Sputtering Deposition of ZnO Thin Films for Photocatalytic Hydrogen Production: Perspectives on Upscaling
Abstract
This study presents the successful implementation of ZnO thin films (denoted as z01, z02, and z03) through magnetron sputtering in the photocatalytic production of hydrogen using a low-intensity UV source (3 mW cm−2). The one-step synthesis process demonstrates simplicity and scalability. The deposited coatings, with thicknesses ranging from 62 to 209 nm, exhibit a hexagonal crystalline structure and display visible luminescence in the yellow-red range, attributed to point defects in the ZnO lattice. Among the samples, z03 (62 nm in thickness) exhibited the most promising performance in photocatalytic hydrogen production, achieving a rate of (5387.2 ± 151.6) µmol g⁻¹ h⁻¹ when utilizing methanol as a hole scavenger. These findings hold great potential for upscaling such coatings in energy harvesting applications. The present work opens new avenues for efficient and scalable hydrogen production, contributing to improving clean energy technologies.
References
- Akay, S. K., Sarsıcı, S., & Kaplan, H. K. (2018). Determination of electrical parameters of ZnO/Si heterojunction device fabricated by RF magnetron sputtering. Optical and Quantum Electronics, 50(10). https://doi.org/10.1007/s11082-018-1635-5
- Alvi, N. H., Willander, M., & Nur, O. (2010). The effect of the post-growth annealing on the electroluminescence properties of n-ZnO nanorods/p-GaN light emitting diodes. Superlattices and Microstructures, 47(6), 754–761. https://doi.org/10.1016/j.spmi.2010.03.002
- Arora, N. K., & Mishra, I. (2019). United Nations Sustainable Development Goals 2030 and environmental sustainability: race against time. Environmental Sustainability, 2(4), 339–342. https://doi.org/10.1007/s42398-019-00092-y
- Carrasco-Jaim, O. A., Ceballos-Sanchez, O., Torres-Martínez, L. M., Moctezuma, E., & Gómez-Solís, C. (2017). Synthesis and characterization of PbS/ZnO thin film for photocatalytic hydrogen production. Journal of Photochemistry and Photobiology A: Chemistry, 347, 98–104. https://doi.org/10.1016/j.jphotochem.2017.07.016
- Cerezo, L., Valencia G., K., Hernández-Gordillo, A., Bizarro, M., Acevedo-Peña, P., & Rodil, S. E. (2022). Increasing the H2 production rate of ZnS(en)x hybrid and ZnS film by photo exfoliation process. International Journal of Hydrogen Energy, 47(53), 22403–22414. https://doi.org/10.1016/j.ijhydene.2022.05.049
- Cheng, P., Döll, J., Romanus, H., Wang, H., van Aken, P. A., Wang, D., & Schaaf, P. (2023). Reactive Magnetron Sputtering of Large-Scale 3D Aluminum-Based Plasmonic Nanostructure for Both Light-Induced Thermal Imaging and Photo-Thermoelectric Conversion. Advanced Optical Materials, 11(6). https://doi.org/10.1002/adom.202202664
- Dholam, R., Patel, N., Adami, M., & Miotello, A. (2009). Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. International Journal of Hydrogen Energy, 34(13), 5337–5346. https://doi.org/10.1016/j.ijhydene.2009.05.011
- Galdámez-Martínez, A., Armenta-Jaime, E., Zayas-Bazán, P., Santana Rodriguez, G., Sánchez-Aké, C., Novelo-Peralta, O., Mishra, Y. K., Kaushik, A. K., & Dutt, A. (2023). Controlling Green-to-Blue Luminescence in Multidimensional ZnO Interfaces: Mechanistic Insights. ACS Applied Optical Materials. https://doi.org/10.1021/acsaom.3c00180
- Galdámez-Martínez, A., Dutt, A., Jain, M., Bazán-Díaz, L., Santana, G., Méndez-Blas, A., & de Melo, O. (2022). Decay emission study of ZnO nanostructures obtained by low-pressure vapor transport technique. Applied Surface Science Advances, 12(September), 100334. https://doi.org/10.1016/j.apsadv.2022.100334
- Jiamprasertboon, A., Dixon, S. C., Sathasivam, S., Powell, M. J., Lu, Y., Siritanon, T., & Carmalt, C. J. (2019). Low-Cost One-Step Fabrication of Highly Conductive ZnO:Cl Transparent Thin Films with Tunable Photocatalytic Properties via Aerosol-Assisted Chemical Vapor Deposition. ACS Applied Electronic Materials, 1(8), 1408–1417. https://doi.org/10.1021/acsaelm.9b00190
- Kegel, J., Povey, I. M., & Pemble, M. E. (2018). Zinc oxide for solar water splitting: A brief review of the material’s challenges and associated opportunities. Nano Energy, 54(October), 409–428. https://doi.org/10.1016/j.nanoen.2018.10.043
- Kuspanov, Z., Bakbolat, B., Baimenov, A., Issadykov, A., Yeleuov, M., & Daulbayev, C. (2023). Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications. Science of The Total Environment, 885, 163914. https://doi.org/10.1016/j.scitotenv.2023.163914
- Mahdavi, R., & Talesh, S. S. A. (2017). Sol-gel synthesis, structural and enhanced photocatalytic performance of Al doped ZnO nanoparticles. Advanced Powder Technology, 28(5), 1418–1425. https://doi.org/10.1016/j.apt.2017.03.014
- Mishra, S. K., Srivastava, R. K., & Prakash, S. G. (2012). ZnO nanoparticles: Structural, optical and photoconductivity characteristics. Journal of Alloys and Compounds, 539, 1–6. https://doi.org/10.1016/j.jallcom.2012.06.024
- Musavi, E., Khanlary, M., & Khakpour, Z. (2019). Red-orange photoluminescence emission of sol-gel dip-coated prepared ZnO and ZnO:Al nano-crystalline films. Journal of Luminescence, 216(February). https://doi.org/10.1016/j.jlumin.2019.116696
- Nalajala, N., Patra, K. K., Bharad, P. A., & Gopinath, C. S. (2019). Why the thin film form of a photocatalyst is better than the particulate form for direct solar-to-hydrogen conversion: A poor man’s approach. RSC Advances, 9(11), 6094–6100. https://doi.org/10.1039/c8ra09982k
- Rabell, G. O., Cruz, M. R. A., & Juárez-Ramírez, I. (2021). Hydrogen production of ZnO and ZnO/Ag films by photocatalysis and photoelectrocatalysis. Materials Science in Semiconductor Processing, 134. https://doi.org/10.1016/j.mssp.2021.105985
- Sansenya, T., Masri, N., Chankhanittha, T., Senasu, T., Piriyanon, J., Mukdasai, S., & Nanan, S. (2022). Hydrothermal synthesis of ZnO photocatalyst for detoxification of anionic azo dyes and antibiotic. Journal of Physics and Chemistry of Solids, 160. https://doi.org/10.1016/j.jpcs.2021.110353
- Shen, H., Shi, X., Wang, Z., Hou, Z., Xu, C., Duan, L., Zhao, X., & Wu, H. (2022). Defects control and origins of blue and green emissions in sol-gel ZnO thin films. Vacuum, 202(March), 111201. https://doi.org/10.1016/j.vacuum.2022.111201
- Shwetharani, R., Chandan, H. R., Sakar, M., Balakrishna, G. R., Reddy, K. R., & Raghu, A. V. (2020). Photocatalytic semiconductor thin films for hydrogen production and environmental applications. International Journal of Hydrogen Energy, 45(36), 18289–18308. https://doi.org/10.1016/j.ijhydene.2019.03.149
- Sun, Y., Zhang, W., Li, Q., Liu, H., & Wang, X. (2023). Preparations and applications of zinc oxide based photocatalytic materials. Advanced Sensor and Energy Materials, 2(3), 100069. https://doi.org/10.1016/j.asems.2023.100069
- Toe, C. Y., Pan, J., Scott, J., & Amal, R. (2022). Identifying Key Design Criteria for Large-Scale Photocatalytic Hydrogen Generation from Engineering and Economic Perspectives. ACS ES&T Engineering, 2(6), 1130–1143. https://doi.org/10.1021/acsestengg.2c00030
- Wang, J., Chen, R., Xiang, L., & Komarneni, S. (2018). Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. Ceramics International, 44(7), 7357–7377. https://doi.org/10.1016/j.ceramint.2018.02.013
How to Cite
How to Cite
Downloads
Article Details
Most Read This Month
License
Copyright (c) 2024 Iván R. Rodríguez, Andrés Galdámez-Martínez, Carlos Ramos, Guillermo Santana, Agileo Hernández Gordillo, Ateet Dutt
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.