Investigation of Physicochemical Properties Properties and Specific Heat Capacity of Tio2 Doped- Polydimethylsiloxane Composites
Abstract
In this study, a series TiO2-doped–polydimethylsiloxane composite (PDMS-TiO2) were synthesized at constant amount of PDMS and different amount of TiO2 particles. For this purpose, TiO2 structures were synthesized by the hydrothermal method. Morphology and chemical structure of the obtained TiO2 particles were investigated by scanning electron microscope (SEM), Energy Dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques. Prepared particles were directly dispersed in PDMS wax with melted. The obtained composite structures were examined structurally by SEM, FTIR, and XRD spectroscopy techniques. The intense peaks at 13° and 16.5° visible in the XRD spectrum confirm the desired composite structure. For the pure PDMS structure, 0,523 and 1,740 KeV was observed for O2 and Si in the EDX spectrum. Peaks at 0.452 (Ka) and 4.510 KeV (Kβ) were observed for the composite structures. Then, the thermal properties of the composite structures obtained were investigated by DSC analysis. The study of the specific heat capacity of obtained products is attained by using a DSC. Depending on the amount of doped TiO2 particles, the specific heat capacity value increased significantly in PDMS-TiO2 composite structures. Specific heat capacity study' of TiO2- polydimethylsiloxane composites is original and opened a new area about PDMS.
References
- Abel, S., Jule, L. T., Belay, F., Shanmugam, R., Priyanka Dwarampudi, L., Nagaprasad, N., & Krishnaraj, R. (2021). Application of Titanium Dioxide Nanoparticles Synthesized by Sol-Gel Methods in Wastewater Treatment. Journal of Nanomaterials. https://doi.org/10.1155/2021/3039761
- Abtahi-naeini, B, Faghihi, G, Shahmoradi, Z., & Saffaei, A. (2018). Filler migration and extensive lesions after lip augmentation: Adverse effects of polydimethylsiloxane filler. J Cosmet Dermatol., 17, 996– 999. https://doi.org/10.1111/jocd.12476
- Bergeron, V., Cooper, P., Fischer, C., Giermanska-Kahn, J., Langevin, D. & Pouchelon, A. (1997). Polydimethylsiloxane (PDMS)-based antifoams. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 122(1–3), 103-120. https://doi.org/10.1016/S0927-7757(96)03774-0.
- Camino, G., Lomakin, S.M., & Lazzari, M. (2001). Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer, 42 (6), 2395-2402. https://doi.org/10.1016/S0032-3861(00)00652-2.
- Colas, A., Curtis, J. (2013). “Silicones” in Biomaterials Science (Third Edition), https://www.sciencedirect.com/topics/engineering/caulk
- Çeşmeli, S., & Avci, C.B. (2018). Application of Titanium Dioxide (TiO2) Nanoparticles in Cancer Therapies, Journal of Drug Targeting, DOI: 10.1080/1061186X.2018.1527338
- Dahl, M., Liu, Y., & Yin, Y. (2014). Composite Titanium Dioxide Nanomaterials. Chem. Rev., 114(19), 9853–9889. https://doi.org/10.1021/cr400634p
- Dar, G.I., Saeed, M., & Wu, A. (2020). Toxicity of TiO2 Nanoparticles, In TiO2 Nanoparticles (eds A. Wu and W. Ren). https://doi.org/10.1002/9783527825431.ch2
- Deborah, M. (2019). DIY MEMS: Fabricating Microelectromechanical Systems in Open Use Labs Springer
- Fujishima, A., N. Rao, T., & Tryk, D.A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21. https://doi.org/10.1016/S1389-5567(00)00002-2.
- He, D., Cheng, G., Tang, L., Chen, L., Li, S., Gu, P., & Zhao, Y. (2018). Research on adhesive properties of polydimethylsiloxane-carbon fiber composite material. International Journal of Adhesion and Adhesives, 86, 35-39. https://doi.org/10.1016/j.ijadhadh.2018.08.004.
- Howarter, J. A., & Youngblood, J. P. (2008). Self-Cleaning and Next Generation Anti-Fog Surfaces and Coatings. Macromol. Rapid Commun., 29, 455–466. DOI: 10.1002/marc.200700733
- Hwang, D.-K., Misra, M., Myoung, J.-M., & Il Lee, T. (2019). Low-molecular weight polydimethylsiloxane, a versatile performance enhancer for the solution processed indium tin oxide transparent electrode. Applied Surface Science, 144308. doi:10.1016/j.apsusc.2019.144308
- Kumar, K., Ghosh, P.K. & Kumar, A. (2016). Improving mechanical and thermal properties of TiO2-epoxy nanocomposite, Composites Part B: Engineering, 97, 353-360.
- https://doi.org/10.1016/j.compositesb.2016.04.080.
- Lam, S.W., Gan, W.Y., Chiang, K., & Amal, R. (2008). TiO2 Semiconductor –A Smart Self-Cleaning Material, Journal of the Australian Ceramic Society Volume 44(2), 6-11.
- Lee, M.S., Lee, G-D., Ju, C-S., & Hong, S-S. (2005). Preparations of nanosized TiO2 in reverse microemulsion and their photocatalytic activity. Solar Energy Materials and Solar Cells, 88(4), 389-401. https://doi.org/10.1016/j.solmat.2004.11.010
- Li, J-F., Xu, Z-L., Yang, H., Yu, L-Y., & Liu, M. (2009). Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Applied Surface Science, 255(9), 4725-4732. https://doi.org/10.1016/j.apsusc.2008.07.139.
- Manoj Karkare, M. (2014). Estimation of Band Gap and Particle size of TiO2 nanoparticle synthesized using Sol gel technique, International Conference on Advances in Communication and Computing Technologies.
- Ounoughene, G., Chivas-Joly, C., Longuet, C., Bihan, O. Le, Lopez-Cuesta, J-M. & Le Coq, L. (2019). Evaluation of nanosilica emission in polydimethylsiloxane composite during incineration. Journal of Hazardous Materials, 371, 415-422. https://doi.org/10.1016/j.jhazmat.2019.03.026.
- Rompelberg, C., Heringa, M. B., van Donkersgoed, G., Drijvers, J., Roos, A., Westenbrink, S., …& Oomen, A. G. (2016). Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population. Nanotoxicology, 10(10), 1404–1414. https://doi.org/10.1080/17435390.2016.1222457
- Siddiqui, H. (2019). Modification of Physical and Chemical Properties of Titanium Dioxide (TiO2) by Ion Implantation for Dye Sensitized Solar Cells. In I. Ahmad, & T. Zhao (Eds.), Ion Beam Techniques and Applications. IntechOpen. https://doi.org/10.5772/intechopen.83566
- Shojaee, E., & Mohammadizadeh, M. R. (2009). First-principles elastic and thermal properties of TiO2: a phonon approach. Journal of Physics: Condensed Matter 1(22), 15401. https://doi.org/10.1088/0953-8984/22/1/015401
- Sun, Z., Wen, J., Wang, W., Fan, H., Chen, Y., Yan, J., & Xianga, J. (2020). Polyurethane covalently modified polydimethylsiloxane (PDMS) coating with increased surface energy and re-coatability. Progress in Organic Coatings, 146, 105744,https://doi.org/10.1016/j.porgcoat.2020.105744.
- Tottey, L.S., Coulson, S.A., Wevers, G.E., Fabian, L., McClelland, H. and Dustin, M. (2019), Persistence of Polydimethylsiloxane Condom Lubricants. J Forensic Sci, 64: 207-217. https://doi.org/10.1111/1556-4029.13816
- Wei, Z., Li, J., Wang, C., Cao, J., Yao, Y., Lu, H., ….& He, X. (2017). Thermally stable hydrophobicity in electrospun silica/polydimethylsiloxane hybrid fibers, Applied Surface Science, 392, 260-267, https://doi.org/10.1016/j.apsusc.2016.09.057.
- Wolf, M.P., Salieb-Beugelaar, G.B., & Hunziker, P. (2018). PDMS with designer functionalities-Properties, modifications strategies, and applications. Progress in Polymer Science, 83, 97-134. https://doi.org/10.1016/j.progpolymsci.2018.06.001
- Xu, J., Zhang, G., Wu, C., Liu, W., Zhang, T., Huang, Y., & Rong, Y. (2022). Micro-Swelling and penetration assisted laser Processing: A doping and laser processing method for polydimethylsiloxane films based on swelling and penetration behaviour. Optics & Laser Technology, (152), 108097. https://doi.org/10.1016/j.optlastec.2022.108097.
- Wu, X. (2021). Applications of Titanium Dioxide Materials. In (Ed.), Titanium Dioxide - Advances and Applications. IntechOpen. https://doi.org/10.5772/intechopen.99255
- Xuan, J., Wang, H., Ma, X., Hou, C. & Ma, G. (2017). Progress in polydimethylsiloxane-modified waterborne polyurethanes. RSC Adv, 7(54), 34086 – 34095. https://doi.org/10.1039/C7RA05738E
- Yang, J., Gao, Y., Li, J., Ding, M., Chen, F., Tan, H. & Fu, Q. (2013). Synthesis and microphase separated structures of polydimethylsiloxane/polycarbonate-based polyurethanes. RSC Adv, 3(22), 8291-8297. https://doi.org/10.1039/C3RA40515J
How to Cite
How to Cite
Search Panel
Article Details
Most Read This Month
License
Copyright (c) 2022 Fatma Bilge EMRE
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.