Skip to main content Skip to main navigation menu Skip to site footer

Sputtering Deposition of ZnO Thin Films for Photocatalytic Hydrogen Production: Perspectives on Upscaling

  • Iván R. Rodríguez
  • Andrés Galdámez-Martínez
  • Carlos Ramos
  • Guillermo Santana
  • Agileo Hernández Gordillo
  • Ateet Dutt

Abstract

This study presents the successful implementation of ZnO thin films (denoted as z01, z02, and z03) through magnetron sputtering in the photocatalytic production of hydrogen using a low-intensity UV source (3 mW cm−2). The one-step synthesis process demonstrates simplicity and scalability. The deposited coatings, with thicknesses ranging from 62 to 209 nm, exhibit a hexagonal crystalline structure and display visible luminescence in the yellow-red range, attributed to point defects in the ZnO lattice. Among the samples, z03 (62 nm in thickness) exhibited the most promising performance in photocatalytic hydrogen production, achieving a rate of (5387.2 ± 151.6) µmol g⁻¹ h⁻¹ when utilizing methanol as a hole scavenger. These findings hold great potential for upscaling such coatings in energy harvesting applications. The present work opens new avenues for efficient and scalable hydrogen production, contributing to improving clean energy technologies.

Section

References

  1. Akay, S. K., Sarsıcı, S., & Kaplan, H. K. (2018). Determination of electrical parameters of ZnO/Si heterojunction device fabricated by RF magnetron sputtering. Optical and Quantum Electronics, 50(10). https://doi.org/10.1007/s11082-018-1635-5
  2. Alvi, N. H., Willander, M., & Nur, O. (2010). The effect of the post-growth annealing on the electroluminescence properties of n-ZnO nanorods/p-GaN light emitting diodes. Superlattices and Microstructures, 47(6), 754–761. https://doi.org/10.1016/j.spmi.2010.03.002
  3. Arora, N. K., & Mishra, I. (2019). United Nations Sustainable Development Goals 2030 and environmental sustainability: race against time. Environmental Sustainability, 2(4), 339–342. https://doi.org/10.1007/s42398-019-00092-y
  4. Carrasco-Jaim, O. A., Ceballos-Sanchez, O., Torres-Martínez, L. M., Moctezuma, E., & Gómez-Solís, C. (2017). Synthesis and characterization of PbS/ZnO thin film for photocatalytic hydrogen production. Journal of Photochemistry and Photobiology A: Chemistry, 347, 98–104. https://doi.org/10.1016/j.jphotochem.2017.07.016
  5. Cerezo, L., Valencia G., K., Hernández-Gordillo, A., Bizarro, M., Acevedo-Peña, P., & Rodil, S. E. (2022). Increasing the H2 production rate of ZnS(en)x hybrid and ZnS film by photo exfoliation process. International Journal of Hydrogen Energy, 47(53), 22403–22414. https://doi.org/10.1016/j.ijhydene.2022.05.049
  6. Cheng, P., Döll, J., Romanus, H., Wang, H., van Aken, P. A., Wang, D., & Schaaf, P. (2023). Reactive Magnetron Sputtering of Large-Scale 3D Aluminum-Based Plasmonic Nanostructure for Both Light-Induced Thermal Imaging and Photo-Thermoelectric Conversion. Advanced Optical Materials, 11(6). https://doi.org/10.1002/adom.202202664
  7. Dholam, R., Patel, N., Adami, M., & Miotello, A. (2009). Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. International Journal of Hydrogen Energy, 34(13), 5337–5346. https://doi.org/10.1016/j.ijhydene.2009.05.011
  8. Galdámez-Martínez, A., Armenta-Jaime, E., Zayas-Bazán, P., Santana Rodriguez, G., Sánchez-Aké, C., Novelo-Peralta, O., Mishra, Y. K., Kaushik, A. K., & Dutt, A. (2023). Controlling Green-to-Blue Luminescence in Multidimensional ZnO Interfaces: Mechanistic Insights. ACS Applied Optical Materials. https://doi.org/10.1021/acsaom.3c00180
  9. Galdámez-Martínez, A., Dutt, A., Jain, M., Bazán-Díaz, L., Santana, G., Méndez-Blas, A., & de Melo, O. (2022). Decay emission study of ZnO nanostructures obtained by low-pressure vapor transport technique. Applied Surface Science Advances, 12(September), 100334. https://doi.org/10.1016/j.apsadv.2022.100334
  10. Jiamprasertboon, A., Dixon, S. C., Sathasivam, S., Powell, M. J., Lu, Y., Siritanon, T., & Carmalt, C. J. (2019). Low-Cost One-Step Fabrication of Highly Conductive ZnO:Cl Transparent Thin Films with Tunable Photocatalytic Properties via Aerosol-Assisted Chemical Vapor Deposition. ACS Applied Electronic Materials, 1(8), 1408–1417. https://doi.org/10.1021/acsaelm.9b00190
  11. Kegel, J., Povey, I. M., & Pemble, M. E. (2018). Zinc oxide for solar water splitting: A brief review of the material’s challenges and associated opportunities. Nano Energy, 54(October), 409–428. https://doi.org/10.1016/j.nanoen.2018.10.043
  12. Kuspanov, Z., Bakbolat, B., Baimenov, A., Issadykov, A., Yeleuov, M., & Daulbayev, C. (2023). Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications. Science of The Total Environment, 885, 163914. https://doi.org/10.1016/j.scitotenv.2023.163914
  13. Mahdavi, R., & Talesh, S. S. A. (2017). Sol-gel synthesis, structural and enhanced photocatalytic performance of Al doped ZnO nanoparticles. Advanced Powder Technology, 28(5), 1418–1425. https://doi.org/10.1016/j.apt.2017.03.014
  14. Mishra, S. K., Srivastava, R. K., & Prakash, S. G. (2012). ZnO nanoparticles: Structural, optical and photoconductivity characteristics. Journal of Alloys and Compounds, 539, 1–6. https://doi.org/10.1016/j.jallcom.2012.06.024
  15. Musavi, E., Khanlary, M., & Khakpour, Z. (2019). Red-orange photoluminescence emission of sol-gel dip-coated prepared ZnO and ZnO:Al nano-crystalline films. Journal of Luminescence, 216(February). https://doi.org/10.1016/j.jlumin.2019.116696
  16. Nalajala, N., Patra, K. K., Bharad, P. A., & Gopinath, C. S. (2019). Why the thin film form of a photocatalyst is better than the particulate form for direct solar-to-hydrogen conversion: A poor man’s approach. RSC Advances, 9(11), 6094–6100. https://doi.org/10.1039/c8ra09982k
  17. Rabell, G. O., Cruz, M. R. A., & Juárez-Ramírez, I. (2021). Hydrogen production of ZnO and ZnO/Ag films by photocatalysis and photoelectrocatalysis. Materials Science in Semiconductor Processing, 134. https://doi.org/10.1016/j.mssp.2021.105985
  18. Sansenya, T., Masri, N., Chankhanittha, T., Senasu, T., Piriyanon, J., Mukdasai, S., & Nanan, S. (2022). Hydrothermal synthesis of ZnO photocatalyst for detoxification of anionic azo dyes and antibiotic. Journal of Physics and Chemistry of Solids, 160. https://doi.org/10.1016/j.jpcs.2021.110353
  19. Shen, H., Shi, X., Wang, Z., Hou, Z., Xu, C., Duan, L., Zhao, X., & Wu, H. (2022). Defects control and origins of blue and green emissions in sol-gel ZnO thin films. Vacuum, 202(March), 111201. https://doi.org/10.1016/j.vacuum.2022.111201
  20. Shwetharani, R., Chandan, H. R., Sakar, M., Balakrishna, G. R., Reddy, K. R., & Raghu, A. V. (2020). Photocatalytic semiconductor thin films for hydrogen production and environmental applications. International Journal of Hydrogen Energy, 45(36), 18289–18308. https://doi.org/10.1016/j.ijhydene.2019.03.149
  21. Sun, Y., Zhang, W., Li, Q., Liu, H., & Wang, X. (2023). Preparations and applications of zinc oxide based photocatalytic materials. Advanced Sensor and Energy Materials, 2(3), 100069. https://doi.org/10.1016/j.asems.2023.100069
  22. Toe, C. Y., Pan, J., Scott, J., & Amal, R. (2022). Identifying Key Design Criteria for Large-Scale Photocatalytic Hydrogen Generation from Engineering and Economic Perspectives. ACS ES&T Engineering, 2(6), 1130–1143. https://doi.org/10.1021/acsestengg.2c00030
  23. Wang, J., Chen, R., Xiang, L., & Komarneni, S. (2018). Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. Ceramics International, 44(7), 7357–7377. https://doi.org/10.1016/j.ceramint.2018.02.013

How to Cite

Sputtering Deposition of ZnO Thin Films for Photocatalytic Hydrogen Production: Perspectives on Upscaling. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1783

How to Cite

Sputtering Deposition of ZnO Thin Films for Photocatalytic Hydrogen Production: Perspectives on Upscaling. (2024). Nanofabrication, 9. https://doi.org/10.37819/nanofab.9.1783

Funding data

HTML
319

Total
104

Share

Search Panel

Iván R. Rodríguez
Google Scholar
Pubmed
JDMFS Journal


Andrés Galdámez-Martínez
Google Scholar
Pubmed
JDMFS Journal


Carlos Ramos
Google Scholar
Pubmed
JDMFS Journal


Guillermo Santana
Google Scholar
Pubmed
JDMFS Journal


Agileo Hernández Gordillo
Google Scholar
Pubmed
JDMFS Journal


Ateet Dutt
Google Scholar
Pubmed
JDMFS Journal


Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Iván R. Rodríguez, Andrés Galdámez-Martínez, Carlos Ramos, Guillermo Santana, Agileo Hernández Gordillo, Ateet Dutt

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.