Skip to main content Skip to main navigation menu Skip to site footer

Physico-chemical properties of double porous scaffolds of polycaprolactone/chitosan and graphene nano scrolls

  • Lillian Mambiri
  • Gabrielle Broussard
  • Tahsin Zaman

Abstract

The use of graphene-based nanomaterials in tissue engineering has shown immense potential in improving the microstructure of polymeric blends. The addition of graphene nanoscrolls (GNS) to polycaprolactone (PCL) and chitosan (CHT) scaffolds and the subsequent improvements in physical properties, crystallinity, and degradation rate are indeed promising. The use of techniques like DSC (differential scanning calorimetry) and XRD (x-ray diffraction) to characterize thermal behavior and crystal state provides valuable insights into the material properties. FTIR spectroscopy demonstrated the changes in the chemical structure of the polymer blend during degradation, while nanoindentation was used to study the mechanical properties of the scaffolds. The SEM (scanning electron microscopy) images offering a closer look at the surface morphology and microstructure further contribute to a comprehensive understanding of the scaffold's characteristics. The enhanced crystallinity and lower degradation rate, coupled with a well-defined interconnected pore structure, suggest that the integration of graphene nanoscrolls at a concentration of 0.1 wt.% is a beneficial approach. This not only improves the material properties but also creates an optimal environment for potential tissue engineering applications, particularly for load-bearing tissues.

Section

References

  1. Abdelfatah, J., Paz, R., Alemán-Domínguez, M. E., Monzón, M., Donate, R., & Winter, G. (2021). Experimental Analysis of the Enzymatic Degradation of Polycaprolactone: Microcrystalline Cellulose Composites and Numerical Method for the Prediction of the Degraded Geometry. Materials, 14(9), 2460. https://doi.org/10.3390/ma14092460
  2. Ajala, O., Werther, C., Nikaeen, P., Singh, R. P., & Depan, D. (2019). Influence of graphene nanoscrolls on the crystallization behavior and nano‐mechanical properties of polylactic acid. Polymers for Advanced Technologies, 30(7), 1825–1835. https://doi.org/10.1002/pat.4615
  3. Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., & Acosta, N. (2021). Chitosan: An Overview of Its Properties and Applications. Polymers, 13(19), 3256. https://doi.org/10.3390/polym13193256
  4. Ashammakhi, N., GhavamiNejad, A., Tutar, R., Fricker, A., Roy, I., Chatzistavrou, X., Hoque Apu, E., Nguyen, K.-L., Ahsan, T., Pountos, I., & Caterson, E. J. (2022). Highlights on Advancing Frontiers in Tissue Engineering. Tissue Engineering Part B: Reviews, 28(3), 633–664. https://doi.org/10.1089/ten.teb.2021.0012
  5. Bailey, E. J., & Winey, K. I. (2020). Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Progress in Polymer Science, 105, 101242. https://doi.org/10.1016/j.progpolymsci.2020.101242
  6. Bartnikowski, M., Dargaville, T. R., Ivanovski, S., & Hutmacher, D. W. (2019). Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progress in Polymer Science, 96, 1–20. https://doi.org/10.1016/j.progpolymsci.2019.05.004
  7. Basavegowda, N., & Baek, K.-H. (2021). Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers, 13(23), 4198. https://doi.org/10.3390/polym13234198
  8. Biscaia, S., Silva, J. C., Moura, C., Viana, T., Tojeira, A., Mitchell, G. R., Pascoal-Faria, P., Ferreira, F. C., & Alves, N. (2022). Additive Manufactured Poly(ε-caprolactone)-graphene Scaffolds: Lamellar Crystal Orientation, Mechanical Properties and Biological Performance. Polymers, 14(9), 1669. https://doi.org/10.3390/polym14091669
  9. Blundell, D. J. (1987). On the interpretation of multiple melting peaks in poly(ether ether ketone). Polymer, 28(13), 2248–2251. https://doi.org/10.1016/0032-3861(87)90382-X
  10. Bonithon, R., Kao, A. P., Fernández, M. P., Dunlop, J. N., Blunn, G. W., Witte, F., & Tozzi, G. (2021). Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects. Acta Biomaterialia, 127, 338–352. https://doi.org/10.1016/j.actbio.2021.03.068
  11. Castilla-Cortázar, Vidaurre, Marí, & Campillo-Fernández. (2019). Morphology, Crystallinity, and Molecular Weight of Poly(ε-caprolactone)/Graphene Oxide Hybrids. Polymers, 11(7), 1099. https://doi.org/10.3390/polym11071099
  12. Cheng, X., Wan, Q., & Pei, X. (2018). Graphene Family Materials in Bone Tissue Regeneration: Perspectives and Challenges. Nanoscale Research Letters, 13(1), 289. https://doi.org/10.1186/s11671-018-2694-z
  13. Chung, J. H. Y., Sayyar, S., & Wallace, G. G. (2022). Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting. Polymers, 14(2), 319. https://doi.org/10.3390/polym14020319
  14. Das, P., Remigy, J.-C., Lahitte, J.-F., van der Meer, A. D., Garmy-Susini, B., Coetsier, C., Desclaux, S., & Bacchin, P. (2020). Development of double porous poly (ε - caprolactone)/chitosan polymer as tissue engineering scaffold. Materials Science and Engineering: C, 107, 110257. https://doi.org/10.1016/j.msec.2019.110257
  15. Das, P., Salerno, S., Remigy, J.-C., Lahitte, J.-F., Bacchin, P., & De Bartolo, L. (2019). Double porous poly (Ɛ-caprolactone)/chitosan membrane scaffolds as niches for human mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 184, 110493. https://doi.org/10.1016/j.colsurfb.2019.110493
  16. Depan, D., Venkata Surya, P. K. C., Girase, B., & Misra, R. D. K. (2011). Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Acta Biomaterialia, 7(5), 2163–2175. https://doi.org/10.1016/j.actbio.2011.01.029
  17. Ferroni, L., Gardin, C., Rigoni, F., Balliana, E., Zanotti, F., Scatto, M., Riello, P., & Zavan, B. (2022). The Impact of Graphene Oxide on Polycaprolactone PCL Surfaces: Antimicrobial Activity and Osteogenic Differentiation of Mesenchymal Stem Cell. Coatings, 12(6), 799. https://doi.org/10.3390/coatings12060799
  18. Islam, Md. M., Shahruzzaman, Md., Biswas, S., Nurus Sakib, Md., & Rashid, T. U. (2020). Chitosan based bioactive materials in tissue engineering applications-A review. Bioactive Materials, 5(1), 164–183. https://doi.org/10.1016/j.bioactmat.2020.01.012
  19. Kao, H.-H., Kuo, C.-Y., Tagadur Govindaraju, D., Chen, K.-S., & Chen, J.-P. (2022). Polycaprolactone/Chitosan Composite Nanofiber Membrane as a Preferred Scaffold for the Culture of Mesothelial Cells and the Repair of Damaged Mesothelium. International Journal of Molecular Sciences, 23(17), 9517. https://doi.org/10.3390/ijms23179517
  20. Kean, T., & Thanou, M. (2010). Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews, 62(1), 3–11. https://doi.org/10.1016/j.addr.2009.09.004
  21. Lanjewar, S., Mukherjee, A., Rehman, L., Abdelrasoul, A., & Roy, A. (2020). Thermodynamics of Casting Solution in Membrane Synthesis. In Modeling in Membranes and Membrane‐Based Processes (pp. 9–45). Wiley. https://doi.org/10.1002/9781119536260.ch2
  22. Loh, Q. L., & Choong, C. (2013). Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Engineering Part B: Reviews, 19(6), 485–502. https://doi.org/10.1089/ten.teb.2012.0437
  23. Luyt, A. S., & Kelnar, I. (2019). Effect of blend ratio and nanofiller localization on the thermal degradation of graphite nanoplatelets-modified PLA/PCL. Journal of Thermal Analysis and Calorimetry, 136(6), 2373–2382. https://doi.org/10.1007/s10973-018-7870-y
  24. Matsuda, S. (1991). Thermodynamics of Formation of Porous Polymeric Membrane from Solutions. Polymer Journal, 23(5), 435–444. https://doi.org/10.1295/polymj.23.435
  25. Mondal, D., Griffith, M., & Venkatraman, S. S. (2016). Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(5), 255–265. https://doi.org/10.1080/00914037.2015.1103241
  26. Parisien, A., ElSayed, M. S. A., & Frei, H. (2022). Mature bone mechanoregulation modelling for the characterization of the osseointegration performance of periodic cellular solids. Materialia, 25, 101552. https://doi.org/10.1016/j.mtla.2022.101552
  27. Shin, S. R., Li, Y.-C., Jang, H. L., Khoshakhlagh, P., Akbari, M., Nasajpour, A., Zhang, Y. S., Tamayol, A., & Khademhosseini, A. (2016). Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews, 105, 255–274. https://doi.org/10.1016/j.addr.2016.03.007
  28. Sun, R., Chen, H., Sutrisno, L., Kawazoe, N., & Chen, G. (2021). Nanomaterials and their composite scaffolds for photothermal therapy and tissue engineering applications. Science and Technology of Advanced Materials, 22(1), 404–428. https://doi.org/10.1080/14686996.2021.1924044
  29. Svoboda, R., & Málek, J. (2011). Interpretation of crystallization kinetics results provided by DSC. Thermochimica Acta, 526(1–2), 237–251. https://doi.org/10.1016/j.tca.2011.10.005
  30. Wu, D., Lin, D., Zhang, J., Zhou, W., Zhang, M., Zhang, Y., Wang, D., & Lin, B. (2011). Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends. Macromolecular Chemistry and Physics, 212(6), 613–626. https://doi.org/10.1002/macp.201000579
  31. Zhang, B., Wei, P., Zhou, Z., & Wei, T. (2016). Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Advanced Drug Delivery Reviews, 105, 145–162. https://doi.org/10.1016/j.addr.2016.08.009

How to Cite

Mambiri, L., Broussard, G., & Zaman, T. (2023). Physico-chemical properties of double porous scaffolds of polycaprolactone/chitosan and graphene nano scrolls. Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.1793

Funding data

HTML
64

Total
97

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Lillian Mambiri, Gabrielle Broussard, Tahsin Zaman

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.