Skip to main content Skip to main navigation menu Skip to site footer

Transition Metal Oxides as the Electrode Material for Sodium-Ion Capacitors

  • Yamini Gupta
  • Poonam Siwatch
  • Reetika Karwasra
  • Kriti Sharma
  • S.K. Tripathi


The research of energy-storage systems has been encouraged in the last ten years by the rapid development of portable electronic gadgets. Hybrid-ion capacitors are a novel kind of capacitor-battery hybrid energy storage device that has earned a lot of interest because of their high power density while maintaining energy density and a long lifecycle. Mostly, lithium-based energy storage technology is now being studied for use in electric grid storage. But the price increment and intermittent availability of lithium reserves make lithium-based commercialization unstable. Therefore, sodium-based technologies have been proposed as potential substitutes for lithium-based technologies. Sodium-ion capacitors (SICs) are acknowledged as potential innovative energy storage technologies which have lower standard electrode potentials and lower costs than lithium-ion capacitors. However, the large radius of the sodium ion also contributes to unfavorable reaction kinetics, low energy density, and brief lifespan of SICs. Recently, transition metal oxide (TMO)-based candidates have been considered potential due to the large theoretical capacity, environmental friendliness, and low cost for SICs. This brief study summarizes current advancements in research of TMOs and sodium-based TMOs as electrode candidates for SIC applications. Also, we have covered in detail the state of the exploration and upcoming prospects of TMOs for SICs.



  1. Aravindan, V., Chuiling, W., & Madhavi, S. (2012). High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO 4 as insertion electrode. Journal of Materials Chemistry, 22(31), 16026-16031.
  2. Aristote, N. T., Deng, X., Zou, K., Gao, X., Momen, R., & Ji, X. (2022). General overview of sodium, potassium, and zinc-ion capacitors. Journal of Alloys and Compounds, 913, 165216.
  3. Bhat, S. S., Babu, B., Feygenson, M., Neuefeind, J. C., & Shaijumon, M. M. (2018). Nanostructured Na2Ti9O19 for hybrid sodium-ion capacitors with excellent rate capability. ACS applied materials & interfaces, 10(1), 437-447.
  4. Cai, P., Zou, K., Deng, X., Wang, B., Zheng, M., & Ji, X. (2021). Comprehensive understanding of sodium‐ion capacitors: definition, mechanisms, configurations, materials, key technologies, and future developments. Advanced Energy Materials, 11(16), 2003804.
  5. Chen, J., Yang, B., Liu, B., Lang, J., & Yan, X. (2019). Recent advances in anode materials for sodium-and potassium-ion hybrid capacitors. Current Opinion in Electrochemistry, 18, 1-8.
  6. Chen, Z., Augustyn, V., Jia, X., Xiao, Q., Dunn, B., & Lu, Y. (2012). High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS nano, 6(5), 4319-4327.
  7. Chen, Z., Yuan, T., Pu, X., Yang, H., Ai, X., Xia, Y., & Cao, Y. (2018). Symmetric sodium-ion capacitor based on Na0. 44MnO2 nanorods for low-cost and high-performance energy storage. ACS applied materials & interfaces, 10(14), 11689-11698.
  8. Das, H. T., Maiyalagan, T., & Das, N. (2023). Developing potential aqueous Na-ion capacitors of Al2O3 with carbon composites as electrode material: Recycling medical waste to sustainable energy. Journal of Alloys and Compounds, 931, 167501.
  9. Deng, X., Zou, K., Cai, P., Wang, B., Hou, H., Zou, G., & Ji, X. (2020). Advanced Battery‐Type Anode Materials for High‐Performance Sodium‐Ion Capacitors. Small Methods, 4(10), 2000401.
  10. Diez, N., Sevilla, M., & Fuertes, A. B. (2023). A dual carbon Na-ion capacitor based on polypyrrole-derived carbon nanoparticles. Carbon, 201, 1126-1136.
  11. Ding, R., Qi, L., & Wang, H. (2013). An investigation of spinel NiCo2O4 as anode for Na-ion capacitors. Electrochimica Acta, 114, 726-735.
  12. Dong, S., Lv, N., Wu, Y., Zhu, G., & Dong, X. (2021). Lithium‐ion and sodium‐ion hybrid capacitors: from insertion‐type materials design to devices construction. Advanced Functional Materials, 31(21), 2100455.
  13. Dong, S., Shen, L., Li, H., Nie, P., Zhu, Y., Sheng, Q., & Zhang, X. (2015). Pseudocapacitive behaviors of Na 2 Ti 3 O 7@ CNT coaxial nanocables for high-performance sodium-ion capacitors. Journal of Materials Chemistry A, 3(42), 21277-21283.
  14. Dong, S., Shen, L., Li, H., Nie, P., Zhu, Y., Sheng, Q., & Zhang, X. (2015). Pseudocapacitive behaviors of Na 2 Ti 3 O 7@ CNT coaxial nanocables for high-performance sodium-ion capacitors. Journal of Materials Chemistry A, 3(42), 21277-21283.
  15. Dong, S., Shen, L., Li, H., Pang, G., Dou, H., & Zhang, X. (2016). Flexible sodium‐ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes. Advanced Functional Materials, 26(21), 3703-3710.
  16. Fan, Y., Li, C., Liu, X., Ren, J., Zhang, Y., Chi, J., & Wang, L. (2023). Honeycomb structured nano MOF for high-performance sodium-ion hybrid capacitor. Chemical Engineering Journal, 452, 139585.
  17. Fang, Y., Zhang, Y., Miao, C., Zhu, K., Chen, Y., & Cao, D. (2020). MXene-derived defect-rich TiO2@ rGO as high-rate anodes for full Na ion batteries and capacitors. Nano-micro letters, 12(1), 1-16.
  18. Gao, L., Chen, G., Zhang, L., Yan, B., & Yang, X. (2021). Engineering pseudocapacitive MnMoO4@C microrods for high energy sodium ion hybrid capacitors. Electrochimica Acta, 379, 138185.
  19. Gao, L., Chen, S., Zhang, L., & Yang, X. (2018). High performance sodium ion hybrid supercapacitors based on Na2Ti3O7 nanosheet arrays. Journal of Alloys and Compounds, 766, 284-290.
  20. Gao, L., Huang, D., Shen, Y., & Wang, M. (2015). Rutile-TiO 2 decorated Li 4 Ti 5 O 12 nanosheet arrays with 3D interconnected architecture as anodes for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 3(46), 23570-23576.
  21. Gu, H., Kong, L., Cui, H., Zhou, X., Xie, Z., & Zhou, Z. (2019). Fabricating high-performance sodium ion capacitors with P2-Na0. 67Co0. 5Mn0. 5O2 and MOF-derived carbon. Journal of Energy Chemistry, 28, 79-84.
  22. Gui, Q., Ba, D., Zhao, Z., Mao, Y., Zhu, W., & Liu, J. (2019). Synergistic Coupling of Ether Electrolyte and 3D Electrode Enables Titanates with Extraordinary Coulombic Efficiency and Rate Performance for Sodium‐Ion Capacitors. Small Methods, 3(2), 1800371.
  23. Halder, B., Ragul, S., Sandhiya, S., & Elumalai, P. (2023). Flexible Solid-State Aqueous Sodium-Ion Capacitor Using Mesoporous Self-Heteroatom-Doped Carbon Electrodes. ACS Applied Electronic Materials.
  24. Han, C., Wang, X., Peng, J., Xia, Q., Chou, S., & Li, W. (2021). Recent progress on two-dimensional carbon materials for emerging post-lithium (Na+, K+, Zn2+) hybrid supercapacitors. Polymers, 13(13), 2137.
  25. Hengheng, X. I. A., Zhongxun, A. N., Tingli, H. U. A. N. G., Wenying, F. A. N. G., Lianhuan, D. U., & Li, H. U. A. (2018). Construction of Li-ion supercapacitor-type battery using active carbon/LiNi0. 5Co0. 2Mn0. 3O2 composite as cathode and its electrochemical performances. Energy Storage Science and Technology, 7(6), 1233.
  26. Jia, R., Shen, G., & Chen, D. (2020). Recent progress and future prospects of sodium-ion capacitors. Science China Materials, 63(2), 185-206.
  27. Jiang, Y., Tan, S., Wei, Q., Dong, J., Li, Q., Xiong, F., ... & Mai, L. (2018). Pseudocapacitive layered birnessite sodium manganese dioxide for high-rate non-aqueous sodium ion capacitors. Journal of Materials Chemistry A, 6(26), 12259-12266.
  28. Jo, A., Lee, B., Kim, B. G., Lim, H., Han, J. T., & Park, J. H. (2023). Ultrafast laser micromachining of hard carbon/fumed silica anodes for high-performance sodium-ion capacitors. Carbon, 201, 549-560.
  29. Karikalan, N., Karuppiah, C., Chen, S. M., Velmurugan, M., & Gnanaprakasam, P. (2017). Three‐dimensional fibrous network of Na0. 21MnO2 for aqueous sodium‐ion hybrid supercapacitors. Chemistry–A European Journal, 23(10), 2379-2386.
  30. Kim, H. J., Ramasamy, H. V., Jeong, G. H., Aravindan, V., & Lee, Y. S. (2020). Deciphering the Structure–Property Relationship of Na–Mn–Co–Mg–O as a Novel High-Capacity Layered–Tunnel Hybrid Cathode and Its Application in Sodium-Ion Capacitors. ACS applied materials & interfaces, 12(9), 10268-10279.
  31. Le, Z., Liu, F., Nie, P., Li, X., Liu, X., & Lu, Y. (2017). Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2–graphene nanocomposite enables high-performance sodium-ion capacitors. ACS nano, 11(3), 2952-2960.
  32. Lee, S. Y., An, J. H., & Park, Y. I. (2023). Synergistic effect of NaTi2 (PO4) 3 and MXene synthesized in situ for high-performance sodium-ion capacitors. Applied Surface Science, 612, 155960.
  33. Leng, K., Zhang, F., Zhang, L., Zhang, T., Wu, Y., & Chen, Y. (2013). Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Research, 6, 581-592.
  34. Li, T., Gao, Q., Liu, S., Zhang, X., Zhang, Y., & Yuan, C. (2023). Facile Construction of Nano-Dimensional Bi Encapsulated in N-Doped Porous Carbon Frameworks for High-Performance Sodium-Ion Hybrid Capacitors. ACS Applied Energy Materials.
  35. Liang, H., Zhang, H., Zhao, L., Chen, Z., Huang, C., & Li, H. (2022). Layered Fe2 (MoO4) 3 assemblies with pseudocapacitive properties as advanced materials for high-performance sodium-ion capacitors. Chemical Engineering Journal, 427, 131481.
  36. Lim, E., Jo, C., Kim, M. S., Kim, M. H., Chun, J., & Lee, J. (2016). High‐performance sodium‐ion hybrid supercapacitor based on Nb2O5@ carbon core–shell nanoparticles and reduced graphene oxide nanocomposites. Advanced Functional Materials, 26(21), 3711-3719.
  37. Liu, L., Du, Z., Sun, J., He, S., Wang, K., & Ai, W. (2023). Engineering the First Coordination Shell of Single Zn Atoms via Molecular Design Strategy toward High‐Performance Sodium‐Ion Hybrid Capacitors. Small, 2300556.
  38. Liu, L., Zhao, Z., Hu, Z., Lu, X., Zhang, S., & Li, H. (2020). Designing Uniformly Layered FeTiO3 Assemblies Consisting of Fine Nanoparticles Enabling High-Performance Quasi-Solid-State Sodium-Ion Capacitors. Frontiers in chemistry, 8, 371.
  39. Liu, Z., Zhang, X., Huang, D., Gao, B., Ni, C., & Wang, G. (2020). Confined seeds derived sodium titanate/graphene composite with synergistic storage ability toward high performance sodium ion capacitors. Chemical Engineering Journal, 379, 122418.
  40. Maurya, D. K., Murugadoss, V., Guo, Z., & Angaiah, S. (2021). Designing Na2Zn2TeO6-Embedded 3D-Nanofibrous Poly (vinylidenefluoride)-co-hexafluoropropylene-Based Nanohybrid Electrolyte via Electrospinning for Durable Sodium-Ion Capacitors. ACS Applied Energy Materials, 4(8), 8475-8487.
  41. Peng, H., Han, S., Zhao, J., Klimova-Korsmik, O., Tolochko, O. V., & Wang, G. K. (2023). 2D Heterolayer-Structured MoSe2-Carbon with Fast Kinetics for Sodium-Ion Capacitors. Inorganic Chemistry.
  42. Qin, J., Sari, H. M. K., Wang, X., Yang, H., Zhang, J., & Li, X. (2020). Controlled design of metal oxide-based (Mn2+/Nb5+) anodes for superior sodium-ion hybrid supercapacitors: Synergistic mechanisms of hybrid ion storage. Nano Energy, 71, 104594.
  43. Que, L. F., Yu, F. D., He, K. W., Wang, Z. B., & Gu, D. M. (2017). Robust and conductive Na2Ti2O5–x nanowire arrays for high-performance flexible sodium-ion capacitor. Chemistry of Materials, 29(21), 9133-9141.
  44. Song, Y., Peng, Y., Li, H., Sun, X., Li, L., Zhang, C., & Yin, F. (2022). Mn3O4 Nanoparticles In Situ Embedded in TiO2 for High-Performance Na-ion capacitor: Balance between 3D Ordered Hierarchically Porous Structure and Heterostructured Interfaces. Chemical Engineering Journal, 137450.
  45. Su, H., Jaffer, S., & Yu, H. (2016). Transition metal oxides for sodium-ion batteries. Energy storage materials, 5, 116-131.
  46. Sun, C., Zhang, X., An, Y., Li, C., Wang, L., & Ma, Y. Low‐temperature carbonized nitrogen-doped hard carbon nanofiber towards high‐performance sodium‐ion capacitors. Energy & Environmental Materials, e12603.
  47. Thirumal, V., Sreekanth, T. V. M., Yoo, K., & Kim, J. (2023). Biomass-Derived Hard Carbon and Nitrogen-Sulfur Co-Doped Graphene for High-Performance Symmetric Sodium Ion Capacitor Devices. Energies, 16(2), 802.
  48. Tian, S., Qi, L., & Wang, H. (2016). A Na+-storage electrode material free of potential plateaus and its application in electrochemical capacitors. Solid State Ionics, 289, 194-198.
  49. Wang, G., Oswald, S., Löffler, M., Müllen, K., & Feng, X. (2019). Beyond Activated Carbon: Graphite‐Cathode‐Derived Li‐Ion Pseudocapacitors with High Energy and High Power Densities. Advanced Materials, 31(14), 1807712.
  50. Wang, M., Peng, A., Jiang, J., Zeng, M., Yang, Z., & Li, X. (2022). Heterointerface synergistic Na+ storage fundamental mechanism for CoSeO3 playing as anode for sodium ion batteries/capacitors. Chemical Engineering Journal, 433, 134567.
  51. Wang, S., Zhao, H., Lv, S., Jiang, H., Shao, Y., & Lei, Y. (2021). Insight into Nickel‐Cobalt Oxysulfide Nanowires as Advanced Anode for Sodium‐Ion Capacitors. Advanced Energy Materials, 11(18), 2100408.
  52. Xiang, J., Zhang, P., Lv, S., Ma, Y., Zhao, Q., & Qin, C. (2021). Spinel LiMn 2 O 4 nanoparticles fabricated by the flexible soft template/Pichini method as cathode materials for aqueous lithium-ion capacitors with high energy and power density. RSC advances, 11(25), 14891-14898.
  53. Yang, C., Lan, J. L., Liu, W. X., Liu, Y., Yu, Y. H., & Yang, X. P. (2017). High-performance Li-ion capacitor based on an activated carbon cathode and well-dispersed ultrafine TiO2 nanoparticles embedded in mesoporous carbon nanofibers anode. ACS Applied Materials & Interfaces, 9(22), 18710-18719.
  54. Yang, D., Zhao, Q., Huang, L., Xu, B., Kumar, N. A., & Zhao, X. S. (2018). Encapsulation of NiCo 2 O 4 in nitrogen-doped reduced graphene oxide for sodium ion capacitors. Journal of Materials Chemistry A, 6(29), 14146-14154.
  55. Yang, D., Zhao, Q., Huang, L., Xu, B., Kumar, N. A., & Zhao, X. S. (2018). Encapsulation of NiCo 2 O 4 in nitrogen-doped reduced graphene oxide for sodium ion capacitors. Journal of Materials Chemistry A, 6(29), 14146-14154.
  56. Yang, S., Jiang, J., He, W., Wu, L., Xu, Y., & Zhang, X. (2023). Nitrogen-doped carbon encapsulating Fe7Se8 anode with core-shell structure enables high-performance sodium-ion capacitors. Journal of Colloid and Interface Science, 630, 144-154.
  57. Yuan, C., Wu, H. B., Xie, Y., & Lou, X. W. (2014). Mixed transition‐metal oxides: design, synthesis, and energy‐related applications. Angewandte Chemie International Edition, 53(6), 1488-1504.
  58. Zhang, H., Hu, M., Lv, Q., Huang, Z. H., Kang, F., & Lv, R. (2020). Advanced Materials for Sodium‐Ion Capacitors with Superior Energy–Power Properties: Progress and Perspectives. Small, 16(15), 1902843.
  59. Zhang, H., Liu, B., Lu, Z., Hu, J., Xie, J., Hao, A., & Cao, Y. (2023). Sulfur‐Bridged Bonds Heightened Na‐Storage Properties in MnS Nanocubes Encapsulated by S‐Doped Carbon Matrix Synthesized via Solvent‐Free Tactics for High‐Performance Hybrid Sodium-Ion Capacitors. Small, 2207214.
  60. Zhang, T., Wang, R., He, B., Jin, J., Gong, Y., & Wang, H. (2021). Recent advances on pre-sodiation in sodium-ion capacitors: A mini review. Electrochemistry Communications, 129, 107090.
  61. Zhang, X., Chen, S., Cai, J., King, S., Liu, C., & Wang, G. (2023). Pre-strain accommodation enabled multi-dimensionally and hierarchically elastomeric MoSe2/MXene and AC/MXene electrodes for stretchable sodium-ion capacitors. Journal of Alloys and Compounds, 935, 168065.
  62. Zhang, Y., An, Y., Jiang, J., Dong, S., Wu, L., & Zhang, X. (2018). High Performance Aqueous Sodium‐Ion Capacitors Enabled by Pseudocapacitance of Layered MnO2. Energy Technology, 6(11), 2146-2153.
  63. Zhang, Y., Jiang, J., An, Y., Wu, L., Dou, H., & Guo, Z. (2020). Sodium‐ion capacitors: materials, mechanism, and challenges. ChemSusChem, 13(10), 2522-2539.
  64. Zhou, J., Yang, K., Kang, Q., Liu, C., Li, X., & Hou, W. (2023). Fast electrochemical redox kinetics of two-dimensional TiO2/Ti3C2Tx (MXene) heterostructure for high-performance lithium-ion capacitor. Journal of Electroanalytical Chemistry, 928, 117034.
  65. Zhu, J., Roscow, J., Chandrasekaran, S., Deng, L., Zhang, P., & Huang, L. (2020). Biomass‐derived carbons for sodium‐ion batteries and sodium‐ion capacitors. ChemSusChem, 13(6), 1275-1295.
  66. Zhu, Y. E., Yang, L., Sheng, J., Chen, Y., Gu, H., Wei, J., & Zhou, Z. (2017). Fast sodium storage in TiO2@ CNT@ C nanorods for high‐performance Na‐ion capacitors. Advanced Energy Materials, 7(22), 1701222.
  67. Zhu, Y. E., Yang, L., Sheng, J., Chen, Y., Gu, H., Wei, J., & Zhou, Z. (2017). Fast sodium storage in TiO2@ CNT@ C nanorods for high‐performance Na‐ion capacitors. Advanced Energy Materials, 7(22), 1701222.

How to Cite

Gupta, Y. ., Siwatch, P. ., Karwasra, R. ., Sharma, K. ., & Tripathi, S. . (2023). Transition Metal Oxides as the Electrode Material for Sodium-Ion Capacitors. Nanofabrication, 8.


852 36



Article Details

Most Read This Month


Copyright (c) 2023 Yamini Gupta, Poonam Siwatch, Reetika Karwasra, Kriti Sharma, S.K. Tripathi

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.