Skip to main content Skip to main navigation menu Skip to site footer

Enhanced Photocatalytic Applications of Chitosan Encapsulated Silver Sulphide Quantum Dots

Abstract

This study explores the synthesis, properties, and applications of chitosan-encapsulated silver sulphide (Ag2S) quantum dots (QDs) for biological applications. The investigation focuses on the fluctuations in the physico-chemical characteristics of chitosan Ag2S QDs, which can be carefully studied due to their environmental activity. X-ray diffraction (XRD) measurements reveal that chitosan-coated Ag2S QDs exhibit higher-intensity peaks. The XRD analysis reports a range of crystallite sizes, with a minimum size of 8 nm and a maximum size of 12 nm. Fourier-transform infrared (FTIR) spectroscopy confirms the presence of chitosan through the detection of functional group peaks. High-resolution transmission electron microscopy (HRTEM) studies indicate that the size of the artificial quantum dots is 6 nm. Energy-dispersive X-ray spectroscopy (EDX) verifies the composition of chitosan-encapsulated Ag2S QDs. Moreover, the chitosan Ag2S quantum dots demonstrate exceptional photocatalytic activity, as evidenced by the degradation of 92% of methylene blue dye within one hour. This research provides valuable insights into the synthesis, properties, and potential applications of chitosan-encapsulated Ag2S quantum dots in diverse fields.

Section

References

  1. Abdi-Ali, A., Hendiani, S., Mohammadi, P., &Gharavi, S. (2014). Assessment of biofilm formation and resistance to imipenem and ciprofloxacin among clinical isolates of Acinetobacterbaumannii in Tehran. Jundishapur .Journal of microbiology, 7(1).https://doi.org/10.5812/jjm.8606
  2. Alshehri, M. A., Aziz, A. T., Trivedi, S., &Panneerselvam, C. (2020). Efficacy of chitosan silver nanoparticles from shrimp-shell wastes against major mosquito vectors of public health importance. Green Processing and Synthesis, 9(1), 675-684.
  3. Andrade, G. R., Nascimento, C. C., Neves, E. C., Santo Barbosa, C. D. A. E., Costa, L. P., Barreto, L. S., &Gimenez, I. F. (2012). One-step preparation of CdSnanocrystals supported on thiolated silica-gel matrix and evaluation of photocatalytic performance. Journal of hazardous materials, 203, 151-157. https://doi.org/10.1016/j.jhazmat.2011.11.086
  4. Anitha, R., Karthikeyan, B., Pandiyarajan, T., Vignesh, S., James, R. A., Vishwanathan, K., &Murari, B. M. (2011). Antifungal studies on biocompatible polymer encapsulated silver nanoparticles. International Journal of Nanoscience, 10(04n05), 1179-1183. https://doi.org/10.1142/S0219581X11008927
  5. Anpo, M., Shima, T., Kodama, S., &Kubokawa, Y. (1987). Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. Journal of Physical Chemistry, 91(16), 4305-4310. https://doi.org/10.1021/j100300a021
  6. Anpo, M., Shima, T., Kodama, S., &Kubokawa, Y. (1987). Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. Journal of Physical Chemistry, 91(16), 4305-4310. https://doi.org/10.1021/j100300a021
  7. Coia, J. E., Duckworth, G. J., Edwards, D. I., Farrington, M., Fry, C., Humphreys, H., & Joint Working Party of the British Society of Antimicrobial Chemotherapy. (2006). Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. Journal of hospital infection, 63, S1-S44. https://doi.org/10.1016/j.jhin.2006.01.001
  8. Colmenares, J. C., &Luque, R. (2014). Heterogeneous photocatalyticnanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chemical Society Reviews, 43(3), 765-778. https://doi.org/10.1039/C3CS60262A
  9. Colmenares, J. C., &Luque, R. (2014). Heterogeneous photocatalyticnanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chemical Society Reviews, 43(3), 765-778. https://doi.org/10.1039/C3CS60262A
  10. Dodd, A. C., McKinley, A. J., Saunders, M., & Tsuzuki, T. (2006). Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. Journal of Nanoparticle Research, 8, 43-51. https://doi.org/10.1007/s11051-005-5131-z
  11. Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusariumoxysporum strains. Journal of nanobiotechnology, 3, 1-7. https://doi.org/10.1186/1477-3155-3-8
  12. El-Khawaga, A. M., Farrag, A. A., Elsayed, M. A., El-Sayyad, G. S., & El-Batal, A. I. (2021). Antimicrobial and photocatalytic degradation activities of chitosan-coated magnetite nanocomposite. Journal of Cluster Science, 32, 1107-1119. https://doi.org/10.1007/s10876-020-01869-6
  13. Govindan, S., Nivethaa, E. A. K., Saravanan, R., Narayanan, V., & Stephen, A. (2012). Synthesis and characterization of chitosan–silver nanocomposite, Appl. https://doi.org/10.1007/s13204-012-0109-5
  14. Habiba, K., Bracho-Rincon, D. P., Gonzalez-Feliciano, J. A., Villalobos-Santos, J. C., Makarov, V. I., Ortiz, D., … &Morell, G. (2015). Synergistic antibacterial activity of PEGylated silver–graphene quantum dots nanocomposites. Applied Materials Today,1(2), 80-87. https://doi.org/10.1016/j.apmt.2015.10.001
  15. Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of controlled release, 156(2), 128-145. https://doi.org/10.1016/j.jconrel.2011.07.002
  16. Iijima, M., &Kamiya, H. (2009). Surface modification for improving the stability of nanoparticles in liquid media. KONA Powder and Particle Journal, 27, 119-129. https://doi.org/10.14356/kona.2009012
  17. Jose, A., Devi, K. S., Pinheiro, D., &Narayana, S. L. (2018). Electrochemical synthesis, photodegradation and antibacterial properties of PEG capped zinc oxide nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 187, 25-34. https://doi.org/10.1016/j.jphotobiol.2018.07.022
  18. Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water research, 42(18), 4591-4602.https://doi.org/10.1016/j.watres.2008.08.015
  19. Liu, S. Q. (2012). Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants. Environmental chemistry letters, 10, 209-216. https://doi.org/10.1007/s10311-011-0348-9
  20. Ma, Q., Hu, X., Liu, N., Sharma, A., Zhang, C., Kawazoe, N., & Yang, Y. (2020). Polyethylene glycol (PEG)-modified Ag/Ag2O/Ag3PO4/Bi2WO6 photocatalyst film with enhanced efficiency and stability under solar light. Journal of colloid and interface science, 569, 101-113. https://doi.org/10.1016/j.jcis.2020.02.064
  21. Magesh, G., Bhoopathi, G., Nithya, N., Arun, A. P., & Ranjith Kumar, E. (2018). Effect of biopolymer blend matrix on structural, optical and biological properties of chitosan–agar blend ZnO nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials, 28, 1528-1539. https://link.springer.com/article/10.1007/s10904-018-0848-1
  22. Manikandan, A., & Sathiyabama, M. (2015). Green synthesis of copper-chitosan nanoparticles and study of its antibacterial activity. Journal of Nanomedicine & Nanotechnology, 6(1), 1. http://dx.doi.org/10.4172/2157-7439.1000251
  23. Mills, A., Davies, R. H., &Worsley, D. (1993). Water purification by semiconductor photocatalysis. Chemical Society Reviews, 22(6), 417-425. https://doi.org/10.1039/CS9932200417
  24. Muniz, F. T. L., Miranda, M. R., Morilla dos Santos, C., & Sasaki, J. M. (2016). The Scherrer equation and the dynamical theory of X-ray diffraction. ActaCrystallographica Section A: Foundations and Advances, 72(3), 385-390. https://doi.org/10.1107/S205327331600365X
  25. Orooji, Y., Ghanbari, M., Amiri, O., &Salavati-Niasari, M. (2020). Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable Photocatalytic performance through sunlight and antimicrobial activity. Journal of Hazardous Materials, 389, 122079. https://doi.org/10.1016/j.jhazmat.2020.122079
  26. Pant, B., Park, M., & Park, S. J. (2019). Recent advances in TiO2 films prepared by sol-gel methods for photocatalytic degradation of organic pollutants and antibacterial activities. Coatings, 9(10), 613. https://doi.org/10.3390/coatings9100613
  27. Raghuram, H. S., Pradeep, S., Dash, S., Chowdhury, R., &Mazumder, S. (2016). Chitosan-encapsulated ZnS: M (M: Fe 3+ or Mn 2+) quantum dots for fluorescent labelling of sulphate-reducing bacteria. Bulletin of Materials Science, 39, 405-413. https://doi.org/10.1007/s12034-016-1178-y
  28. Raza, Z. A., Khalil, S., Ayub, A., & Banat, I. M. (2020). Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydrate research, 492, 108004.https://doi.org/10.1016/j.carres.2020.108004
  29. Sharma, A., Sharma, R., Bhatia, N., & Kumari, A. (2021). Review on synthesis, characterization and applications of silver sulphide quantum dots. Journal of Materials Science Research and Reviews, 7(3), 42-58. http://journal.pustakalibrary.com/id/eprint/166
  30. Sharma, A., Sharma, R., Thakur, N., Sharma, P., & Kumari, A. (2023). Silver sulphide (Ag2S) quantum dots synthesized from aqueous route with enhanced antimicrobial and dye degradation capabilities. Physica E: Low-dimensional Systems and Nanostructures, 115730. https://doi.org/10.1016/j.physe.2023.115730
  31. Tan, L., Wan, A., & Li, H. (2013). Ag2S quantum dots conjugated chitosan nanospheres toward light-triggered nitric oxide release and near-infrared fluorescence imaging. Langmuir, 29(48), 15032-15042 (dx.doi.org/10.1021/la403028j. http://dx.doi.org/10.1021/la403028j
  32. Zhang, G., Li, J., Shen, A., & Hu, J. (2015). Synthesis of size-tunable chitosan encapsulated gold–silver nanoflowers and their application in SERS imaging of living cells. Physical Chemistry Chemical Physics, 17(33), 21261-21267. https://doi.org/10.1039/C4CP05343E
  33. Kusiak-Nejman, E., Sienkiewicz, A., Wanag, A., Rokicka-Konieczna, P., &Morawski, A. W. (2021). The role of adsorption in the photocatalytic decomposition of dyes on APTES-Modified TiO2 nanomaterials. Catalysts, 11(2), 172. https://doi.org/10.3390/catal11020172
  34. Dutta, V., Sudhaik, A., Raizada, P., Singh, A., Ahamad, T., Thakur, S.,& Singh, P. (2023). Tailoring S-scheme-based carbon nanotubes (CNTs) mediated Ag-CuBi2O4/Bi2S3 nanomaterials for photocatalytic dyes degradation in the aqueous system. Journal of Materials Science & Technology. https://doi.org/10.1016/j.jmst.2023.03.037
  35. Sudhaik, A., Raizada, P., Ahamad, T., Alshehri, S. M., Nguyen, V. H., Van Le, Q.,& Singh, P. (2022). Recent advances in cellulose supported photocatalysis for pollutant mitigation: A review. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2022.11.241
  36. Hasija, V., Raizada, P., Sudhaik, A., Sharma, K., Kumar, A., Singh, P., & Thakur, V. K. (2019). Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Applied Materials Today, 15, 494-524. https://doi.org/10.1016/j.apmt.2019.04.003
  37. Kumar, Y., Kumar, R., Raizada, P., Khan, A. A. P., Van Le, Q., Singh, P., & Nguyen, V. H. (2021). Novel Z-Scheme ZnIn2S4-based photocatalysts for solar-driven environmental and energy applications: Progress and perspectives. Journal of Materials Science & Technology, 87.https://doi.org/10.1016/j.jmst.2021.01.051
  38. Sudhaik, A., Raizada, P., Khan, A. A. P., Singh, A., & Singh, P. (2022). Graphitic carbon nitride-based upconversionphotocatalyst for hydrogen production and water purification. Nanofabrication, 7, 280-313. https://doi.org/10.37819/nanofab.007.189
  39. Barragan, J. A., Aleman Castro, J. R., Peregrina-Lucano, A. A., Sánchez-Amaya, M., Rivero, E. P., &Larios-Durán, E. R. (2021). Leaching of metals from e-waste: from its thermodynamic analysis and design to its implementation and optimization. ACS omega, 6(18), 12063-12071. https://doi.org/10.1021/acsomega.1c00724
  40. AbdElkodous, M., El-Sayyad, G. S., Youssry, S. M., Nada, H. G., Gobara, M., Elsayed, M. A., ...& Matsuda, A. (2020). Carbon-dot-loaded CoxNi1− xFe2O4; x= 0.9/SiO2/TiO2 nanocomposite with enhanced photocatalytic and antimicrobial potential: An engineered nanocomposite for wastewater treatment. Scientific Reports, 10(1), 11534. http://doi.org/10.1038/s 41598-020-68173-1
  41. Vasiljevic, Z.Z., Dojcinovic, M.P., Vujancevic, J.D., Jankovic-Castvan, I., Ognjanovic, M., Tadic, N.B., Stojadinovic, S., Brankovic, G.O. and Nikolic, M.V., 2020. Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol–gel method. Royal Society open science, 7(9), p.200708. https://doi.org/10.1098/rsos.200708

How to Cite

Enhanced Photocatalytic Applications of Chitosan Encapsulated Silver Sulphide Quantum Dots. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.327

How to Cite

Enhanced Photocatalytic Applications of Chitosan Encapsulated Silver Sulphide Quantum Dots. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.327

HTML
516

Total
720 17

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Ambalika Sharma, Rahul Sharma, Asha Kumari

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Similar Articles

11-20 of 34

You may also start an advanced similarity search for this article.