Physico-chemical properties of double porous scaffolds of polycaprolactone/chitosan and graphene nano scrolls
Abstract
The use of graphene-based nanomaterials in tissue engineering has shown immense potential in improving the microstructure of polymeric blends. The addition of graphene nanoscrolls (GNS) to polycaprolactone (PCL) and chitosan (CHT) scaffolds and the subsequent improvements in physical properties, crystallinity, and degradation rate are indeed promising. The use of techniques like DSC (differential scanning calorimetry) and XRD (x-ray diffraction) to characterize thermal behavior and crystal state provides valuable insights into the material properties. FTIR spectroscopy demonstrated the changes in the chemical structure of the polymer blend during degradation, while nanoindentation was used to study the mechanical properties of the scaffolds. The SEM (scanning electron microscopy) images offering a closer look at the surface morphology and microstructure further contribute to a comprehensive understanding of the scaffold's characteristics. The enhanced crystallinity and lower degradation rate, coupled with a well-defined interconnected pore structure, suggest that the integration of graphene nanoscrolls at a concentration of 0.1 wt.% is a beneficial approach. This not only improves the material properties but also creates an optimal environment for potential tissue engineering applications, particularly for load-bearing tissues.
References
- Abdelfatah, J., Paz, R., Alemán-Domínguez, M. E., Monzón, M., Donate, R., & Winter, G. (2021). Experimental Analysis of the Enzymatic Degradation of Polycaprolactone: Microcrystalline Cellulose Composites and Numerical Method for the Prediction of the Degraded Geometry. Materials, 14(9), 2460. https://doi.org/10.3390/ma14092460
- Ajala, O., Werther, C., Nikaeen, P., Singh, R. P., & Depan, D. (2019). Influence of graphene nanoscrolls on the crystallization behavior and nano‐mechanical properties of polylactic acid. Polymers for Advanced Technologies, 30(7), 1825–1835. https://doi.org/10.1002/pat.4615
- Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., & Acosta, N. (2021). Chitosan: An Overview of Its Properties and Applications. Polymers, 13(19), 3256. https://doi.org/10.3390/polym13193256
- Ashammakhi, N., GhavamiNejad, A., Tutar, R., Fricker, A., Roy, I., Chatzistavrou, X., Hoque Apu, E., Nguyen, K.-L., Ahsan, T., Pountos, I., & Caterson, E. J. (2022). Highlights on Advancing Frontiers in Tissue Engineering. Tissue Engineering Part B: Reviews, 28(3), 633–664. https://doi.org/10.1089/ten.teb.2021.0012
- Bailey, E. J., & Winey, K. I. (2020). Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Progress in Polymer Science, 105, 101242. https://doi.org/10.1016/j.progpolymsci.2020.101242
- Bartnikowski, M., Dargaville, T. R., Ivanovski, S., & Hutmacher, D. W. (2019). Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progress in Polymer Science, 96, 1–20. https://doi.org/10.1016/j.progpolymsci.2019.05.004
- Basavegowda, N., & Baek, K.-H. (2021). Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers, 13(23), 4198. https://doi.org/10.3390/polym13234198
- Biscaia, S., Silva, J. C., Moura, C., Viana, T., Tojeira, A., Mitchell, G. R., Pascoal-Faria, P., Ferreira, F. C., & Alves, N. (2022). Additive Manufactured Poly(ε-caprolactone)-graphene Scaffolds: Lamellar Crystal Orientation, Mechanical Properties and Biological Performance. Polymers, 14(9), 1669. https://doi.org/10.3390/polym14091669
- Blundell, D. J. (1987). On the interpretation of multiple melting peaks in poly(ether ether ketone). Polymer, 28(13), 2248–2251. https://doi.org/10.1016/0032-3861(87)90382-X
- Bonithon, R., Kao, A. P., Fernández, M. P., Dunlop, J. N., Blunn, G. W., Witte, F., & Tozzi, G. (2021). Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects. Acta Biomaterialia, 127, 338–352. https://doi.org/10.1016/j.actbio.2021.03.068
- Castilla-Cortázar, Vidaurre, Marí, & Campillo-Fernández. (2019). Morphology, Crystallinity, and Molecular Weight of Poly(ε-caprolactone)/Graphene Oxide Hybrids. Polymers, 11(7), 1099. https://doi.org/10.3390/polym11071099
- Cheng, X., Wan, Q., & Pei, X. (2018). Graphene Family Materials in Bone Tissue Regeneration: Perspectives and Challenges. Nanoscale Research Letters, 13(1), 289. https://doi.org/10.1186/s11671-018-2694-z
- Chung, J. H. Y., Sayyar, S., & Wallace, G. G. (2022). Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting. Polymers, 14(2), 319. https://doi.org/10.3390/polym14020319
- Das, P., Remigy, J.-C., Lahitte, J.-F., van der Meer, A. D., Garmy-Susini, B., Coetsier, C., Desclaux, S., & Bacchin, P. (2020). Development of double porous poly (ε - caprolactone)/chitosan polymer as tissue engineering scaffold. Materials Science and Engineering: C, 107, 110257. https://doi.org/10.1016/j.msec.2019.110257
- Das, P., Salerno, S., Remigy, J.-C., Lahitte, J.-F., Bacchin, P., & De Bartolo, L. (2019). Double porous poly (Ɛ-caprolactone)/chitosan membrane scaffolds as niches for human mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 184, 110493. https://doi.org/10.1016/j.colsurfb.2019.110493
- Depan, D., Venkata Surya, P. K. C., Girase, B., & Misra, R. D. K. (2011). Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Acta Biomaterialia, 7(5), 2163–2175. https://doi.org/10.1016/j.actbio.2011.01.029
- Ferroni, L., Gardin, C., Rigoni, F., Balliana, E., Zanotti, F., Scatto, M., Riello, P., & Zavan, B. (2022). The Impact of Graphene Oxide on Polycaprolactone PCL Surfaces: Antimicrobial Activity and Osteogenic Differentiation of Mesenchymal Stem Cell. Coatings, 12(6), 799. https://doi.org/10.3390/coatings12060799
- Islam, Md. M., Shahruzzaman, Md., Biswas, S., Nurus Sakib, Md., & Rashid, T. U. (2020). Chitosan based bioactive materials in tissue engineering applications-A review. Bioactive Materials, 5(1), 164–183. https://doi.org/10.1016/j.bioactmat.2020.01.012
- Kao, H.-H., Kuo, C.-Y., Tagadur Govindaraju, D., Chen, K.-S., & Chen, J.-P. (2022). Polycaprolactone/Chitosan Composite Nanofiber Membrane as a Preferred Scaffold for the Culture of Mesothelial Cells and the Repair of Damaged Mesothelium. International Journal of Molecular Sciences, 23(17), 9517. https://doi.org/10.3390/ijms23179517
- Kean, T., & Thanou, M. (2010). Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews, 62(1), 3–11. https://doi.org/10.1016/j.addr.2009.09.004
- Lanjewar, S., Mukherjee, A., Rehman, L., Abdelrasoul, A., & Roy, A. (2020). Thermodynamics of Casting Solution in Membrane Synthesis. In Modeling in Membranes and Membrane‐Based Processes (pp. 9–45). Wiley. https://doi.org/10.1002/9781119536260.ch2
- Loh, Q. L., & Choong, C. (2013). Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Engineering Part B: Reviews, 19(6), 485–502. https://doi.org/10.1089/ten.teb.2012.0437
- Luyt, A. S., & Kelnar, I. (2019). Effect of blend ratio and nanofiller localization on the thermal degradation of graphite nanoplatelets-modified PLA/PCL. Journal of Thermal Analysis and Calorimetry, 136(6), 2373–2382. https://doi.org/10.1007/s10973-018-7870-y
- Matsuda, S. (1991). Thermodynamics of Formation of Porous Polymeric Membrane from Solutions. Polymer Journal, 23(5), 435–444. https://doi.org/10.1295/polymj.23.435
- Mondal, D., Griffith, M., & Venkatraman, S. S. (2016). Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(5), 255–265. https://doi.org/10.1080/00914037.2015.1103241
- Parisien, A., ElSayed, M. S. A., & Frei, H. (2022). Mature bone mechanoregulation modelling for the characterization of the osseointegration performance of periodic cellular solids. Materialia, 25, 101552. https://doi.org/10.1016/j.mtla.2022.101552
- Shin, S. R., Li, Y.-C., Jang, H. L., Khoshakhlagh, P., Akbari, M., Nasajpour, A., Zhang, Y. S., Tamayol, A., & Khademhosseini, A. (2016). Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews, 105, 255–274. https://doi.org/10.1016/j.addr.2016.03.007
- Sun, R., Chen, H., Sutrisno, L., Kawazoe, N., & Chen, G. (2021). Nanomaterials and their composite scaffolds for photothermal therapy and tissue engineering applications. Science and Technology of Advanced Materials, 22(1), 404–428. https://doi.org/10.1080/14686996.2021.1924044
- Svoboda, R., & Málek, J. (2011). Interpretation of crystallization kinetics results provided by DSC. Thermochimica Acta, 526(1–2), 237–251. https://doi.org/10.1016/j.tca.2011.10.005
- Wu, D., Lin, D., Zhang, J., Zhou, W., Zhang, M., Zhang, Y., Wang, D., & Lin, B. (2011). Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends. Macromolecular Chemistry and Physics, 212(6), 613–626. https://doi.org/10.1002/macp.201000579
- Zhang, B., Wei, P., Zhou, Z., & Wei, T. (2016). Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Advanced Drug Delivery Reviews, 105, 145–162. https://doi.org/10.1016/j.addr.2016.08.009
How to Cite
How to Cite
Funding data
-
Louisiana Board of Regents
Grant numbers LEQSF (2020-23)-RD-A-21
Downloads
Article Details
Most Read This Month
License
Copyright (c) 2023 Lillian Mambiri, Gabrielle Broussard, Tahsin Zaman
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.