Skip to main content Skip to main navigation menu Skip to site footer

Investigation of Ag doping and ligand engineering on green synthesized CdS quantum dots for tuning their optical properties

  • Narendra Singh
  • Shivam Prajapati
  • Prateek
  • Raju Kumar Gupta

Abstract

We present a green route for the colloidal synthesis of undoped and silver (Ag) doped cadmium sulfide (CdS) quantum dots (QDs). We have used olive oil as the reaction medium, which acted as a source of oleic acid (OA) ligand in the green synthesis of CdS QDs. With the increase in OA concentration, the dispersibility of CdS QDs improved. The water-dispersible CdS QDs were prepared via exchanging OA’s associated ligand with 3-mercaptopropionic acid (MPA). The MPA-capped CdS QDs showed the disappearance of the S-H peak as characterized via FTIR. The crystal and optical properties of Ag-doped CdS QDs were investigated, and the spectral red shift in the absorption spectra was observed. The CdS QDs with low Ag doping concentration increased the lifetime of excitons, but the average lifetime was suppressed at a higher concentration. We also discussed the variation in the properties of the CdS QDs through ligand
engineering and Ag doping. These doped and undoped QDs have the potential for applications in photocatalysis, water splitting, solar cells, etc. In addition, water dispersible QDs can be helpful for bioimaging, and drug delivery applications

Section

References

  1. Makvandi P, Ashrafizadeh M, Ghomi M, Najafi M, Hossein HHS, Zarrabi A, Mattoli V, Varma RS. Injectable hyaluronic acid-based antibacterial hydrogel adorned with biogenically synthesized AgNPs-decorated multi-walled carbon nanotubes. Prog Biomater. 2021;10(1):77-89.
  2. Xiang X, Zhu B, Cheng B, Yu J, Lv H. Enhanced photocatalytic H2-production activity of CdS quantum dots using Sn2+ as cocatalyst under visible light irradiation. Small. 2020;16(26):2001024.
  3. Duan L, Hu L, Guan X, Lin C-H, Chu D, Huang S, Liu X, Yuan J, Wu T. Quantum dots for photovoltaics: A tale of two materials. Adv Energy Mater. 2021;11(20):2100354.
  4. Bezinge L, Suea-Ngam A, deMello AJ, Shih C-J. Nanomaterials for molecular signal amplification in electrochemical nucleic acid biosensing: Recent advances and future prospects for point-of-care diagnostics. Mol Syst Des Eng. 2020;5(1):49-66.
  5. Wang S, Yu J, Zhao P, Li J, Han S. Preparation and mechanism investigation of CdS quantum dots applied for copper ion rapid detection. J Alloys Compd. 2021;854(157195.
  6. Sonker RK, Shastri R, Johari R. Superficial synthesis of CdS quantum dots for an efficient perovskite-sensitized solar cell. Energy Fuels. 2021;35(9):8430-8435.
  7. Ren H-H, Fan Y, Wang B, Yu L-P. Polyethylenimine-capped CdS quantum dots for sensitive and selective detection of nitrite in vegetables and water. J Agric Food Chem. 2018;66(33):8851-8858.
  8. Wang F, Tang R, Kao JLF, Dingman SD, Buhro WE. Spectroscopic identification of tri-n-octylphosphine oxide (TOPO) impurities and elucidation of their roles in cadmium selenide quantum-wire growth. J Am Chem Soc. 2009;131(13):4983-4994.
  9. Shivaji K, Mani S, Ponmurugan P, De Castro CS, Lloyd Davies M, Balasubramanian MG, Pitchaimuthu S. Green-synthesis-derived CdS quantum dots using tea leaf extract: Antimicrobial, bioimaging, and therapeutic applications in lung cancer cells. ACS Appl Nano Mater. 2018;1(4):1683-1693.
  10. Moradi Alvand Z, Rajabi HR, Mirzaei A, Masoumiasl A, Sadatfaraji H. Rapid and green synthesis of cadmium telluride quantum dots with low toxicity based on a plant-mediated approach after microwave and ultrasonic assisted extraction: Synthesis, characterization, biological potentials and comparison study. Mater Sci Eng, C. 2019;98(535-544.
  11. Makvandi P, Baghbantaraghdari Z, Zhou W, Zhang Y, Manchanda R, Agarwal T, Wu A, Maiti TK, Varma RS, Smith BR. Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy. Biotechnol Adv. 2021;48(107711.
  12. Makvandi P, Ghomi M, Padil VVT, Shalchy F, Ashrafizadeh M, Askarinejad S, Pourreza N, Zarrabi A, Nazarzadeh Zare E, Kooti M, Mokhtari B, Borzacchiello A, Tay FR. Biofabricated nanostructures and their composites in regenerative medicine. ACS Appl Nano Mater. 2020;3(7):6210-6238.
  13. Pu Y, Cai F, Wang D, Wang J-X, Chen J-F. Colloidal synthesis of semiconductor quantum dots toward large-scale production: A review. Ind Eng Chem Res. 2018;57(6):1790-1802.
  14. Jouyandeh M, Mousavi Khadem SS, Habibzadeh S, Esmaeili A, Abida O, Vatanpour V, Rabiee N, Bagherzadeh M, Iravani S, Reza Saeb M, Varma RS. Quantum dots for photocatalysis: Synthesis and environmental applications. Green Chem. 2021;23(14):4931-4954.
  15. Bel Haj Mohamed N, Ben Brahim N, Mrad R, Haouari M, Ben Chaâbane R, Negrerie M. Use of MPA-capped CdS quantum dots for sensitive detection and quantification of Co2+ ions in aqueous solution. Anal Chim Acta. 2018;1028(50-58.
  16. Veerathangam K, Pandian MS, Ramasamy P. Size-dependent photovoltaic performance of cadmium sulfide (CdS) quantum dots for solar cell applications. J Alloys Compd. 2018;735(202-208.
  17. Singh N, Mondal K, Misra M, Sharma A, Gupta RK. Quantum dot sensitized electrospun mesoporous titanium dioxide hollow nanofibers for photocatalytic applications. RSC Adv. 2016;6(53):48109-48119.
  18. D RD, S N, R R, T S. Green synthesis of CdS quantum dot using (Citrus Limon (L.) Osbeck) leaves extract as stabilizing agent and investigate its emission properties. Mater Today: Proc. 2021.
  19. Kim D, Gu M, Park M, Kim T, Kim B-S. Layer-by-layer assembly for photoelectrochemical nanoarchitectonics. Mol Syst Des Eng. 2019;4(1):65-77.
  20. Kyobe JW, Mubofu EB, Makame YMM, Mlowe S, Revaprasadu N. Cadmium sulfide quantum dots stabilized by castor oil and ricinoleic acid. Physica E. 2016;76(95-102.
  21. Kyobe JW, Mubofu EB, Makame YMM, Mlowe S, Revaprasadu N. CdSe quantum dots capped with naturally occurring biobased oils. New J Chem. 2015;39(9):7251-7259.
  22. Yang Z, Lu L, Berard VF, He Q, Kiely CJ, Berger BW, McIntosh S. Biomanufacturing of CdS quantum dots. Green Chem. 2015;17(7):3775-3782.
  23. Kandasamy K, Venkatesh M, Syed Khadar YA, Rajasingh P. One-pot green synthesis of CdS quantum dots using Opuntia ficus-indica fruit sap. Mater Today: Proc. 2020;26(3503-3506.
  24. Maity P, Kumar S, Kumar R, Jha SN, Bhattacharyya D, Barman SR, Chatterjee S, Pal BN, Ghosh AK. Role of cobalt doping in CdS quantum dots for potential application in thin film optoelectronic devices. J Phys Chem C. 2021;125(3):2074-2088.
  25. Butwong N, Srijaranai S, Luong JHT. Fluorometric determination of hydrogen sulfide via silver-doped CdS quantum dots in solution and in a test strip. Microchim Acta. 2016;183(3):1243-1249.
  26. Thakur P, Joshi SS, Kapoor S, Mukherjee T. Fluorescence behavior of cysteine-mediated Ag@CdS nanocolloids. Langmuir. 2009;25(11):6377-6384.
  27. Yu WW, Qu L, Guo W, Peng X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater. 2003;15(14):2854-2860.
  28. Bansal AK, Antolini F, Zhang S, Stroea L, Ortolani L, Lanzi M, Serra E, Allard S, Scherf U, Samuel IDW. Highly luminescent colloidal CdS quantum dots with efficient near-infrared electroluminescence in light-emitting diodes. J Phys Chem C. 2016;120(3):1871-1880.
  29. Deng Z, Lie FL, Shen S, Ghosh I, Mansuripur M, Muscat AJ. Water-based route to ligand-selective synthesis of ZnSe and Cd-doped ZnSe quantum dots with tunable ultraviolet A to blue photoluminescence. Langmuir. 2009;25(1):434-442.
  30. Kumar N, Alam F, Dutta V. Photoluminescence study of oleic acid capped and hexanoic acid washed CdS quantum dots. RSC Adv. 2016;6(34):28316-28321.
  31. Trindade T, O'Brien P, Pickett NL. Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem Mater. 2001;13(11):3843-3858.
  32. Ganiga M, Cyriac J. An ascorbic acid sensor based on cadmium sulphide quantum dots. Anal Bioanal Chem. 2016;408(14):3699-3706.
  33. Liu X, Na W, Qu Z, Su X. Turn-off–on fluorescence probe based on 3-Mercaptopropionic acid-capped CdS quantum dots for selective and sensitive lysozyme detection. RSC Adv. 2016;6(89):85795-85801.
  34. Jiménez-Hernández L, Estévez-Hernández O, Hernández-Sánchez M, Díaz JA, Farías- Sánchez M, Reguera E. 3-Mercaptopropionic acid surface modification of Cu-doped ZnO nanoparticles: Their properties and peroxidase conjugation. Colloids Surf, A. 2016;489(351-359.
  35. Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou KW, Fischer A, Amassian A, Asbury JB, Sargent EH. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater. 2011;10(10):765-771.
  36. Bel Haj Mohamed N, Haouari M, Zaaboub Z, Hassen F, Maaref H, Ben Ouada H. Effect of surface on the optical structure and thermal properties of organically capped CdS nanoparticles. J Phys Chem Solids. 2014;75(8):936-944.
  37. Yousefi M, Abdolhosseinzadeh A, Fallah H, Khosravi A. Growth and characterization of CdS and CdS: Ag luminescent quantum dots dispersed in solution. Mod Phys Lett B. 2010;24(25):2591-2599.
  38. Bakhsh EM, Khan MI. Clove oil-mediated green synthesis of silver-doped cadmium sulfide and their photocatalytic degradation activity. Inorg Chem Commun. 2022;109256.
  39. Iqbal T, Ara G, Khalid NR, Ijaz M. Simple synthesis of Ag-doped CdS nanostructure material with excellent properties. Appl Nanosci. 2020;10(1):23-28.
  40. Munishwar SR, Pawar PP, Janbandhu SY, Gedam RS. Highly stable CdS quantum dots embedded in glasses and its application for inhibition of bacterial colonies. Opt. Mater. 2020;99(109590.
  41. Ma X-C, Dai Y, Yu L, Huang B-B. Energy transfer in plasmonic photocatalytic composites. Light Sci Appl. 2016;5(2):e16017-e16017.
  42. Li J, Wu N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Technol. 2015;5(3):1360-1384.
  43. Bae G-T, Aikens CM. Time-dependent density functional theory studies of optical properties of Ag nanoparticles: Octahedra, truncated octahedra, and icosahedra. J Phys Chem C. 2012;116(18):10356-10367.
  44. Makkar P, Ghosh NN. A review on the use of DFT for the prediction of the properties of nanomaterials. RSC Adv. 2021;11(45):27897-27924.
  45. Veerathangam K, Pandian MS, P R. Photovoltaic performance of Ag-doped CdS quantum dots for solar cell application. Mater Res Bull. 2017;94(371-377.
  46. Rabizadeh H, Feizbakhsh A, Ahmad Panahi H, Konoz E. Synthesis and characterization of Ag doped cadmium sulfide/multi walled carbon nanotubes: Structural, and photocatalysis studies. Fuller Nanotub Carbon Nanostructures. 2019;27(10):788-795.
  47. Butwong N, Kunthadong P, Soisungnoen P, Chotichayapong C, Srijaranai S, Luong JHT. Silver-doped CdS quantum dots incorporated into chitosan-coated cellulose as a colorimetric paper test stripe for mercury. Microchim Acta. 2018;185(2):126.
  48. Boxi SS, Paria S. Fluorometric selective detection of fluoride ions in aqueous media using Ag doped CdS/ZnS core/shell nanoparticles. Dalton Trans. 2016;45(2):811-819.

How to Cite

Singh, N. ., Prajapati, S. ., Prateek, & Gupta, R. K. . (2022). Investigation of Ag doping and ligand engineering on green synthesized CdS quantum dots for tuning their optical properties. Nanofabrication, 7, 89–103. https://doi.org/10.37819/nanofab.007.212

HTML
374

Total
177 14

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2022 Narendra Singh, Shivam Prajapati, Prateek, Raju Kumar Gupta

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.