Skip to main content Skip to main navigation menu Skip to site footer

Transition Metal Oxides as the Electrode Material for Sodium-Ion Capacitors

  • Yamini Gupta
  • Poonam Siwatch
  • Reetika Karwasra
  • Kriti Sharma
  • S.K. Tripathi

Abstract

The research of energy-storage systems has been encouraged in the last ten years by the rapid development of portable electronic gadgets. Hybrid-ion capacitors are a novel kind of capacitor-battery hybrid energy storage device that has earned a lot of interest because of their high power density while maintaining energy density and a long lifecycle. Mostly, lithium-based energy storage technology is now being studied for use in electric grid storage. But the price increment and intermittent availability of lithium reserves make lithium-based commercialization unstable. Therefore, sodium-based technologies have been proposed as potential substitutes for lithium-based technologies. Sodium-ion capacitors (SICs) are acknowledged as potential innovative energy storage technologies which have lower standard electrode potentials and lower costs than lithium-ion capacitors. However, the large radius of the sodium ion also contributes to unfavorable reaction kinetics, low energy density, and brief lifespan of SICs. Recently, transition metal oxide (TMO)-based candidates have been considered potential due to the large theoretical capacity, environmental friendliness, and low cost for SICs. This brief study summarizes current advancements in research of TMOs and sodium-based TMOs as electrode candidates for SIC applications. Also, we have covered in detail the state of the exploration and upcoming prospects of TMOs for SICs.

Section

References

  1. Aravindan, V., Chuiling, W., & Madhavi, S. (2012). High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO 4 as insertion electrode. Journal of Materials Chemistry, 22(31), 16026-16031. https://doi.org/10.1039/C2JM32970K
  2. Aristote, N. T., Deng, X., Zou, K., Gao, X., Momen, R., & Ji, X. (2022). General overview of sodium, potassium, and zinc-ion capacitors. Journal of Alloys and Compounds, 913, 165216. https://doi.org/10.1016/j.jallcom.2022.165216
  3. Bhat, S. S., Babu, B., Feygenson, M., Neuefeind, J. C., & Shaijumon, M. M. (2018). Nanostructured Na2Ti9O19 for hybrid sodium-ion capacitors with excellent rate capability. ACS applied materials & interfaces, 10(1), 437-447. https://doi.org/10.1021/acsami.7b13300
  4. Cai, P., Zou, K., Deng, X., Wang, B., Zheng, M., & Ji, X. (2021). Comprehensive understanding of sodium‐ion capacitors: definition, mechanisms, configurations, materials, key technologies, and future developments. Advanced Energy Materials, 11(16), 2003804. https://doi.org/10.1002/aenm.202003804
  5. Chen, J., Yang, B., Liu, B., Lang, J., & Yan, X. (2019). Recent advances in anode materials for sodium-and potassium-ion hybrid capacitors. Current Opinion in Electrochemistry, 18, 1-8. https://doi.org/10.1016/j.coelec.2019.07.003
  6. Chen, Z., Augustyn, V., Jia, X., Xiao, Q., Dunn, B., & Lu, Y. (2012). High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS nano, 6(5), 4319-4327. https://doi.org/10.1021/nn300920e
  7. Chen, Z., Yuan, T., Pu, X., Yang, H., Ai, X., Xia, Y., & Cao, Y. (2018). Symmetric sodium-ion capacitor based on Na0. 44MnO2 nanorods for low-cost and high-performance energy storage. ACS applied materials & interfaces, 10(14), 11689-11698. https://doi.org/10.1021/acsami.8b00478
  8. Das, H. T., Maiyalagan, T., & Das, N. (2023). Developing potential aqueous Na-ion capacitors of Al2O3 with carbon composites as electrode material: Recycling medical waste to sustainable energy. Journal of Alloys and Compounds, 931, 167501. https://doi.org/10.1016/j.jallcom.2022.167501
  9. Deng, X., Zou, K., Cai, P., Wang, B., Hou, H., Zou, G., & Ji, X. (2020). Advanced Battery‐Type Anode Materials for High‐Performance Sodium‐Ion Capacitors. Small Methods, 4(10), 2000401. https://doi.org/10.1002/smtd.202000401
  10. Diez, N., Sevilla, M., & Fuertes, A. B. (2023). A dual carbon Na-ion capacitor based on polypyrrole-derived carbon nanoparticles. Carbon, 201, 1126-1136. https://doi.org/10.1016/j.carbon.2022.10.036
  11. Ding, R., Qi, L., & Wang, H. (2013). An investigation of spinel NiCo2O4 as anode for Na-ion capacitors. Electrochimica Acta, 114, 726-735. https://doi.org/10.1016/j.electacta.2013.10.113
  12. Dong, S., Lv, N., Wu, Y., Zhu, G., & Dong, X. (2021). Lithium‐ion and sodium‐ion hybrid capacitors: from insertion‐type materials design to devices construction. Advanced Functional Materials, 31(21), 2100455. https://doi.org/10.1002/adfm.202100455
  13. Dong, S., Shen, L., Li, H., Nie, P., Zhu, Y., Sheng, Q., & Zhang, X. (2015). Pseudocapacitive behaviors of Na 2 Ti 3 O 7@ CNT coaxial nanocables for high-performance sodium-ion capacitors. Journal of Materials Chemistry A, 3(42), 21277-21283. https://doi.org/10.1039/C5TA05714K
  14. Dong, S., Shen, L., Li, H., Nie, P., Zhu, Y., Sheng, Q., & Zhang, X. (2015). Pseudocapacitive behaviors of Na 2 Ti 3 O 7@ CNT coaxial nanocables for high-performance sodium-ion capacitors. Journal of Materials Chemistry A, 3(42), 21277-21283. https://doi.org/10.1039/C5TA05714K
  15. Dong, S., Shen, L., Li, H., Pang, G., Dou, H., & Zhang, X. (2016). Flexible sodium‐ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes. Advanced Functional Materials, 26(21), 3703-3710. https://doi.org/10.1002/adfm.201600264
  16. Fan, Y., Li, C., Liu, X., Ren, J., Zhang, Y., Chi, J., & Wang, L. (2023). Honeycomb structured nano MOF for high-performance sodium-ion hybrid capacitor. Chemical Engineering Journal, 452, 139585. https://doi.org/10.1016/j.cej.2022.139585
  17. Fang, Y., Zhang, Y., Miao, C., Zhu, K., Chen, Y., & Cao, D. (2020). MXene-derived defect-rich TiO2@ rGO as high-rate anodes for full Na ion batteries and capacitors. Nano-micro letters, 12(1), 1-16. https://doi.org/10.1007/s40820-020-00471-9
  18. Gao, L., Chen, G., Zhang, L., Yan, B., & Yang, X. (2021). Engineering pseudocapacitive MnMoO4@C microrods for high energy sodium ion hybrid capacitors. Electrochimica Acta, 379, 138185. https://doi.org/10.1016/j.electacta.2021.138185
  19. Gao, L., Chen, S., Zhang, L., & Yang, X. (2018). High performance sodium ion hybrid supercapacitors based on Na2Ti3O7 nanosheet arrays. Journal of Alloys and Compounds, 766, 284-290. https://doi.org/10.1016/j.jallcom.2018.06.288
  20. Gao, L., Huang, D., Shen, Y., & Wang, M. (2015). Rutile-TiO 2 decorated Li 4 Ti 5 O 12 nanosheet arrays with 3D interconnected architecture as anodes for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 3(46), 23570-23576. https://doi.org/10.1039/C5TA07666H
  21. Gu, H., Kong, L., Cui, H., Zhou, X., Xie, Z., & Zhou, Z. (2019). Fabricating high-performance sodium ion capacitors with P2-Na0. 67Co0. 5Mn0. 5O2 and MOF-derived carbon. Journal of Energy Chemistry, 28, 79-84. https://doi.org/10.1016/j.jechem.2018.01.012
  22. Gui, Q., Ba, D., Zhao, Z., Mao, Y., Zhu, W., & Liu, J. (2019). Synergistic Coupling of Ether Electrolyte and 3D Electrode Enables Titanates with Extraordinary Coulombic Efficiency and Rate Performance for Sodium‐Ion Capacitors. Small Methods, 3(2), 1800371. https://doi.org/10.1002/smtd.201800371
  23. Halder, B., Ragul, S., Sandhiya, S., & Elumalai, P. (2023). Flexible Solid-State Aqueous Sodium-Ion Capacitor Using Mesoporous Self-Heteroatom-Doped Carbon Electrodes. ACS Applied Electronic Materials. https://doi.org/10.1021/acsaelm.2c01474
  24. Han, C., Wang, X., Peng, J., Xia, Q., Chou, S., & Li, W. (2021). Recent progress on two-dimensional carbon materials for emerging post-lithium (Na+, K+, Zn2+) hybrid supercapacitors. Polymers, 13(13), 2137. https://doi.org/10.3390/polym13132137
  25. Hengheng, X. I. A., Zhongxun, A. N., Tingli, H. U. A. N. G., Wenying, F. A. N. G., Lianhuan, D. U., & Li, H. U. A. (2018). Construction of Li-ion supercapacitor-type battery using active carbon/LiNi0. 5Co0. 2Mn0. 3O2 composite as cathode and its electrochemical performances. Energy Storage Science and Technology, 7(6), 1233. https://doi.org/10.12028/j.issn.2095-4239.2018.0142
  26. Jia, R., Shen, G., & Chen, D. (2020). Recent progress and future prospects of sodium-ion capacitors. Science China Materials, 63(2), 185-206. https://doi.org/10.1007/s40843-019-1188-x
  27. Jiang, Y., Tan, S., Wei, Q., Dong, J., Li, Q., Xiong, F., ... & Mai, L. (2018). Pseudocapacitive layered birnessite sodium manganese dioxide for high-rate non-aqueous sodium ion capacitors. Journal of Materials Chemistry A, 6(26), 12259-12266. https://doi.org/10.1039/C8TA02516A
  28. Jo, A., Lee, B., Kim, B. G., Lim, H., Han, J. T., & Park, J. H. (2023). Ultrafast laser micromachining of hard carbon/fumed silica anodes for high-performance sodium-ion capacitors. Carbon, 201, 549-560. https://doi.org/10.1016/j.carbon.2022.09.031
  29. Karikalan, N., Karuppiah, C., Chen, S. M., Velmurugan, M., & Gnanaprakasam, P. (2017). Three‐dimensional fibrous network of Na0. 21MnO2 for aqueous sodium‐ion hybrid supercapacitors. Chemistry–A European Journal, 23(10), 2379-2386. https://doi.org/10.1002/chem.201604878
  30. Kim, H. J., Ramasamy, H. V., Jeong, G. H., Aravindan, V., & Lee, Y. S. (2020). Deciphering the Structure–Property Relationship of Na–Mn–Co–Mg–O as a Novel High-Capacity Layered–Tunnel Hybrid Cathode and Its Application in Sodium-Ion Capacitors. ACS applied materials & interfaces, 12(9), 10268-10279. https://doi.org/10.1021/acsami.9b19288
  31. Le, Z., Liu, F., Nie, P., Li, X., Liu, X., & Lu, Y. (2017). Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2–graphene nanocomposite enables high-performance sodium-ion capacitors. ACS nano, 11(3), 2952-2960. https://doi.org/10.1021/acsnano.6b08332
  32. Lee, S. Y., An, J. H., & Park, Y. I. (2023). Synergistic effect of NaTi2 (PO4) 3 and MXene synthesized in situ for high-performance sodium-ion capacitors. Applied Surface Science, 612, 155960. https://doi.org/10.1016/j.apsusc.2022.155960
  33. Leng, K., Zhang, F., Zhang, L., Zhang, T., Wu, Y., & Chen, Y. (2013). Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Research, 6, 581-592. https://doi.org/10.1007/s12274-013-0334-6
  34. Li, T., Gao, Q., Liu, S., Zhang, X., Zhang, Y., & Yuan, C. (2023). Facile Construction of Nano-Dimensional Bi Encapsulated in N-Doped Porous Carbon Frameworks for High-Performance Sodium-Ion Hybrid Capacitors. ACS Applied Energy Materials. https://doi.org/10.1021/acsaem.3c00003
  35. Liang, H., Zhang, H., Zhao, L., Chen, Z., Huang, C., & Li, H. (2022). Layered Fe2 (MoO4) 3 assemblies with pseudocapacitive properties as advanced materials for high-performance sodium-ion capacitors. Chemical Engineering Journal, 427, 131481. https://doi.org/10.1016/j.cej.2021.131481
  36. Lim, E., Jo, C., Kim, M. S., Kim, M. H., Chun, J., & Lee, J. (2016). High‐performance sodium‐ion hybrid supercapacitor based on Nb2O5@ carbon core–shell nanoparticles and reduced graphene oxide nanocomposites. Advanced Functional Materials, 26(21), 3711-3719. https://doi.org/10.1002/adfm.201505548
  37. Liu, L., Du, Z., Sun, J., He, S., Wang, K., & Ai, W. (2023). Engineering the First Coordination Shell of Single Zn Atoms via Molecular Design Strategy toward High‐Performance Sodium‐Ion Hybrid Capacitors. Small, 2300556. https://doi.org/10.1002/smll.202300556
  38. Liu, L., Zhao, Z., Hu, Z., Lu, X., Zhang, S., & Li, H. (2020). Designing Uniformly Layered FeTiO3 Assemblies Consisting of Fine Nanoparticles Enabling High-Performance Quasi-Solid-State Sodium-Ion Capacitors. Frontiers in chemistry, 8, 371. https://doi.org/10.3389/fchem.2020.00371
  39. Liu, Z., Zhang, X., Huang, D., Gao, B., Ni, C., & Wang, G. (2020). Confined seeds derived sodium titanate/graphene composite with synergistic storage ability toward high performance sodium ion capacitors. Chemical Engineering Journal, 379, 122418. https://doi.org/10.1016/j.cej.2019.122418
  40. Maurya, D. K., Murugadoss, V., Guo, Z., & Angaiah, S. (2021). Designing Na2Zn2TeO6-Embedded 3D-Nanofibrous Poly (vinylidenefluoride)-co-hexafluoropropylene-Based Nanohybrid Electrolyte via Electrospinning for Durable Sodium-Ion Capacitors. ACS Applied Energy Materials, 4(8), 8475-8487. https://doi.org/10.1021/acsaem.1c01682
  41. Peng, H., Han, S., Zhao, J., Klimova-Korsmik, O., Tolochko, O. V., & Wang, G. K. (2023). 2D Heterolayer-Structured MoSe2-Carbon with Fast Kinetics for Sodium-Ion Capacitors. Inorganic Chemistry. https://doi.org/10.1021/acs.inorgchem.2c03819
  42. Qin, J., Sari, H. M. K., Wang, X., Yang, H., Zhang, J., & Li, X. (2020). Controlled design of metal oxide-based (Mn2+/Nb5+) anodes for superior sodium-ion hybrid supercapacitors: Synergistic mechanisms of hybrid ion storage. Nano Energy, 71, 104594. https://doi.org/10.1016/j.nanoen.2020.104594
  43. Que, L. F., Yu, F. D., He, K. W., Wang, Z. B., & Gu, D. M. (2017). Robust and conductive Na2Ti2O5–x nanowire arrays for high-performance flexible sodium-ion capacitor. Chemistry of Materials, 29(21), 9133-9141. https://doi.org/10.1021/acs.chemmater.7b02864
  44. Song, Y., Peng, Y., Li, H., Sun, X., Li, L., Zhang, C., & Yin, F. (2022). Mn3O4 Nanoparticles In Situ Embedded in TiO2 for High-Performance Na-ion capacitor: Balance between 3D Ordered Hierarchically Porous Structure and Heterostructured Interfaces. Chemical Engineering Journal, 137450. https://doi.org/10.1016/j.cej.2022.137450
  45. Su, H., Jaffer, S., & Yu, H. (2016). Transition metal oxides for sodium-ion batteries. Energy storage materials, 5, 116-131. https://doi.org/10.1016/j.ensm.2016.06.005
  46. Sun, C., Zhang, X., An, Y., Li, C., Wang, L., & Ma, Y. Low‐temperature carbonized nitrogen-doped hard carbon nanofiber towards high‐performance sodium‐ion capacitors. Energy & Environmental Materials, e12603. https://doi.org/10.1002/eem2.12603
  47. Thirumal, V., Sreekanth, T. V. M., Yoo, K., & Kim, J. (2023). Biomass-Derived Hard Carbon and Nitrogen-Sulfur Co-Doped Graphene for High-Performance Symmetric Sodium Ion Capacitor Devices. Energies, 16(2), 802. https://doi.org/10.3390/en16020802
  48. Tian, S., Qi, L., & Wang, H. (2016). A Na+-storage electrode material free of potential plateaus and its application in electrochemical capacitors. Solid State Ionics, 289, 194-198. https://doi.org/10.1016/j.ssi.2016.03.010
  49. Wang, G., Oswald, S., Löffler, M., Müllen, K., & Feng, X. (2019). Beyond Activated Carbon: Graphite‐Cathode‐Derived Li‐Ion Pseudocapacitors with High Energy and High Power Densities. Advanced Materials, 31(14), 1807712. https://doi.org/10.1002/adma.201807712
  50. Wang, M., Peng, A., Jiang, J., Zeng, M., Yang, Z., & Li, X. (2022). Heterointerface synergistic Na+ storage fundamental mechanism for CoSeO3 playing as anode for sodium ion batteries/capacitors. Chemical Engineering Journal, 433, 134567. https://doi.org/10.1016/j.cej.2022.134567
  51. Wang, S., Zhao, H., Lv, S., Jiang, H., Shao, Y., & Lei, Y. (2021). Insight into Nickel‐Cobalt Oxysulfide Nanowires as Advanced Anode for Sodium‐Ion Capacitors. Advanced Energy Materials, 11(18), 2100408. https://doi.org/10.1002/aenm.202100408
  52. Xiang, J., Zhang, P., Lv, S., Ma, Y., Zhao, Q., & Qin, C. (2021). Spinel LiMn 2 O 4 nanoparticles fabricated by the flexible soft template/Pichini method as cathode materials for aqueous lithium-ion capacitors with high energy and power density. RSC advances, 11(25), 14891-14898.https://doi.org/10.1039/D0RA07823A
  53. Yang, C., Lan, J. L., Liu, W. X., Liu, Y., Yu, Y. H., & Yang, X. P. (2017). High-performance Li-ion capacitor based on an activated carbon cathode and well-dispersed ultrafine TiO2 nanoparticles embedded in mesoporous carbon nanofibers anode. ACS Applied Materials & Interfaces, 9(22), 18710-18719. https://doi.org/10.1021/acsami.7b02068
  54. Yang, D., Zhao, Q., Huang, L., Xu, B., Kumar, N. A., & Zhao, X. S. (2018). Encapsulation of NiCo 2 O 4 in nitrogen-doped reduced graphene oxide for sodium ion capacitors. Journal of Materials Chemistry A, 6(29), 14146-14154. https://doi.org/10.1039/C8TA03411G
  55. Yang, D., Zhao, Q., Huang, L., Xu, B., Kumar, N. A., & Zhao, X. S. (2018). Encapsulation of NiCo 2 O 4 in nitrogen-doped reduced graphene oxide for sodium ion capacitors. Journal of Materials Chemistry A, 6(29), 14146-14154. https://doi.org/10.1039/C8TA03411G
  56. Yang, S., Jiang, J., He, W., Wu, L., Xu, Y., & Zhang, X. (2023). Nitrogen-doped carbon encapsulating Fe7Se8 anode with core-shell structure enables high-performance sodium-ion capacitors. Journal of Colloid and Interface Science, 630, 144-154. https://doi.org/10.1016/j.jcis.2022.10.034
  57. Yuan, C., Wu, H. B., Xie, Y., & Lou, X. W. (2014). Mixed transition‐metal oxides: design, synthesis, and energy‐related applications. Angewandte Chemie International Edition, 53(6), 1488-1504. https://doi.org/10.1002/anie.201303971
  58. Zhang, H., Hu, M., Lv, Q., Huang, Z. H., Kang, F., & Lv, R. (2020). Advanced Materials for Sodium‐Ion Capacitors with Superior Energy–Power Properties: Progress and Perspectives. Small, 16(15), 1902843. https://doi.org/10.1002/smll.201902843
  59. Zhang, H., Liu, B., Lu, Z., Hu, J., Xie, J., Hao, A., & Cao, Y. (2023). Sulfur‐Bridged Bonds Heightened Na‐Storage Properties in MnS Nanocubes Encapsulated by S‐Doped Carbon Matrix Synthesized via Solvent‐Free Tactics for High‐Performance Hybrid Sodium-Ion Capacitors. Small, 2207214. https://doi.org/10.1002/smll.202207214
  60. Zhang, T., Wang, R., He, B., Jin, J., Gong, Y., & Wang, H. (2021). Recent advances on pre-sodiation in sodium-ion capacitors: A mini review. Electrochemistry Communications, 129, 107090. https://doi.org/10.1016/j.elecom.2021.107090
  61. Zhang, X., Chen, S., Cai, J., King, S., Liu, C., & Wang, G. (2023). Pre-strain accommodation enabled multi-dimensionally and hierarchically elastomeric MoSe2/MXene and AC/MXene electrodes for stretchable sodium-ion capacitors. Journal of Alloys and Compounds, 935, 168065. https://doi.org/10.1016/j.jallcom.2022.168065
  62. Zhang, Y., An, Y., Jiang, J., Dong, S., Wu, L., & Zhang, X. (2018). High Performance Aqueous Sodium‐Ion Capacitors Enabled by Pseudocapacitance of Layered MnO2. Energy Technology, 6(11), 2146-2153. https://doi.org/10.1002/ente.201800157
  63. Zhang, Y., Jiang, J., An, Y., Wu, L., Dou, H., & Guo, Z. (2020). Sodium‐ion capacitors: materials, mechanism, and challenges. ChemSusChem, 13(10), 2522-2539. https://doi.org/10.1002/cssc.201903440
  64. Zhou, J., Yang, K., Kang, Q., Liu, C., Li, X., & Hou, W. (2023). Fast electrochemical redox kinetics of two-dimensional TiO2/Ti3C2Tx (MXene) heterostructure for high-performance lithium-ion capacitor. Journal of Electroanalytical Chemistry, 928, 117034. https://doi.org/10.1016/j.jelechem.2022.117034
  65. Zhu, J., Roscow, J., Chandrasekaran, S., Deng, L., Zhang, P., & Huang, L. (2020). Biomass‐derived carbons for sodium‐ion batteries and sodium‐ion capacitors. ChemSusChem, 13(6), 1275-1295. https://doi.org/10.1002/cssc.201902685
  66. Zhu, Y. E., Yang, L., Sheng, J., Chen, Y., Gu, H., Wei, J., & Zhou, Z. (2017). Fast sodium storage in TiO2@ CNT@ C nanorods for high‐performance Na‐ion capacitors. Advanced Energy Materials, 7(22), 1701222. https://doi.org/10.1002/aenm.201701222
  67. Zhu, Y. E., Yang, L., Sheng, J., Chen, Y., Gu, H., Wei, J., & Zhou, Z. (2017). Fast sodium storage in TiO2@ CNT@ C nanorods for high‐performance Na‐ion capacitors. Advanced Energy Materials, 7(22), 1701222. https://doi.org/10.1002/aenm.201701222

How to Cite

Gupta, Y. ., Siwatch, P. ., Karwasra, R. ., Sharma, K. ., & Tripathi, S. . (2023). Transition Metal Oxides as the Electrode Material for Sodium-Ion Capacitors. Nanofabrication, 8. https://doi.org/10.37819/nanofab.008.303

HTML
338

Total
852 36

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Yamini Gupta, Poonam Siwatch, Reetika Karwasra, Kriti Sharma, S.K. Tripathi

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.