A perspective on nanocomposite coatings for advanced functional applications
Abstract
Functional coatings provide durability to the bulk material and add other value-added properties which enhance the surface's mechanical, electrical, optical, and many other properties. The functional response of these coatings stems from the ambiance, which can be made to sense in response to a sharp change in the temperature, pH, moisture, active ions, or mechanical stresses. Recently, many efforts have been made to impart multi-functionality within a single coating, i.e., to achieve hydrophobicity and antifouling characteristics, which can be achieved by combining an appropriate coating material with a geometric nanopattern. Such coatings are poised to shape the future of the transport, healthcare, and energy sectors, including marine, aeronautics, automobile, petrochemical, biomedical, electrical and electronic industries. This perspective sheds light on the design specifications and requirements to fabricate functional coatings and critically discusses the fabrication methods, working principles, and case studies to survey various applications with a particular focus on anti-corrosion and self-cleaning applications.
References
- Aal, A. A. J. M. S., & A, E. (2008). Hard and corrosion resistant nanocomposite coating for Al alloy. 474(1-2), 181-187.
- Abioye, O., Musa, A., Loto, C., Fayomi, O. I., & Gaiya, G. (2019). Evaluation of corrosive behavior of zinc composite coating on mild steel for marine applications. Paper presented at the Journal of Physics: Conference Series.
- Al Kiey, S. A., Hasanin, M. S., & Heakal, F. E.-T. (2022). Green and sustainable chitosan–gum Arabic nanocomposites as efficient anticorrosive coatings for mild steel in saline media. Scientific reports, 12(1), 1-16.
- Aliofkhazraei, M. J. H. o. S. C. f. M. P. (2014). Smart nanocoatings for corrosion detection and control. 198-223.
- Arai, S., Saito, T., & Endo, M. J. J. o. T. E. S. (2010). Cu–MWCNT composite films fabricated by electrodeposition. 157(3), D147.
- Baghery, P., Farzam, M., Mousavi, A., Hosseini, M. J. S., & Technology, C. (2010). Ni–TiO2 nanocomposite coating with high resistance to corrosion and wear. 204(23), 3804-3810.
- Bahrololoom, M., Sani, R. J. S., & Technology, C. (2005). The influence of pulse plating parameters on the hardness and wear resistance of nickel–alumina composite coatings. 192(2-3), 154-163.
- Boissiere, C., Grosso, D., Chaumonnot, A., Nicole, L., & Sanchez, C. J. A. M. (2011). Aerosol route to functional nanostructured inorganic and hybrid porous materials. 23(5), 599-623.
- Chen, H., Wang, F., Fan, H., Hong, R., & Li, W. J. C. E. J. (2021). Construction of MOF-based superhydrophobic composite coating with excellent abrasion resistance and durability for self-cleaning, corrosion resistance, anti-icing, and loading-increasing research. 408, 127343.
- De Souza, S. J. S., & Technology, C. (2007). Smart coating based on polyaniline acrylic blend for corrosion protection of different metals. 201(16-17), 7574-7581.
- Deyab, M., El Bali, B., Mohsen, Q., & Essehli, R. (2021). Design new epoxy nanocomposite coatings based on metal vanadium oxy-phosphate M0. 5VOPO4 for anti-corrosion applications. Scientific reports, 11(1), 1-8.
- Faisal, N. H., Ahmed, R., Sellami, N., Prathuru, A., Njuguna, J., Venturi, F., . . . Goel, S. (2022). Thermal spray coatings for electromagnetic wave absorption and interference shielding: a review and future challenges. Advanced engineering materials, 2200171.
- Farzam, M., Beitollahpoor, M., Solomon, S. E., Ashbaugh, H. S., & Pesika, N. S. J. B. (2022). Advances in the Fabrication and Characterization of Superhydrophobic Surfaces Inspired by the Lotus Leaf. 7(4), 196.
- Fürstner, R., Barthlott, W., Neinhuis, C., & Walzel, P. J. L. (2005). Wetting and self-cleaning properties of artificial superhydrophobic surfaces. 21(3), 956-961.
- He, X., & Shi, X. J. P. i. O. C. (2009). Self-repairing coating for corrosion protection of aluminum alloys. 65(1), 37-43.
- Kar, P. J. N.-B. C. (2019). Anticorrosion and antiwear. 195-236.
- Kendig, M., Hon, M., & Warren, L. J. P. i. O. C. (2003). ‘Smart’corrosion inhibiting coatings. 47(3-4), 183-189.
- Khaleque, T., & Goel, S. (2022). Repurposing superhydrophobic surfaces into icephobic surfaces. Materials Today: Proceedings.
- Khaleque, T., & Goel, S. J. M. T. P. (2022). Repurposing superhydrophobic surfaces into icephobic surfaces.
- Kirchgeorg, T., Weinberg, I., Hörnig, M., Baier, R., Schmid, M., & Brockmeyer, B. (2018). Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment. Marine pollution bulletin, 136, 257-268.
- Kirthika, S., Goel, G., Matthews, A., & Goel, S. Review of the untapped potentials of antimicrobial materials in the construction sector (in press).
- Montañez, N. D., Carreño, H., Escobar, P., Estupiñán, H. A., Peña, D. Y., Goel, S., & Endrino, J. L. (2020). Functional evaluation and testing of a newly developed Teleost’s Fish Otolith derived biocomposite coating for healthcare. Scientific reports, 10(1), 1-16.
- Muratore, C., Clarke, D. R., Jones, J. G., & Voevodin, A. A. J. W. (2008). Smart tribological coatings with wear sensing capability. 265(5-6), 913-920.
- Nazari, M. H., Zhang, Y., Mahmoodi, A., Xu, G., Yu, J., Wu, J., & Shi, X. J. P. i. O. C. (2022). Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances. 162, 106573.
- Olajire, A. A. J. J. o. M. L. (2018). Recent advances on organic coating system technologies for corrosion protection of offshore metallic structures. 269, 572-606.
- Perrin, F., Ziarelli, F., & Dupuis, A. J. P. i. O. C. (2020). Relation between the corrosion resistance and the chemical structure of hybrid sol-gel coatings with interlinked inorganic-organic network. 141, 105532.
- Quan, Y.-Y., Zhang, L.-Z. J. S. E. M., & Cells, S. (2017). Experimental investigation of the anti-dust effect of transparent hydrophobic coatings applied for solar cell covering glass. 160, 382-389.
- Rajiv, E., Iyer, A., Seshadri, S. J. M. c., & physics. (1995). Corrosion characteristics of cobalt-silicon nitride electro composites in various corrosive environments. 40(3), 189-196.
- Santo, L., Davim, J. J. M., & engineering, s. (2012). Nanocomposite coatings: A review. 97-120.
- Shi, X., Nguyen, T. A., Suo, Z., Liu, Y., Avci, R. J. S., & Technology, C. (2009). Effect of nanoparticles on the anti-corrosion and mechanical properties of epoxy coating. 204(3), 237-245.
- Teijido, R., Ruiz-Rubio, L., Echaide, A. G., Vilas-Vilela, J. L., Lanceros-Mendez, S., & Zhang, Q. (2022). State of the art and current trends on layered inorganic-polymer nanocomposite coatings for anti-corrosion and multi-functional applications. Progress in Organic Coatings, 163, 106684.
- Thiemig, D., Lange, R., & Bund, A. J. E. A. (2007). Influence of pulse plating parameters on the electrocodeposition of matrix metal nanocomposites. 52(25), 7362-7371.
- Uhlmann, P., Ionov, L., Houbenov, N., Nitschke, M., Grundke, K., Motornov, M., . . . Stamm, M. J. P. i. O. C. (2006). Surface functionalization by smart coatings: Stimuli-responsive binary polymer brushes. 55(2), 168-174.
- Valdez, B., Ramirez, J., Eliezer, A., Schorr, M., Ramos, R., & Salinas, R. (2016). Corrosion assessment of infrastructure assets in coastal seas. Journal of Marine Engineering & Technology, 15(3), 124-134.
- Verma, J., Baghel, V., Sikarwar, B. S., Bhattacharya, A., & Avasthi, D. (2019). Development of Hydrophobic Coating with Polymer–Metal Oxide Nano-composites Advances in Industrial and Production Engineering (pp. 117-126): Springer.
- Verma, J., & Bhattacharya, A. (2018a). Analysis on synthesis of silica nanoparticles and its effect on growth of T. Harzianum & Rhizoctonia species. Biomedical Journal of Scientific & Technical Research, 10(4), 7890-7897.
- Verma, J., & Bhattacharya, A. (2018b). Development of coating formulation with silica–titania core–shell nanoparticles against pathogenic fungus. Royal Society Open Science, 5(8), 180633.
- Verma, J., Gupta, A., & Kumar, D. (2022). Steel protection by SiO2/TiO2 core-shell based hybrid nanocoating. Progress in Organic Coatings, 163, 106661.
- Verma, J., Khanna, A., & Bhattacharya, A. (2021). Anti-algal study on polymeric coating containing metal@ metal oxide core-shell nanoparticles developed through organic synthesis for marine paint applications. Advances in Organic Synthesis: Volume 15, 5, 98.
- Verma, J., Khanna, A., Sahney, R., & Bhattacharya, A. (2020). Super protective anti-bacterial coating development with silica–titania nano core–shells. Nanoscale Advances, 2(9), 4093-4105.
- Verma, J., Kumar, D., & Sikarwar, B. (2022). Fabrication of highly efficient nano core–shell structure for the development of super-hydrophobic polymeric coating on mild steel. Polymers and Polymer Composites, 30, 09673911221087835.
- Verma, J., Nigam, S., Sinha, S., & Bhattacharya, A. (2018). Comparative studies on poly-acrylic based anti-algal coating formulation with SiO2@ TiO2 core-shell nanoparticles. Asian Journal of Chemistry, 30(5), 1120-1124.
- Verma, J., Nigam, S., Sinha, S., & Bhattacharya, A. (2018). Development of polyurethane based anti-scratch and anti-algal coating formulation with silica-titania core-shell nanoparticles. Vacuum, 153, 24-34.
- Verma, J., Nigam, S., Sinha, S., Sikarwar, B., & Bhattacharya, A. (2017). Irradiation effect of low-energy ion on polyurethane nanocoating containing metal oxide nanoparticles. Radiation Effects and Defects in Solids, 172(11-12), 964-974.
- Viswanathan, V., Katiyar, N. K., Goel, G., Matthews, A., & Goel, S. (2021). Role of thermal spray in combating climate change. Emergent Materials, 1-15.
- Zheludkevich, M. L., Shchukin, D. G., Yasakau, K. A., Möhwald, H., & Ferreira, M. G. J. C. o. M. (2007). Anti-corrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. 19(3), 402-411.
How to Cite
How to Cite
Search Panel
Article Details
Most Read This Month
License
Copyright (c) 2023 Jaya Verma, Saurav Goel
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.