Skip to main content Skip to main navigation menu Skip to site footer

Nanotechnology for SARS-CoV-2 diagnosis

  • Alisa Khodadadi
  • Atefeh Zarepour
  • Sepideh Abbaszadeh
  • Maryam Firoozi
  • Fatemeh Bahrami-Banan
  • Amir Rabiee
  • Mahnaz Hassanpour
  • Mehraneh Kermanian
  • Samiramis Pourmotabed
  • Ali Zarrabi
  • Omid Moradi
  • Sepideh Yousefiasl
  • Alireza Iranbakhsh
  • Seyed Mohammadreza Mirkhan
  • Ehsan Nazarzadeh Zare
  • Matineh Ghomi
  • Saeed Beigi-Boroujeni
  • Ana Cláudia Paiva-Santos
  • Yasser Vasseghian
  • Pooyan Makvandi
  • Esmaeel Sharifi

Abstract

As the first cause of death in the last three years, SARS-CoV-2 infection gained lots of interest. In light of this, several studies have been done to fabricate novel, high-speed detection methods for different virus variants. Indeed, the high mortality rate that could result from the late detection and the probable false results of conventional tests used to detect infection led to the introduction. Among the most interesting of them are -based biosensors fabricated from inorganic-based nanomaterials to diagnose SARS-CoV-2. Accordingly, this review paper presents an overview of recent nanotechnology advances in fabricating biosensors for diagnosing SARS-CoV-2 infections.            

Section

References

  1. Qasim M, Lim D-J, Park H, Na D. Nanotechnology for Diagnosis and Treatment of Infectious Diseases. Journal of nanoscience and nanotechnology 2014;14:7374-87.
  2. Mehendale R, Joshi M, Patravale VB. Nanomedicines for Treatment of Viral Diseases. Critical Reviews in Therapeutic Drug Carrier Systems 2013;30:1-49.
  3. Zhang J, Yoon KJ, Zimmerman JJ. Overview of viruses. Diseases of swine 2019:425-37.
  4. Yousefi B, Valizadeh S, Ghaffari H, Vahedi A, Karbalaei M, Eslami M. A global treatments for coronaviruses including COVID‐19. Journal of cellular physiology 2020;235:9133-42.
  5. Yang G, Chen S, Zhang J. Bioinspired and biomimetic nanotherapies for the treatment of infectious diseases. Frontiers in pharmacology 2019;10:751.
  6. Khan AH, Tirth V, Fawzy M, Mahmoud AED, Khan NA, Ahmed S, et al. COVID-19 transmission, vulnerability, persistence and nanotherapy: a review. Environmental Chemistry Letters 2021;19:2773-87.
  7. Chowdhury SK, Dutta T, Chattopadhyay AP, Ghosh NN, Chowdhury S, Mandal V. Isolation of antimicrobial Tridecanoic acid from Bacillus sp. LBF-01 and its potentialization through silver nanoparticles synthesis: a combined experimental and theoretical studies. Journal of Nanostructure in Chemistry 2021;11:573-87.
  8. González-Ballesteros N, Vidal-González J, Rodríguez-Argüelles MC. Wealth from by-products: an attempt to synthesize valuable gold nanoparticles from Brassica oleracea var. acephala cv. Galega stems. Journal of Nanostructure in Chemistry 2021;11:635-44.
  9. Gulla S, Lomada D, Araveti PB, Srivastava A, Murikinati MK, Reddy KR, et al. Titanium dioxide nanotubes conjugated with quercetin function as an effective anticancer agent by inducing apoptosis in melanoma cells. Journal of Nanostructure in Chemistry 2021;11:721-34.
  10. Islamipour Z, Zare EN, Salimi F, Ghomi M, Makvandi P. Biodegradable antibacterial and antioxidant nanocomposite films based on dextrin for bioactive food packaging. Journal of Nanostructure in Chemistry 2022:1-16.
  11. Ghahremanloo A, Zare EN, Salimi F, Makvandi P. Electroconductive and photoactive poly (phenylenediamine) s with antioxidant and antimicrobial activities for potential photothermal therapy. New Journal of Chemistry 2022;46:6255-66.
  12. Zare EN, Zheng X, Makvandi P, Gheybi H, Sartorius R, Yiu CK, et al. Nonspherical Metal‐Based Nanoarchitectures: Synthesis and Impact of Size, Shape, and Composition on Their Biological Activity. Small 2021;17:2007073.
  13. Makvandi P, Chen M, Sartorius R, Zarrabi A, Ashrafizadeh M, Dabbagh Moghaddam F, et al. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. Nano Today 2021;40:101279.
  14. Makvandi P, Baghbantaraghdari Z, Zhou W, Zhang Y, Manchanda R, Agarwal T, et al. Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy. Biotechnology Advances 2021;48:107711.
  15. Kumar KSS, Girish YR, Ashrafizadeh M, Mirzaei S, Rakesh KP, Gholami MH, et al. AIE-featured tetraphenylethylene nanoarchitectures in biomedical application: Bioimaging, drug delivery and disease treatment. Coordination Chemistry Reviews 2021;447:214135.
  16. Sharifi E, Bigham A, Yousefiasl S, Trovato M, Ghomi M, Esmaeili Y, et al. Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuli‐Responsive, Toxicity, Immunogenicity, and Clinical Translation. Advanced Science 2022;9:2102678.
  17. Ahmed A, Hayat A, John P, Nawaz MH, Nasir M. Coral-shaped tin oxide incorporated graphitic carbon nitride nanosheets as peroxidase mimic for sensitive colorimetric and fluorescence quenching based detection of hydrogen peroxide. Journal of Nanostructure in Chemistry 2021;11:675-91.
  18. Babu AM, Rajeev R, Thadathil DA, Varghese A, Hegde G. Surface modulation and structural engineering of graphitic carbon nitride for electrochemical sensing applications. Journal of Nanostructure in Chemistry 2021:1-43.
  19. Sharifi M, Hasan A, Haghighat S, Taghizadeh A, Attar F, Bloukh SH, et al. Rapid diagnostics of coronavirus disease 2019 in early stages using nanobiosensors: challenges and opportunities. Talanta 2021;223:121704.
  20. Kim JM, Jung S, Jeon EJ, Kim BK, No JY, Kim MJ, et al. Highly Selective Multiplex Quantitative Polymerase Chain Reaction with a Nanomaterial Composite Hydrogel for Precise Diagnosis of Viral Infection. ACS applied materials & interfaces 2021;13:30295-305.
  21. Lim J-W, Ahn Y-R, Park G, Kim H-O, Haam S. Application of Nanomaterials as an Advanced Strategy for the Diagnosis, Prevention, and Treatment of Viral Diseases. Pharmaceutics 2021;13:1570.
  22. Kevadiya BD, Machhi J, Herskovitz J, Oleynikov MD, Blomberg WR, Bajwa N, et al. Diagnostics for SARS-CoV-2 infections. Nature materials 2021;20:593-605.
  23. Kucherenko I, Soldatkin O, Kucherenko DY, Soldatkina O, Dzyadevych S. Advances in nanomaterial application in enzyme-based electrochemical biosensors: A review. Nanoscale Advances 2019;1:4560-77.
  24. Pirzada M, Altintas Z. Nanomaterials for healthcare biosensing applications. Sensors 2019;19:5311.
  25. Toosy AH, O'Sullivan S. An Overview of Middle East Respiratory Syndrome in the Middle East. Fowler's Zoo and Wild Animal Medicine Current Therapy, Volume 9: Elsevier; 2019. p. 287-91.
  26. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008;82:7264-75.
  27. Verma J, Subbarao N. A comparative study of human betacoronavirus spike proteins: structure, function and therapeutics. Arch Virol 2021;166:697-714.
  28. Yuan H-W, Wen H-L. Research progress on coronavirus S proteins and their receptors. Arch Virol 2021;166:1811-7.
  29. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 2009;7:439-50.
  30. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol 2016;3:237-61.
  31. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America 2020;117:11727-34.
  32. Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses 2012;4:557-80.
  33. Trus I, Udenze D, Berube N, Wheler C, Martel M-J, Gerdts V, et al. CpG-Recoding in Zika Virus Genome Causes Host-Age-Dependent Attenuation of Infection With Protection Against Lethal Heterologous Challenge in Mice. Front Immunol 2020;10:3077-.
  34. Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res 2020;21:224-.
  35. Abdelrahman Z, Li M, Wang X. Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses. Front Immunol 2020;11:552909-.
  36. Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res 2020;178:104792-.
  37. Huang Y, Yang C, Xu X-F, Xu W, Liu S-W. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020;41:1141-9.
  38. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019;17:181-92.
  39. Abebe EC, Ayele TM, Muche ZT, Dejenie TA. Neuropilin 1: a novel entry factor for SARS-CoV-2 infection and a potential therapeutic target. Biologics: targets & therapy 2021;15:143.
  40. Ortiz ME, Thurman A, Pezzulo AA, Leidinger MR, Klesney-Tait JA, Karp PH, et al. Heterogeneous expression of the SARS-Coronavirus-2 receptor ACE2 in the human respiratory tract. EBioMedicine 2020;60:102976-.
  41. Ryan P. Noel Caplice.
  42. Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet (London, England) 2015;386:995-1007.
  43. Kleine-Weber H, Elzayat MT, Hoffmann M, Pöhlmann S. Functional analysis of potential cleavage sites in the MERS-coronavirus spike protein. Scientific reports 2018;8:16597-.
  44. Millet JK, Whittaker GR. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology 2018;517:3-8.
  45. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020;181:271-80.e8.
  46. Hoffmann M, Kleine-Weber H, Pöhlmann S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell 2020;78:779-84.e5.
  47. Wood CS, Thomas MR, Budd J, Mashamba-Thompson TP, Herbst K, Pillay D, et al. Taking connected mobile-health diagnostics of infectious diseases to the field. Nature 2019;566:467-74.
  48. V'Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 2021;19:155-70.
  49. Lee S, Channappanavar R, Kanneganti T-D. Coronaviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Trends Immunol 2020;41:1083-99.
  50. Caselli D, Aricò M. 2019-nCoV: Polite with children! Pediatr Rep 2020;12:8495-.
  51. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021;184:861-80.
  52. Majumder J, Minko T. Recent developments on therapeutic and diagnostic approaches for COVID-19. The AAPS journal 2021;23:1-22.
  53. de Rivero Vaccari JC, Dietrich WD, Keane RW, de Rivero Vaccari JP. The Inflammasome in Times of COVID-19. Front Immunol 2020;11:583373-.
  54. Dubey AK, Chaudhry SK, Singh HB, Gupta VK, Kaushik A. Perspectives on nano-nutraceuticals to manage pre and post COVID-19 infections. Biotechnology Reports 2022;33:e00712.
  55. Wilton T, Bujaki E, Klapsa D, Majumdar M, Zambon M, Fritzsche M, et al. Rapid increase of SARS-CoV-2 variant B. 1.1. 7 detected in sewage samples from England between October 2020 and January 2021. Msystems 2021;6:e00353-21.
  56. Zhao Y, Huang J, Zhang L, Chen S, Gao J, Jiao H. The global transmission of new coronavirus variants. Environmental research 2022;206:112240.
  57. Zhan Y, Yin H, Yin J-Y. B. 1.617. 2 (Delta) Variant of SARS-CoV-2: features, transmission and potential strategies. International Journal of Biological Sciences 2022;18:1844.
  58. Mostafavi E, Dubey AK, Teodori L, Ramakrishna S, Kaushik A. SARS‐CoV‐2 Omicron variant: A next phase of the COVID‐19 pandemic and a call to arms for system sciences and precision medicine. MedComm 2022;3:e119.
  59. Cohen J, Kupferschmidt K. Countries test tactics in ‘war’against COVID-19. American Association for the Advancement of Science; 2020.
  60. Wendell S. In Nobel Lecture. December; 1946.
  61. Krejcova L, Nejdl L, Hynek D, Krizkova S, Kopel P, Adam V, et al. Beads-based electrochemical assay for the detection of influenza hemagglutinin labeled with CdTe quantum dots. Molecules 2013;18:15573-86.
  62. Kim Y-G, Moon S, Kuritzkes DR, Demirci U. Quantum dot-based HIV capture and imaging in a microfluidic channel. Biosens Bioelectron 2009;25:253-8.
  63. Ahmadivand A, Gerislioglu B, Ramezani Z, Kaushik A, Manickam P, Ghoreishi SA. Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins. Biosensors and Bioelectronics 2021;177:112971.
  64. Xie Z, Huang J, Luo S, Xie Z, Xie L, Liu J, et al. Ultrasensitive electrochemical immunoassay for avian influenza subtype H5 using nanocomposite. PloS one 2014;9:e94685.
  65. Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, Hejazi M, Gharaatifar N, Hasanzadeh M, et al. Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends in Analytical Chemistry 2017;97:445-57.
  66. Vaculovicova M, Michalek P, Krizkova S, Macka M, Adam V. Nanotechnology-based analytical approaches for detection of viruses. Analytical Methods 2017;9:2375-91.
  67. Iravani S. Nano-and biosensors for the detection of SARS-CoV-2: challenges and opportunities. Materials Advances 2020;1:3092-103.
  68. Antiochia R. Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: from past to perspectives. Microchimica Acta 2020;187:1-13.
  69. Aquino A, Paschoalin VMF, Tessaro LLG, Raymundo-Pereira PA, Conte-Junior CA. Updating the use of nano-biosensors as promising devices for the diagnosis of coronavirus family members: A systematic review. Journal of Pharmaceutical and Biomedical Analysis 2022;211:114608.
  70. Misra R, Acharya S, Sushmitha N. Nanobiosensor‐based diagnostic tools in viral infections: Special emphasis on Covid‐19. Reviews in medical virology 2022;32:e2267.
  71. Palestino G, García-Silva I, González-Ortega O, Rosales-Mendoza S. Can nanotechnology help in the fight against COVID-19? Expert review of anti-infective therapy 2020;18:849-64.
  72. Krishnan S, Narasimhan AK, Gangodkar D, Dhanasekaran S, Jha NK, Dua K, et al. Aptameric nanobiosensors for the diagnosis of COVID-19: An update. Materials letters 2022;308:131237.
  73. Mahari S, Roberts A, Shahdeo D, Gandhi S. eCovSens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. BioRxiv 2020.
  74. Satvekar RK. Electrochemical nanobiosensors perspectives for COVID 19 pandemic. Journal of Electrochemical Science and Engineering 2022;12:25-35.
  75. Li X, Qin Z, Fu H, Li T, Peng R, Li Z, et al. Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach. Biosensors and Bioelectronics 2021;177:112672.
  76. Rai M, Bonde S, Yadav A, Bhowmik A, Rathod S, Ingle P, et al. Nanotechnology as a shield against COVID-19: current advancement and limitations. Viruses 2021;13:1224.
  77. Seo G, Lee G, Kim MJ, Baek S-H, Choi M, Ku KB, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS nano 2020;14:5135-42.
  78. Thanihaichelvan M, Surendran SN, Kumanan T, Sutharsini U, Ravirajan P, Valluvan R, et al. Selective and electronic detection of COVID-19 (Coronavirus) using carbon nanotube field effect transistor-based biosensor: A proof-of-concept study. Materials Today: Proceedings 2022;49:2546-9.
  79. Rabiee N, Fatahi Y, Ahmadi S, Abbariki N, Ojaghi A, Rabiee M, et al. Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen. Science of The Total Environment 2022:153902.
  80. Moitra P, Alafeef M, Dighe K, Frieman MB, Pan D. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS nano 2020;14:7617-27.
  81. Chen R, Kan L, Duan F, He L, Wang M, Cui J, et al. Surface plasmon resonance aptasensor based on niobium carbide MXene quantum dots for nucleocapsid of SARS-CoV-2 detection. Microchimica Acta 2021;188:1-10.
  82. Alhalaili B, Popescu IN, Kamoun O, Alzubi F, Alawadhia S, Vidu R. Nanobiosensors for the Detection of Novel Coronavirus 2019-nCoV and Other Pandemic/Epidemic Respiratory Viruses: A Review. Sensors (Basel) 2020;20:6591.
  83. Yakoh A, Pimpitak U, Rengpipat S, Hirankarn N, Chailapakul O, Chaiyo S. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosensors and Bioelectronics 2021;176:112912.
  84. Alireza Hashemi S, Bahrani S, Mojtaba Mousavi S, Omidifar N, Ghaleh Golab Behbahan N, Arjmand M, et al. Ultra-precise label-free nanosensor based on integrated graphene with Au nanostars toward direct detection of IgG antibodies of SARS-CoV-2 in blood. Journal of Electroanalytical Chemistry 2021;894:115341.
  85. Jain S, Nehra M, Kumar R, Dilbaghi N, Hu T, Kumar S, et al. Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosensors and Bioelectronics 2021;179:113074.
  86. Sharma PK, Kim E-S, Mishra S, Ganbold E, Seong R-S, Kaushik AK, et al. Ultrasensitive and reusable graphene oxide-modified double-interdigitated capacitive (DIDC) sensing chip for detecting SARS-CoV-2. ACS sensors 2021;6:3468-76.
  87. Itani R, Tobaiqy M, Al Faraj A. Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Theranostics 2020;10:5932.
  88. Kaushik AK, Dhau JS, Gohel H, Mishra YK, Kateb B, Kim N-Y, et al. Electrochemical SARS-CoV-2 sensing at point-of-care and artificial intelligence for intelligent COVID-19 management. ACS Applied Bio Materials 2020;3:7306-25.
  89. Mujawar MA, Gohel H, Bhardwaj SK, Srinivasan S, Hickman N, Kaushik A. Nano-enabled biosensing systems for intelligent healthcare: towards COVID-19 management. Materials Today Chemistry 2020;17:100306.
  90. Kaushik AK, Dhau JS. Photoelectrochemical oxidation assisted air purifiers; perspective as potential tools to control indoor SARS-CoV-2 Exposure. Applied Surface Science Advances 2022;9:100236.

How to Cite

Nanotechnology for SARS-CoV-2 diagnosis. (2022). Nanofabrication, 7, 244-260. https://doi.org/10.37819/nanofab.007.201

How to Cite

Nanotechnology for SARS-CoV-2 diagnosis. (2022). Nanofabrication, 7, 244-260. https://doi.org/10.37819/nanofab.007.201

HTML
582

Total
136 13

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2022 Alisa Khodadadi, Atefeh Zarepour, Sepideh Abbaszadeh, Maryam Firoozi, Fatemeh Bahrami-Banan, Amir Rabiee, Mahnaz Hassanpour, Mehraneh Kermanian, Samiramis Pourmotabed, Ali Zarrabi, Omid Moradi, Sepideh Yousefiasl, Alireza Iranbakhsh, Seyed Mohammadreza Mirkhan, Ehsan Nazarzadeh Zare, Matineh Ghomi, Saeed Beigi-Boroujeni, Ana Cláudia Paiva-Santos, Yasser Vasseghian, Pooyan Makvandi, Esmaeel Sharifi

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Similar Articles

1-10 of 14

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)