Investigations into the Adsorption Isotherm and Kinetics of Heavy Metal Removal Using Green Iron Oxide Nanoparticles.
Abstract
Iron oxide nanoparticles (IONPs) are highly effective and environmentally sustainable adsorbents for the removal of heavy metals from wastewater. This study focuses on exploring a green route for synthesizing IONPs using Hibiscus rosa-sinensis petal extract, promoting an eco-friendly approach. The synthesized particles were evaluated analytically using XRD, confirming a crystallite size of 6.16 nm, and were assessed for adsorption of Pb(II) and Cu(II) ions. Optimized adsorption conditions, including pH 5 and an interaction period of 30 minutes, resulted in high removal efficiencies of 95.48% for Pb(II) and 84.9% for Cu(II). Adsorption behavior was best explained by the Langmuir isotherm, revealing maximum adsorption capacities of 30.77 mg/g and 28.74 mg/g for Pb(II) and Cu(II) respectively, while kinetic studies confirmed a pseudo-second-order model. These findings underscore the potency of green-synthesized IONPs as a promising and sustainable solution for wastewater treatment, paving the way for their potential real-world applications.
References
- 1. Almeida, A. C. M., do Nascimento, R. A., Amador, I. C. B., de Sousa Santos, T. C., Martelli, M. C., de Faria, L. J. G., & da Paixão Ribeiro, N. F. (2021). Chemically activated red mud: assessing structural modifications and optimizing adsorption properties for hexavalent chromium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 628, 127325.
- 2. Al-Zboon, K., Al-Harahsheh, M. S., & Hani, F. B. (2011). Fly ash-based geopolymer for Pb removal from aqueous solution. Journal of hazardous materials, 188(1-3), 414-421.
- 3. Arora, R. (2019). Adsorption of heavy metals–a review. Materials Today: Proceedings, 18, 4745-4750.
- 4. Carrott, P. J. M., & Carrott, M. R. (2007). Lignin–from natural adsorbent to activated carbon: a review. Bioresource technology, 98(12), 2301-2312.
- 5. Chen, S. Y., Chen, W. H., & Shih, C. J. (2008). Heavy metal removal from wastewater using zero-valent iron nanoparticles. Water Science and Technology, 58(10), 1947-1954.
- 6. Da Costa, G. M., De Grave, E., De Bakker, P. M. A., & Vandenberghe, R. E. (1994). Synthesis and characterization of some iron oxides by sol-gel method. Journal of Solid State Chemistry, 113(2), 405-412.
- 7. Deliyanni, E. A., Kyzas, G. Z., Triantafyllidis, K. S., & Matis, K. A. (2015). Activated carbons for the removal of heavy metal ions: A systematic review of recent literature focused on lead and arsenic ions. Open Chemistry, 13(1), 000010151520150087.
- 8. Drinking water standard and health advisories table, SanFrancisco; United States Environmental ProtectionAgency (USEPA),2007.
- 9. Eyvaz, M., Albahnasawi, A., Gürbulak, E., & Yüksel, E. (Eds.). (2022). Water Conservation: Inevitable Strategy. BoD–Books on Demand.
- 10. Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 92(3), 407-418.
- 11. Gu, S., Kang, X., Wang, L., Lichtfouse, E., & Wang, C. (2019). Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environmental Chemistry Letters, 17, 629-654.
- 12. Gupta, K., Joshi, P., Gusain, R., & Khatri, O. P. (2021). Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coordination Chemistry Reviews, 445, 214100.
- 13. Gupta, V. K., & Sharma, S. (2002). Removal of cadmium and zinc from aqueous solutions using red mud. Environmental Science & Technology, 36(16), 3612-3617.
- 14. Ho, Y. S., & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water research, 34(3), 735-742.
- 15. Hou, C. L., Li, T. H., Zhao, T. K., Liu, H. G., Liu, L. H., & Zhang, W. J. (2013). Electromagnetic wave absorbing properties of multi-wall carbon nanotube/Fe3O4 hybrid materials. New Carbon Materials, 28(3), 184-190. In: Drioli, E., Giorno, L. (eds) Encyclopedia of Membranes. Springer, Berlin, Heidelberg.
- 16. Indian standard drinking water specifications, (2nd Eds.), NewDelhi,India;BureauofIndianStandards(BIS),2012.
- 17. Irannajad, M., & Kamran Haghighi, H. (2021). Removal of heavy metals from polluted solutions by zeolitic adsorbents: a review. Environmental Processes, 8, 7-35.
- 18. Latha, N., & Gowri, M. (2014). Biosynthesis and characterisation of Fe3O4 nanoparticles using Caricaya papaya leaves extract. Int J Sci Res, 3(11), 1551-1556.
- 19. Lesiak, B., Rangam, N., Jiricek, P., Gordeev, I., Tóth, J., Kövér, L., ... & Borowicz, P. (2019). Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Frontiers in chemistry, 7, 642.
- 20. Namasivayam, C., & Ranganathan, K. (1998). Effect of organic ligands on the removal of Pb (II), Ni (II) and Cd (II) by ‘waste’Fe (III)/Cr (III) hydroxide. Water Research, 32(3), 969-971.
- 21. Namasivayam, C., & Yamuna, R. T. (1995). Waste biogas residual slurry as an adsorbent for the removal of Pb (II) from aqueous solution and radiator manufacturing industry wastewater. Bioresource Technology, 52(2), 125-131.
- 22. Niraimathee, V. A., Subha, V., Ravindran, R. E., & Renganathan, S. (2016). Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. International Journal of Environment and Sustainable Development, 15(3), 227-240.
- 23. Nizamuddin, S., Siddiqui, M. T. H., Mubarak, N. M., Baloch, H. A., Abdullah, E. C., Mazari, S. A., ... & Tanksale, A. (2019). Iron oxide nanomaterials for the removal of heavy metals and dyes from wastewater. Nanoscale materials in water purification, 447-472.
- 24. Nuhoğlu, Y., Ekmekyapar Kul, Z., Kul, S., Nuhoğlu, Ç., & Ekmekyapar Torun, F. (2021). Pb (II) biosorption from the aqueous solutions by raw and modified tea factory waste (TFW). International Journal of Environmental Science and Technology, 1-12.
- 25. Prasad, C., Karlapudi, S., Rao, C. N., Venkateswarlu, P., & Bahadur, I. (2017). A highly resourceful magnetically separable magnetic nanoparticles from aqueous peel extract of Bottle gourds for organic dyes degradation. Journal of Molecular Liquids, 243, 611-615.
- 26. Sabaté Reboll, J. (2016). Heavy metal recovery by chelating agents and membranes.
- 27. Semerjian, L. (2018). Removal of heavy metals (Cu, Pb) from aqueous solutions using pine (Pinus halepensis) sawdust: Equilibrium, kinetic, and thermodynamic studies. Environmental technology & innovation, 12, 91-103.
- 28. Shi, D., Yang, H., Ji, S., Jiang, S., Liu, X., & Zhang, D. (2015). Preparation and characterization of core-shell structure Fe3O4@ C magnetic nanoparticles. Procedia engineering, 102, 1555-1562.
- 29. Shojaee, S., & Shahri, M. M. (2016). Green synthesis and characterization of iron oxide magnetic nanoparticles using Shanghai white tea (Camelia sinensis) aqueous extract.
- 30. Singh, A. K., Srivastava, O. N., & Singh, K. (2017). Shape and size-dependent magnetic properties of Fe 3 O 4 nanoparticles synthesized using piperidine. Nanoscale research letters, 12, 1-7.
- 31. Singh, S., Kapoor, D., Khasnabis, S., Singh, J., & Ramamurthy, P. C. (2021). Mechanism and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials. Environmental Chemistry Letters, 19(3), 2351-2381.
- 32. Singh, S., Kumar, V., Romero, R., Sharma, K., & Singh, J. (2019). Applications of nanoparticles in wastewater treatment. Nanobiotechnology in bioformulations, 395-418.
- 33. Sivashankar, R., Sathya, A. B., Vasantharaj, K., & Sivasubramanian, V. (2014). Magnetic composite an environmental super adsorbent for dye sequestration–A review. Environmental Nanotechnology, Monitoring & Management, 1, 36-49.
- 34. Srivastava, K., Srivastava, A., Singh, P., & Sharma, V. (2021). Remediation of distillery waste water using zero valent iron nanoparticles. Current Research in Green and Sustainable Chemistry, 4, 100072.
- 35. Srivastava, K., Srivastava, A., & Singh, P.. (2022). Kinetic and Adsorption Isotherm studies for the removal of Heavy Metals by Rhizoclonium Species.RJPBCS,13,4,56-63. https://doi.org/10.33887/rjpbcs/2022.13.4.1
- 36. Srivastava, S. K., Gupta, V. K., & Mohan, D. (1997). Removal of lead and chromium by activated slag—a blast-furnace waste. Journal of Environmental Engineering, 123(5), 461-468.
- 37. Subramani, B. S., Shrihari, S., Manu, B., & Babunarayan, K. S. (2019). Evaluation of pyrolyzed areca husk as a potential adsorbent for the removal of Fe2+ ions from aqueous solutions. Journal of environmental management, 246, 345-354.
- 38. Sugumaran, M., Poornima, M., & Sethuvani, S. (2012). Phytochemical and trace element analysis of Hibiscus rosa sinensis Linn and Hibiscus syriacus Linn flowers. NPAIJ, 8(9), 341-345.
- 39. Thirunavukkarasu, A., Nithya, R., & Sivashankar, R. (2020). A review on the role of nanomaterials in the removal of organic pollutants from wastewater. Reviews in Environmental Science and Bio/Technology, 19(4), 751-778.
- 40. Venkateswarlu, S., Kumar, B. N., Prasad, C. H., Venkateswarlu, P., & Jyothi, N. V. V. (2014). Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract. Physica B: Condensed Matter, 449, 67-71.
- 41. Wang, S., Li, L., & Zhu, Z. H. (2007). Solid-state conversion of fly ash to effective adsorbents for Cu removal from wastewater. Journal of hazardous materials, 139(2), 254-259.
- 42. Wang, X., Zheng, Y., & Wang, A. (2009). Fast removal of copper ions from aqueous solution by chitosan-g-poly (acrylic acid)/attapulgite composites. Journal of Hazardous Materials, 168(2-3), 970-977.
- 43. Zargoosh, K., Abedini, H., Abdolmaleki, A., & Molavian, M. R. (2013). Effective removal of heavy metal ions from industrial wastes using thiosalicylhydrazide-modified magnetic nanoparticles. Industrial & Engineering Chemistry Research, 52(42), 14944-14954.
- 44. Zhang, Y., Wang, Y., Zhang, H., Li, Y., Zhang, Z., & Zhang, W. (2020). Recycling spent lithium-ion battery as adsorbents to remove aqueous heavy metals: Adsorption kinetics, isotherms, and regeneration assessment. Resources, Conservation and Recycling, 156, 104688.
How to Cite
How to Cite
Downloads
Article Details
Most Read This Month
License
Copyright (c) 2025 Kirti Srivastava, Roli Verma, R.S. Jagadish, Yamini Pandey, Abhishek Kumar

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.