Skip to main content Skip to main navigation menu Skip to site footer

Bio-based semi-interpenetrating networks with nanoscale morphology and interconnected microporous structure

  • Samy Madboul

Abstract

Creating new bio-based sustainable polymeric materials with similar or better performance than the petroleum-based counterparts  has recently received considerable attention. It will have a significant positive impact on the environment and the sustainable polymer industry. This review article shows a relatively new method based on simultaneous in-situ polymerization and compatibilization of bio-based plant oil and biodegradable thermoplastic polymer to prepare semi-interpenetrating polymer networks (SINs) with unusual nano-scale morphology and interconnected porous structure will be summarized. The SINs were synthesized via cationic polymerization of tung oil in a homogenous solution of poly(ε-caprolactone) as a biodegradable, semi-crystalline, and biocompatible thermoplastic polymer. The degrees of miscibility, nanostructure morphology, and crystallinity was found to be composition-dependent. This relatively new blending method created  a two-phase nanoscale morphology as small as 100 nm for blends with PCL contents of 20 and 30 wt.%. For higher PCL contents (e.g., 50 wt.% PCL blend), a co-continuous, interconnected microscale two-phase morphology was detected. The microporous structure of the SINs was also changed as a function of composition. For example, the interconnectivity and pore size was considerably decreased with increasing PCL content. Furthermore, a considerable decrease in the crystallization kinetics of PCL was observed as the PCL content is higher than or equal to 30 wt.%. While on the other hand, the crystallization kinetics accelerated significantly for 50 wt.%. This novel, low-cost strategy for preparing bio-based SINs with nanoscale morphology and interconnected three-dimensional cluster structures and desired properties should be widely used for creating new polymer systems.

Section

References

  1. Abdelrazek, E. M., Hezma, A. M., El-Khodary, A., & Elzayat, A. M. (2016). Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egyptian Journal of basic and applied sciences, 3(1), 10-15.
  2. Ahmed, S. T., Leferink, N. G., & Scrutton, N. S. (2019). Chemo-enzymatic routes towards the synthesis of bio-based monomers and polymers. Molecular Catalysis, 467, 95-110.
  3. Alfonso, G. C., & Russell, T. P. (1986). Kinetics of crystallization in semicrystalline/amorphous polymer mixtures. Macromolecules, 19(4), 1143-1152.
  4. Arvin, Z. Y., Rahimi, A., & Webster, D. C. (2018). High performance bio-based thermosets from dimethacrylated epoxidized sucrose soyate (DMESS). European Polymer Journal, 99, 202-211.
  5. Baghban, S. A., Ebrahimi, M., Khorasani, M., & Bagheri-Khoulenjani, S. (2021). Design of different self-stratifying patterns in a VOC-free light-curable coating containing bio-renewable materials: Study on formulation and processing conditions. Progress in Organic Coatings, 161, 106519.
  6. Biswas, E., Silva, J. A. C., Khan, M., & Quirino, R. L. (2022). Synthesis and Properties of Bio-Based Composites from Vegetable Oils and Starch. Coatings, 12(8), 1119.
  7. Björnerbäck, F., & Hedin, N. (2018). Microporous humins prepared from sugars and bio-based polymers in concentrated sulfuric acid. ACS Sustainable Chemistry & Engineering, 7(1), 1018-1027.
  8. Braña, M. C., & Gedde, U. W. (1992). Morphology of binary blends of linear and branched polyethylene: composition and crystallization-temperature dependence. Polymer, 33(15), 3123-3136.
  9. Chen, N., Lin, Q., Zheng, P., Rao, J., Zeng, Q., & Sun, J. (2019). A sustainable bio-based adhesive derived from defatted soy flour and epichlorohydrin. Wood Science and Technology, 53(4), 801-817.
  10. De Haro, J. C., Allegretti, C., Smit, A. T., Turri, S., D’Arrigo, P., & Griffini, G. (2019). Biobased polyurethane coatings with high biomass content: tailored properties by lignin selection. ACS Sustainable Chemistry & Engineering, 7(13), 11700-11711.
  11. De Santis, F., & Pantani, R. (2013). Nucleation density and growth rate of polypropylene measured by calorimetric experiments. Journal of thermal analysis and calorimetry, 112(3), 1481-1488.
  12. Fan, J., Abedi-Dorcheh, K., Sadat Vaziri, A., Kazemi-Aghdam, F., Rafieyan, S., Sohrabinejad, M., ... & Jahed, V. (2022). A Review of Recent Advances in Natural Polymer-Based Scaffolds for Musculoskeletal Tissue Engineering. Polymers, 14(10), 2097.
  13. Gandini, A., & M. Lacerda, T. (2021). Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives. Molecules, 27(1), 159.
  14. Gómez, C., Inciarte, H., Orozco, L. M., Cardona, S., Villada, Y., & Rios, L. (2022). Interesterification and blending with Sacha Inchi oil as strategies to improve the drying properties of Castor Oil. Progress in Organic Coatings, 162, 106572.
  15. Gupta, A., & Choudhary, V. (2013). Isothermal crystallization kinetics of poly (trimethylene terephthalate)/multiwall carbon nanotubes composites. Journal of thermal analysis and calorimetry, 114(2), 643-651.
  16. Han, J., Chen, T. X., Branford-White, C. J., & Zhu, L. M. (2009). Electrospun shikonin-loaded PCL/PTMC composite fiber mats with potential biomedical applications. International journal of pharmaceutics, 382(1-2), 215-221.
  17. Han, X., Chen, L., Yanilmaz, M., Lu, X., Yang, K., Hu, K., ... & Zhang, X. (2023). From Nature, Requite to Nature: Bio-based Cellulose and Its Derivatives for Construction of Green Zinc Batteries. Chemical Engineering Journal, 454(3), 140311.
  18. Hirotsu, T., Ketelaars, A. A. J., & Nakayama, K. (2000). Biodegradation of poly (ε-caprolactone)–polycarbonate blend sheets. Polymer Degradation and Stability, 68(3), 311-316.
  19. Kempanichkul, A., Piroonpan, T., Kongkaoropham, P., Wongkrongsak, S., Katemake, P., & Pasanphan, W. (2022). Electron beam-cured linseed oil-Diacrylate blends as a green alternative to overprint varnishes: Monitoring curing efficiency and surface coating properties. Radiation Physics and Chemistry, 199, 110350.
  20. Kim, H., Choi, S. H., Ryu, J. J., Koh, S. Y., Park, J. H., & Lee, I. S. (2008). The biocompatibility of SLA-treated titanium implants. Biomedical Materials, 3(2), 025011.
  21. Kolmogorov, A. N. (1937). On the statistical theory of the crystallization of metals. Bull. Acad. Sci. USSR, Math. Ser. 1(3):355-359.
  22. Kumar, S., Abdellah, M. H., Alammar, A., & Szekely, G. (2022). Biorenewable Nanocomposite Materials in Membrane Separations. In Biorenewable Nanocomposite Materials, Vol. 2: Desalination and Wastewater Remediation (pp. 189-235). American Chemical Society.
  23. Li, F., & Larock, R. C. (2000). Thermosetting polymers from cationic copolymerization of tung oil: Synthesis and characterization. Journal of Applied Polymer Science, 78(5), 1044-1056.
  24. Liu, M., Lyu, S., Peng, L., Lyu, J., & Huang, Z. (2021). Radiata pine fretboard material of string instruments treated with furfuryl alcohol followed by tung oil. Holzforschung, 75(5), 480-493.
  25. Lu, H., Madbouly, S. A., Schrader, J. A., Kessler, M. R., Grewell, D., & Graves, W. R. (2014). Novel bio-based composites of polyhydroxyalkanoate (PHA)/distillers dried grains with solubles (DDGS). RSC advances, 4(75), 39802-39808.
  26. Madbouly, S. A., & Ougizawa, T. (2003). Rheological investigation of shear-induced crystallization of poly (ϵ-caprolactone). Journal of Macromolecular Science, Part B, 42(2), 269-281.
  27. Madbouly, S. A., & Ougizawa, T. (2004). Isothermal Crystallization of Poly (ε‐caprolactone) in Blend with Poly (styrene‐co‐acrylonitrile): Influence of Phase Separation Process. Macromolecular Chemistry and Physics, 205(14), 1923-1931.
  28. Madbouly, S. A., Abdou, N. Y., & Mansour, A. A. (2006). Isothermal crystallization kinetics of poly (ε‐caprolactone) with tetramethyl polycarbonate and poly (styrene‐co‐acrylonitrile) blends using broadband dielectric spectroscopy. Macromolecular Chemistry and Physics, 207(11), 978-986.
  29. Madbouly, S. A., Otaigbe, J. U., & Ougizawa, T. (2006). Morphology and properties of novel blends prepared from simultaneous in situ polymerization and compatibilization of macrocyclic carbonates and maleated poly (propylene). Macromolecular Chemistry and Physics, 207(14), 1233-1243.
  30. Madbouly, S. A. (2007). Isothermal crystallization kinetics in binary miscible blend of poly (ε‐caprolactone)/tetramethyl polycarbonate. Journal of applied polymer science, 103(5), 3307-3315.
  31. Madbouly, S. A., Liu, K., Xia, Y., & Kessler, M. R. (2014). Semi-interpenetrating polymer networks prepared from in situ cationic polymerization of bio-based tung oil with biodegradable polycaprolactone. RSC Advances, 4(13), 6710-6718.
  32. Madbouly, S. A. (2020). Nano/micro-scale morphologies of semi-interpenetrating poly (ε− caprolactone)/tung oil polymer networks: Isothermal and non− isothermal crystallization kinetics. Polymer Testing, 89, 106586.
  33. Madbouly, S. A., & Kessler, M. R. (2020). Preparation of nanoscale semi-IPNs with an interconnected microporous structure via cationic polymerization of bio-based tung oil in a homogeneous solution of poly (ε-caprolactone). ACS omega, 5(17), 9977-9984.
  34. Madbouly, S. A. (2022). Bio-based castor oil and lignin sulphonate: aqueous dispersions and shape-memory films. Biomaterials and Polymers Horizon, 1(2).
  35. Mishra, K., Devi, N., Siwal, S. S., Zhang, Q., Alsanie, W. F., Scarpa, F., & Thakur, V. K. (2022). Ionic Liquid‐Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. Advanced Science, 9(26), 2202187.
  36. Murawski, A., Diaz, R., Inglesby, S., Delabar, K., & Quirino, R. L. (2019). Synthesis of bio-based polymer composites: fabrication, fillers, properties, and challenges. In Polymer nanocomposites in biomedical engineering (pp. 29-55). Springer, Cham.
  37. Omonov, T. S., Patel, V. R., & Curtis, J. M. (2022). Biobased Thermosets from Epoxidized Linseed Oil and Its Methyl Esters. ACS Applied Polymer Materials, 4(9), 6531-6542.
  38. Pfister, D. P., Baker, J. R., Henna, P. H., Lu, Y., & Larock, R. C. (2008). Preparation and properties of tung oil‐based composites using spent germ as a natural filler. Journal of applied polymer science, 108(6), 3618-3625.
  39. Sher, F., Ilyas, M., Ilyas, M., Liaqat, U., Lima, E. C., Sillanpää, M., & Klemeš, J. J. (2022). Biorenewable Nanocomposites as Robust Materials for Energy Storage Applications. In Biorenewable Nanocomposite Materials, Vol. 1: Electrocatalysts and Energy Storage (pp. 197-224). American Chemical Society.
  40. Takayama, T., & Todo, M. (2006). Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition. Journal of materials science, 41(15), 4989-4992.
  41. Thomas, J., & Soucek, M. D. (2022). Cationic Copolymers of Norbornylized Seed Oils for Fiber-Reinforced Composite Applications. ACS omega, 7(38), 33949-33962.
  42. Tokiwa, Y., Calabia, B. P., Ugwu, C. U., & Aiba, S. (2009). Biodegradability of plastics. International journal of molecular sciences, 10(9), 3722-3742.
  43. Vanneste, M., & Groeninckx, G. (1995). Ternary blends of PCL, SAN15 and SMA14: miscibility, crystallization and melting behaviour, and semicrystalline morphology. Polymer, 36(22), 4253-4261.
  44. Winnacker, M. (2018). Pinenes: Abundant and renewable building blocks for a variety of sustainable polymers. Angewandte Chemie International Edition, 57(44), 14362-14371.
  45. Wu, S., Shi, W., Li, K., Cai, J., & Chen, L. (2022). Recent advances on sustainable bio-based materials for water treatment: fabrication, modification and application. Journal of Environmental Chemical Engineering, 10(6), 108921.
  46. Xia, Y., & Larock, R. C. (2010). Castor oil-based thermosets with varied crosslink densities prepared by ring-opening metathesis polymerization (ROMP). Polymer, 51(12), 2508-2514.
  47. Yang, W., Ding, H., Puglia, D., Kenny, J. M., Liu, T., Guo, J., ... & Lemstra, P. J. (2022). Bio‐renewable polymers based on lignin‐derived phenol monomers: Synthesis, applications, and perspectives. SusMat.
  48. Yan, Y., Wu, J., Wang, Y., Fang, X., Wang, Z., Yang, G., & Hua, Z. (2021). Strong and UV-Responsive Plant Oil-Based Ethanol Aqueous Adhesives Fabricated Via Surfactant-free RAFT-Mediated Emulsion Polymerization. ACS Sustainable Chemistry & Engineering, 9(40), 13695-13702.
  49. Zhang, C., Xue, J., Yang, X., Ke, Y., Ou, R., Wang, Y., & Wang, Q. (2022). From plant phenols to novel bio-based polymers. Progress in Polymer Science, 125, 101473.

How to Cite

Bio-based semi-interpenetrating networks with nanoscale morphology and interconnected microporous structure. (2022). Nanofabrication, 7, 154-164. https://doi.org/10.37819/nanofab.007.255

How to Cite

Bio-based semi-interpenetrating networks with nanoscale morphology and interconnected microporous structure. (2022). Nanofabrication, 7, 154-164. https://doi.org/10.37819/nanofab.007.255

HTML
216

Total
153

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2022 Samy Madboul

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.