuferen, L. O., Maseko, B., Olowoyo, J. O., & Received: (2022). Occurrence of antibiotics in wastewater from hospital and convectional wastewater treatment plants and their impact on the effluent receiving rivers : current knowledge between 2010 and 2019. Environmental Monitoring and Assessment, 194, 306–331. https://doi.org/10.1007/s10661-022-09846-4
  107. Papageorgiou, M., Kosma, C., & Lambropoulou, D. (2016). Seasonal occurrence , removal , mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Science of the Total Environment, 543, 547–569. https://doi.org/10.1016/j.scitotenv.2015.11.047
  108. Parashar, A., Sikarwar, S., & Jain, R. (2019). Removal of drug oxcarbazepine from wastewater at 3D porous NiFe 2 O 4 nanoparticles Removal of drug oxcarbazepine from wastewater at 3D porous NiFe 2 O 4 nanoparticles Arvind Parashar , Shalini Sikarwar & Rajeev Jain. Journal of Dispersion Science and Technology, 1–11. https://doi.org/10.1080/01932691.2019.1614030
  109. Park, C. M., Heo, J., Wang, D., Su, C., & Yoon, Y. (2018). Heterogeneous activation of persulfate by reduced graphene oxide–elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water. Applied Catalysis B: Environmental, 225, 91–99. https://doi.org/10.1016/j.apcatb.2017.11.058
  110. Peralta, M. E., Mártire, D. O., Moreno, M. S., Parolo, M. E., & Carlos, L. (2021). Versatile nanoadsorbents based on magnetic mesostructured silica nanoparticles with tailored surface properties for organic pollutants removal. Journal of Environmental Chemical Engineering, 9(1). https://doi.org/10.1016/j.jece.2020.104841
  111. Porwal, P., & Sharma, A. (2016). Improving Water Quality through Nanotechnology. International Journal of Applied Research and Technology, 1(2), 119–133.
  112. Qu, X., Brame, J., Li, Q., & Alvarez, P. J. J. (2013). Nanotechnology for a safe and sustainable water supply: Enabling integrated water treatment and reuse. Accounts of Chemical Research, 46(3), 834–843. https://doi.org/10.1021/ar300029v
  113. Rocha, L. S., Sousa, É. M. L., Gil, V., Oliveira, A. B. P., Otero, M., Esteves, V. I., & Calisto, V. (2021). Producing Magnetic Nanocomposites from Paper Sludge for the Adsorptive Removal of Pharmaceuticals from Water — A Fractional Factorial Design. Nanomaterials, 11, 1–20. https://doi.org/10.3390/nano11020287
  114. Rosická, D., & Šembera, J. (2011). Influence of structure of iron nanoparticles in aggregates on their magnetic properties. Nanoscale Research Letters, 6(September), 1–9. https://doi.org/10.1186/1556-276x-6-527
  115. Rosli, F. A., Ahmad, H., Jumbri, K., Abdullah, A. H., & Kamaruzaman, S. (2021). Efficient removal of pharmaceuticals from water using graphene nanoplatelets as adsorbent. Royal Society OPen Science, 8, 1–17. https://doi.org/10.1098/rsos.201076
  116. Rossmann, J., Schubert, S., Gurke, R., Oertel, R., & Kirch, W. (2018). Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC-MS / MS Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC – MS / MS. Journal of Chromatography B, 969(August 2014), 162–170. https://doi.org/10.1016/j.jchromb.2014.08.008
  117. Saeed, M., Usman, M., Muneer, M., Akram, N., Ul Haq, A., Tariq, M., & Akram, F. (2020). Synthesis of Ag-Fe3O4 nanoparticles for degradation of methylene blue in aqueous medium. Bulletin of the Chemical Society of Ethiopia, 34(1), 123–134. https://doi.org/10.4314/BCSE.V34I1.11
  118. Sayadi, M. H., & Ahmadpour, N. (2021). Photocatalytic and Antibacterial Properties of Ag-CuFe2O4@WO3 Magnetic Nanocomposite. Nanomaterials, 11, 1–19. https://doi.org/10.3390/nano11020298
  119. Senta, I., Terzic, S., & Ahel, M. (2012). Occurrence and fate of dissolved and particulate antimicrobials in municipal wastewater treatment. Water Research, 47(2), 705–714. https://doi.org/10.1016/j.watres.2012.10.041
  120. Sharma, B., Thakur, S., Mamba, G., Prateek, Gupta, R. K., Gupta, V. K., & Thakur, V. K. (2021). Titania modified gum tragacanth based hydrogel nanocomposite for water remediation. Journal of Environmental Chemical Engineering, 9(1), 104608. https://doi.org/10.1016/j.jece.2020.104608
  121. Sharma, V. K., McDonald, T. J., Kim, H., & Garg, V. K. (2015). Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification. Advances in Colloid and Interface Science, 225, 229–240. https://doi.org/10.1016/j.cis.2015.10.006
  122. Shehu, Z., & Lamayi, D. W. (2019). Recent Advances and Developments in Nanoparticles/ Nanocomposites as Nanoadsorbent for Adsorptive Removal of Lead in Wastewater: A Review. Nanomedicine & Nanotechnology Open Access, 4(3), 1–10. https://doi.org/10.23880/nnoa-16000165
  123. Shehu, Z., William, G., Nyakairu, A., Tebandeke, E., & Nelson, O. (2022). Overview of African water resources contamination by contaminants of emerging concern. Science of the Total Environment, 852, 1–30. https://doi.org/10.1016/j.scitotenv.2022.158303
  124. Sibeko, P. A., Naicker, D., Mdluli, P. S., Sibeko, P. A., Naicker, D., Mdluli, P. S., & Madikizela, L. M. (2019). Naproxen , ibuprofen , and diclofenac residues in river water , sediments and Eichhornia crassipes of Mbokodweni river in South Africa : An initial screening. Environmental Forensics, 1–8. https://doi.org/10.1080/15275922.2019.1597780
  125. Silva, C. P., Pereira, D., Calisto, V., Martins, M. A., Otero, M., Esteves, V. I., & Lima, D. L. D. (2021). Biochar-TiO2 magnetic nanocomposites for photocatalytic solar-driven removal of antibiotics from aquaculture effluents. Journal of Environmental Management, 294(June). https://doi.org/10.1016/j.jenvman.2021.112937
  126. Singh, H., Bhardwaj, N., Arya, S. K., & Khatri, M. (2020). Environmental impacts of oil spills and their remediation by magnetic nanomaterials. Environmental Nanotechnology, Monitoring and Management, 14(May), 100305. https://doi.org/10.1016/j.enmm.2020.100305
  127. Singh, K. K., Singh, A., & Rai, S. (2021). A study on nanomaterials for water purification. Materials Today: Proceedings, 51(xxxx), 1157–1163. https://doi.org/10.1016/j.matpr.2021.07.116
  128. Singh, N., Prajapati, S., Prateek, & Gupta, R. K. (2022). Investigation of Ag doping and ligand engineering on green synthesized CdS quantum dots for tuning their optical properties. Nanofabrication, 7, 89–103. https://doi.org/10.37819/nanofab.007.212
  129. Soares, S. F., Fernandes, T., Trindade, T., & Daniel-da-silva, A. L. (2019). Trimethyl Chitosan/Siloxane-Hybrid Coated Fe3O4 Nanoparticles for the Uptake of Sulfamethoxazole from Water. Molecules, 24, 1–18.
  130. Soares, V., Grando, M. C., Colpani, G. L., Silva, L. L., Maria, J., & Mello, M. De. (2019). Obtaining of Fe 3 O 4 @ C Core-Shell Nanoparticles as an Adsorbent of Tetracycline in Aqueous Solutions. Materials Research, 22(Suppl. 1), 1–11. https://doi.org/10.1590/1980-5373-MR-2018-0857
  131. Solís, R. R., Dinc, Ö., Fang, G., Nadagouda, M. N., & Dionysiou, D. D. (2021). Activation of inorganic peroxides with magnetic graphene for the removal of antibiotics from wastewater. Environmental Science: Nano, 8(4), 960–977. https://doi.org/10.1039/d0en01280g
  132. Stan, A. M., Lung, I., Soran, M., Leostean, C., Popa, A., Stefan, M., Diana, M., Opris, O., Silipas, T., & Sebastian, A. (2017). Removal of antibiotics from aqueous solutions by green synthesized magnetite nanoparticles with selected agro-waste extracts. Process Safety and Environmental Protection, 1–25. https://doi.org/10.1016/j.psep.2017.03.003
  133. Styszko, K., Proctor, K., Castrignanò, E., & Kasprzyk-hordern, B. (2021). Occurrence of pharmaceutical residues , personal care products , lifestyle chemicals , illicit drugs and metabolites in wastewater and receiving surface waters of Krakow agglomeration in South Poland. Science of the Total Environment, 768, 1–18. https://doi.org/10.1016/j.scitotenv.2020.144360
  134. Tamaddon, F., Nasiri, A., & Yazdanpanah, G. (2020). Photocatalytic degradation of ciprofloxacin using CuFe2O4@methyl cellulose based magnetic nanobiocomposite. MethodsX, 7, 74–81. https://doi.org/10.1016/j.mex.2019.12.005
  135. Tang, J., & Wang, J. (2018). Metal Organic Framework with Coordinatively Unsaturated Sites as Efficient Fenton-like Catalyst for Enhanced Degradation of Sulfamethazine. Environmental Science and Technology, 52(9). https://doi.org/10.1021/acs.est.8b00092
  136. Tran, N. H., Chen, H., Reinhard, M., Mao, F., & Gin, K. Y. (2016). Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Research, 104, 461–472. https://doi.org/10.1016/j.watres.2016.08.040
  137. Vecchia, E. D., Coisson, M., Appino, C., Vinai, F., & Sethi, R. (2009). Magnetic characterization and interaction modeling of zerovalent iron nanoparticles for the remediation of contaminated aquifers. Journal of Nanoscience and Nanotechnology, 9(5), 3210–3218. https://doi.org/10.1166/jnn.2009.047
  138. Verlicchi, P., Aukidy, M. Al, Galletti, A., Petrovic, M., & Barceló, D. (2012). Hospital ef fl uent : Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Science of the Total Environment, The, 430, 109–118. https://doi.org/10.1016/j.scitotenv.2012.04.055
  139. Verlicchi, P., Aukidy, M. Al, Jelic, A., Petrovi, M., & Barceló, D. (2014). Comparison of measured and predicted concentrations of selected pharmaceuticals in wastewater and surface water : A case study of a catchment area in the Po Valley ( Italy ). Science of the Total Environment, 471, 844–854. https://doi.org/10.1016/j.scitotenv.2013.10.026
  140. Vicente-Martínez, Y., Caravaca, M., Soto-Meca, A., & Solana-González, R. (2020). Magnetic core-modified silver nanoparticles for ibuprofen removal: an emerging pollutant in waters. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-75223-1
  141. Wan, Z., & Wang, J. (2017). Fenton-like degradation of sulfamethazine using Fe3O4/Mn3O4 nanocomposite catalyst: kinetics and catalytic mechanism. Environmental Science and Pollution Research, 24(1), 568–577. https://doi.org/10.1007/s11356-016-7768-9
  142. Wang, J., & Chu, L. (2016). Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: An overview. Radiation Physics and Chemistry, 125, 56–64. https://doi.org/10.1016/j.radphyschem.2016.03.012
  143. Wang, J. L., & Xu, L. J. (2012). Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 42(3), 251–325. https://doi.org/10.1080/10643389.2010.507698
  144. Wang, J., & Tang, J. (2021). Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. Chemosphere, 276, 130177. https://doi.org/10.1016/j.chemosphere.2021.130177
  145. Wang, J., & Wang, S. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. In Journal of Environmental Management (Vol. 182). https://doi.org/10.1016/j.jenvman.2016.07.049
  146. Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production, 227, 1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282
  147. Wang, J., & Wang, S. (2022). A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coordination Chemistry Reviews, 453, 214338. https://doi.org/10.1016/j.ccr.2021.214338
  148. Wang, J., & Zhuan, R. (2020). Degradation of antibiotics by advanced oxidation processes: An overview. Science of the Total Environment, 701, 135023. https://doi.org/10.1016/j.scitotenv.2019.135023
  149. Wang, J., Zhuan, R., & Chu, L. (2019). The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview. Science of the Total Environment, 646, 1385–1397. https://doi.org/10.1016/j.scitotenv.2018.07.415
  150. Wang, Z., Chen, X., Meng, Z., Zhao, M., & Zhan, H. (2020). A water resistance magnetic graphene-anchored zeolitic imidazolate framework for efficiently adsorption and removal of residual tetracyclines in wastewater. Water Science & Technology, 1–15. https://doi.org/10.2166/wst.2020.283
  151. Wang, Z., Lai, C., Qin, L., Fu, Y., He, J., & Huang, D. (2020). ZIF-8-modi fi ed MnFe 2 O 4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation. Chemical Engineering Journal, 392(December 2019), 124851. https://doi.org/10.1016/j.cej.2020.124851
  152. Wang, Z., Lai, C., Qin, L., Fu, Y., He, J., Huang, D., Li, B., Zhang, M., Liu, S., Li, L., Zhang, W., Yi, H., Liu, X., & Zhou, X. (2020). ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation. Chemical Engineering Journal, 392. https://doi.org/10.1016/j.cej.2020.124851
  153. Wei, H., Hu, D., Su, J., & Li, K. (2015). Intensification of levofloxacin sono-degradation in a US/H2O2 system with Fe3O4 magnetic nanoparticles. Chinese Journal of Chemical Engineering, 23(1), 296–302. https://doi.org/10.1016/j.cjche.2014.11.011
  154. Wu, W., He, Q., & Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Research Letters, 3(11), 397–415. https://doi.org/10.1007/s11671-008-9174-9
  155. Xiang, Y., Huang, Y., Xiao, B., Wu, X., & Zhang, G. (2020). Magnetic yolk-shell structure of ZnFe2O4 nanoparticles for enhanced visible light photo-Fenton degradation towards antibiotics and mechanism study. Applied Surface Science, 513, 1–12. https://doi.org/10.1016/j.apsusc.2020.145820
  156. Xing, L., Madjeed, K., Emami, N., Nalchifard, F., Hussain, W., Jasem, H., Dawood, A. H., Toghraie, D., & Hekmatifar, M. (2020). Fabrication of HKUST-1/ZnO/SA nanocomposite for Doxycycline and Naproxen adsorption from contaminated water. Sustainable Chemistry and Pharmacy, 29, 1–15. https://doi.org/10.1016/j.scp.2022.100757
  157. Ye, X., Li, Y., Lin, H., Chen, Y., & Liu, M. (2021). Lignin-Based Magnetic Nanoparticle Adsorbent for Diclofenac Sodium Removal: Adsorption Behavior and Mechanisms. Journal of Polymers and the Environment, 29(10), 3401–3411. https://doi.org/10.1007/s10924-021-02127-0
  158. Yegane Badi, M., Azari, A., Pasalari, H., Esrafili, A., & Farzadkia, M. (2018). Modification of activated carbon with magnetic Fe3O4 nanoparticle composite for removal of ceftriaxone from aquatic solutions. Journal of Molecular Liquids, 261, 146–154. https://doi.org/10.1016/j.molliq.2018.04.019
  159. Yu, X., Lin, X., Feng, W., & Li, W. (2019). Effective Removal of Tetracycline by Using Bio-Templated Synthesis of ­ TiO 2 / Fe 3 O 4 Heterojunctions as a UV – Fenton Catalyst. Catalysis Letters, 149(2), 552–560. https://doi.org/10.1007/s10562-018-2544-8
  160. Zeng, X., Liu, J., & Zhao, J. (2018). Highly efficient degradation of pharmaceutical sludge by catalytic wet oxidation using CuO-CeO2 / γ -Al2O3 as a catalyst. PLoS ONE, 13(10), 1–10. https://doi.org/10.1371/journal.pone.0199520
  161. Zhang, Y., Jiao, Z., Hu, Y., Lv, S., Fan, H., Zeng, Y., Hu, J., & Wang, M. (2017). Removal of tetracycline and oxytetracycline from water by magnetic Fe3O4@graphene. Environmental Science and Pollution Research, 24(3), 2987–2995. https://doi.org/10.1007/s11356-016-7964-7
  162. Zhao, H., Cui, H.-J., & Fu, M.-L. (2014). Synthe sis of co ore-shell structured Fe3O4@α-M MnO2 micros pheres for efficiently ca atalytic d degradat tion of ciprofl loxacin Received. RSC Advances, 4, 39472–39475. https://doi.org/10.1039/C4RA06696K
  163. Zhu, J., Zhang, G., Xian, G., Zhang, N., & Li, J. (2019). A High-Efficiency CuO / CeO 2 Catalyst for Diclofenac Degradation in Fenton-Like System. Frontiers in Chemistry, 7(796), 2–11. https://doi.org/10.3389/fchem.2019.00796
  164. Zhuang, S., Chen, R., Liu, Y., & Wang, J. (2020). Magnetic COFs for the adsorptive removal of diclofenac and sulfamethazine from aqueous solution: Adsorption kinetics, isotherms study and DFT calculation. Journal of Hazardous Materials, 385, 121596. https://doi.org/10.1016/j.jhazmat.2019.121596
  165. Zhuang, S., Cheng, R., & Wang, J. (2019). Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks. Chemical Engineering Journal, 359, 354–362. https://doi.org/10.1016/j.cej.2018.11.150
  166. Zhuang, S., Liu, Y., & Wang, J. (2019). Mechanistic insight into the adsorption of diclofenac by MIL-100: Experiments and theoretical calculations. Environmental Pollution, 253, 616–624. https://doi.org/10.1016/j.envpol.2019.07.069
  167. Zhuang, S., Liu, Y., & Wang, J. (2020). Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous solution. Journal of Hazardous Materials, 383, 121126. https://doi.org/10.1016/j.jhazmat.2019.121126
  168. Zhuang, S., Zhu, X., & Wang, J. (2020). Adsorptive removal of plasticizer (dimethyl phthalate) and antibiotic (sulfamethazine) from municipal wastewater by magnetic carbon nanotubes. Journal of Molecular Liquids, 319, 114267. https://doi.org/10.1016/j.molliq.2020.114267

How to Cite

Nyakairu, G. W. A., & Shehu, Z. (2024). A review of Pharmaceuticals removal from water resources using magnetic iron-based nanomaterials. Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1797

HTML
114

Total
108

Share

Search Panel

George William Atwoki Nyakairu
Google Scholar
Pubmed
JDMFS Journal


Zaccheus Shehu
Google Scholar
Pubmed
JDMFS Journal


Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 George William Atwoki Nyakairu, Zaccheus Shehu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Similar Articles

You may also start an advanced similarity search for this article.