Skip to main content Skip to main navigation menu Skip to site footer

Green synthesis of multi-doped carbon dots from Prickly Pear in the presence of nitrogen, phosphorus, and nitrogen-phosphorus solutions

  • Pablo Alfredo Sánchez-Pineda
  • Itzel Y. López-Pacheco
  • Angel M. Villalba-Rodríguez
  • Reyna Berenice González-González
  • Roberto Parra-Saldívar
  • Hafiz M.N. Iqbal

Abstract

Carbon dots (CDs) have gained popularity in research due to their desirable characteristics in electrical, catalytic, and optical applications. The exploration of unique carbon sources with complex chemical compositions can open avenues for the straightforward production of multi-doped nanomaterials. In particular, prickly pear has distinctive properties and a mineral-rich composition, and high production yields under low water usage conditions. In this work, prickly pears were used to prepare fluorescent green multi-doped CDs through a carbonization technique in the presence of nitrogen, phosphorus, and nitrogen-phosphorus solutions at 180°C for 7 hours. Results from different characterization techniques such as Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), UV-vis, and Potential demonstrated the functionalization of the surface, semi-crystalline structures, a broad absorbance at the UV range with a strong peak at 275 nm, stability in water, and negative surface charge of nitrogen-doped carbon dots (NCDs), phosphorus-doped carbon dots (PCDs), and nitrogen-phosphorus doped carbon dots (NPCDs). Overall, the prickly pear was demonstrated to be a suitable source for synthesizing multi-doped CDs while maintaining nano-synthesis towards sustainable and eco-friendly directions.

Section

References

  1. Arroyave, J. M., Ambrusi, R. E., Robein, Y., Pronsato, M. E., Brizuela, G., Di Nezio, M. S., & Centurión, M. E. (2021). Carbon dots structural characterization by solution-state NMR and UV–visible spectroscopy and DFT modeling. Applied Surface Science, 564, 150195. https://doi.org/10.1016/j.apsusc.2021.150195
  2. Bao, R., Chen, Z., Zhao, Z., Sun, X., Zhang, J., Hou, L., & Yuan, C. (2018). Green and Facile Synthesis of Nitrogen and Phosphorus Co-Doped Carbon Quantum Dots towards Fluorescent Ink and Sensing Applications. Nanomaterials, 8(6), 386. https://doi.org/10.3390/nano8060386
  3. Batool, M., Junaid, H. M., Tabassum, S., Kanwal, F., Abid, K., Fatima, Z., & Shah, A. T. (2022). Metal Ion Detection by Carbon Dots—A Review. Critical Reviews in Analytical Chemistry, 52(4), 756–767. https://doi.org/10.1080/10408347.2020.1824117
  4. Beker, S. A., Truskewycz, A., Cole, I., & Ball, A. S. (2020). Green synthesis of Opuntia -derived carbon nanodots for the catalytic decolourization of cationic dyes. New Journal of Chemistry, 44(46), 20001–20012. https://doi.org/10.1039/D0NJ03013A
  5. Cárdenas-Alcaide, M. F., González-González, R. B., Villalba-Rodríguez, A. M., López-Pacheco, I. Y., Parra-Saldívar, R., & Iqbal, H. M. N. (2023). Nanofabrication and characterization of green-emitting N-doped carbon dots derived from pulp-free lemon juice extract. Nanofabrication, 8. https://doi.org/10.37819/nanofab.008.299
  6. Chandra, S., Chowdhuri, A. R., Laha, D., & Sahu, S. K. (2018). Fabrication of nitrogen‐ and phosphorous‐doped carbon dots by the pyrolysis method for iodide and iron(III) sensing. Luminescence, 33(2), 336–344. https://doi.org/10.1002/bio.3418
  7. Cota-Sánchez, J. H. (2016). Nutritional Composition of the Prickly Pear ( Opuntia ficus-indica ) Fruit. In Nutritional Composition of Fruit Cultivars (pp. 691–712). Elsevier. https://doi.org/10.1016/B978-0-12-408117-8.00028-3
  8. Cui, L., Ren, X., Sun, M., Liu, H., & Xia, L. (2021). Carbon Dots: Synthesis, Properties and Applications. Nanomaterials, 11(12), 3419. https://doi.org/10.3390/nano11123419
  9. De, B., & Karak, N. (2013). A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances, 3(22), 8286. https://doi.org/10.1039/c3ra00088e
  10. Ezati, P., Rhim, J.-W., Molaei, R., Priyadarshi, R., Roy, S., Min, S., Kim, Y. H., Lee, S.-G., & Han, S. (2022). Preparation and characterization of B, S, and N-doped glucose carbon dots: Antibacterial, antifungal, and antioxidant activity. Sustainable Materials and Technologies, 32, e00397. https://doi.org/10.1016/j.susmat.2022.e00397
  11. González-González, R. B., González, L. T., Madou, M., Leyva-Porras, C., Martinez-Chapa, S. O., & Mendoza, A. (2022). Synthesis, Purification, and Characterization of Carbon Dots from Non-Activated and Activated Pyrolytic Carbon Black. Nanomaterials, 12(3). https://doi.org/10.3390/nano12030298
  12. González-González, R. B., Morales-Murillo, M. B., Martínez-Prado, M. A., Melchor-Martínez, E. M., Ahmed, I., Bilal, M., Parra-Saldívar, R., & Iqbal, H. M. N. (2022). Carbon dots-based nanomaterials for fluorescent sensing of toxic elements in environmental samples: Strategies for enhanced performance. Chemosphere, 300, 134515. https://doi.org/10.1016/j.chemosphere.2022.134515
  13. González-González, R. B., Parra-Saldívar, R., Ramirez-Mendoza, R. A., & Iqbal, H. M. N. (2022). Carbon dots as a new fluorescent nanomaterial with switchable sensing potential and its sustainable deployment for metal sensing applications. Materials Letters, 309, 131372. https://doi.org/10.1016/j.matlet.2021.131372
  14. Hu, Y., Yang, J., Tian, J., & Yu, J.-S. (2015). How do nitrogen-doped carbon dots generate from molecular precursors? An investigation of the formation mechanism and a solution-based large-scale synthesis. Journal of Materials Chemistry B, 3(27), 5608–5614. https://doi.org/10.1039/C5TB01005E
  15. Humaera, N. A., Fahri, A. N., Armynah, B., & Tahir, D. (2021). Natural source of carbon dots from part of a plant and its applications: a review. Luminescence, 36(6), 1354–1364. https://doi.org/10.1002/bio.4084
  16. Jiang, L., Ding, H., Xu, M., Hu, X., Li, S., Zhang, M., Zhang, Q., Wang, Q., Lu, S., Tian, Y., & Bi, H. (2020). UV–Vis–NIR Full‐Range Responsive Carbon Dots with Large Multiphoton Absorption Cross Sections and Deep‐Red Fluorescence at Nucleoli and In Vivo. Small, 16(19), 2000680. https://doi.org/10.1002/smll.202000680
  17. Kalaiyarasan, G., Joseph, J., & Kumar, P. (2020). Phosphorus-Doped Carbon Quantum Dots as Fluorometric Probes for Iron Detection. ACS Omega, 5(35), 22278–22288. https://doi.org/10.1021/acsomega.0c02627
  18. Kamali, S. R., Chen, C.-N., Agrawal, D. C., & Wei, T.-H. (2021). Sulfur-doped carbon dots synthesis under microwave irradiation as turn-off fluorescent sensor for Cr(III). Journal of Analytical Science and Technology, 12(1), 48. https://doi.org/10.1186/s40543-021-00298-y
  19. Liao, J., Yao, Y., Lee, C.-H., Wu, Y., & Li, P. (2021). In Vivo Biodistribution, Clearance, and Biocompatibility of Multiple Carbon Dots Containing Nanoparticles for Biomedical Application. Pharmaceutics, 13(11). https://doi.org/10.3390/pharmaceutics13111872
  20. Liu, H., Ding, J., Zhang, K., & Ding, L. (2019). Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis. TrAC Trends in Analytical Chemistry, 118, 315–337. https://doi.org/10.1016/j.trac.2019.05.051
  21. Miao, S., Liang, K., Zhu, J., Yang, B., Zhao, D., & Kong, B. (2020). Hetero-atom-doped carbon dots: Doping strategies, properties and applications. Nano Today, 33, 100879. https://doi.org/10.1016/j.nantod.2020.100879
  22. Mondal, T. K., Dinda, D., & Saha, S. K. (2018). Nitrogen, sulphur co-doped graphene quantum dot: An excellent sensor for nitroexplosives. Sensors and Actuators B: Chemical, 257, 586–593. https://doi.org/10.1016/j.snb.2017.11.012
  23. Najaflu, M., Shahgolzari, M., Bani, F., & Khosroushahi, A. Y. (2022). Green Synthesis of Near-Infrared Copper-Doped Carbon Dots from Alcea for Cancer Photothermal Therapy. ACS Omega, 7(38), 34573–34582. https://doi.org/10.1021/acsomega.2c04484
  24. Neupane, D., Mayer, J. A., Niechayev, N. A., Bishop, C. D., & Cushman, J. C. (2021). Five‐year field trial of the biomass productivity and water input response of cactus pear ( Opuntia spp.) as a bioenergy feedstock for arid lands. GCB Bioenergy, 13(4), 719–741. https://doi.org/10.1111/gcbb.12805
  25. Papaioannou, N., Marinovic, A., Yoshizawa, N., Goode, A. E., Fay, M., Khlobystov, A., Titirici, M.-M., & Sapelkin, A. (2018). Structure and solvents effects on the optical properties of sugar-derived carbon nanodots. Scientific Reports, 8(1), 6559. https://doi.org/10.1038/s41598-018-25012-8
  26. Park, Y., Kim, Y., Chang, H., Won, S., Kim, H., & Kwon, W. (2020). Biocompatible nitrogen-doped carbon dots: synthesis, characterization, and application. Journal of Materials Chemistry B, 8(39), 8935–8951. https://doi.org/10.1039/D0TB01334J
  27. Qu, D., Zheng, M., Zhang, L., Zhao, H., Xie, Z., Jing, X., Haddad, R. E., Fan, H., & Sun, Z. (2014). Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Scientific Reports, 4(1), 5294. https://doi.org/10.1038/srep05294
  28. Qu, J., Zhang, X., Liu, Y., Xie, Y., Cai, J., Zha, G., & Jing, S. (2020). N, P-co-doped carbon dots as a dual-mode colorimetric/ratiometric fluorescent sensor for formaldehyde and cell imaging via an aminal reaction-induced aggregation process. Microchimica Acta, 187(6), 355. https://doi.org/10.1007/s00604-020-04337-0
  29. Rather, S. ullah. (2019). Hydrogen uptake of manganese oxide-multiwalled carbon nanotube composites. International Journal of Hydrogen Energy, 44(1), 325–331. https://doi.org/10.1016/j.ijhydene.2018.03.009
  30. Sabet, M., & Mahdavi, K. (2019). Green synthesis of high photoluminescence nitrogen-doped carbon quantum dots from grass via a simple hydrothermal method for removing organic and inorganic water pollutions. Applied Surface Science, 463, 283–291. https://doi.org/10.1016/j.apsusc.2018.08.223
  31. Sadhanala, H. K., Pagidi, S., & Gedanken, A. (2021). High quantum yield boron-doped carbon dots: a ratiometric fluorescent probe for highly selective and sensitive detection of Mg 2+ ions. Journal of Materials Chemistry C, 9(5), 1632–1640. https://doi.org/10.1039/D0TC05081D
  32. Schneider, E. M., Bärtsch, A., Stark, W. J., & Grass, R. N. (2019). Safe One-Pot Synthesis of Fluorescent Carbon Quantum Dots from Lemon Juice for a Hands-On Experience of Nanotechnology. Journal of Chemical Education, 96(3), 540–545. https://doi.org/10.1021/acs.jchemed.8b00114
  33. Shan, X., Chai, L., Ma, J., Qian, Z., Chen, J., & Feng, H. (2014). B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. The Analyst, 139(10), 2322–2325. https://doi.org/10.1039/C3AN02222F
  34. Shangguan, J., Huang, J., He, D., He, X., Wang, K., Ye, R., Yang, X., Qing, T., & Tang, J. (2017). Highly Fe 3+ -Selective Fluorescent Nanoprobe Based on Ultrabright N/P Codoped Carbon Dots and Its Application in Biological Samples. Analytical Chemistry, 89(14), 7477–7484. https://doi.org/10.1021/acs.analchem.7b01053
  35. Singh, V. K., Singh, V., Yadav, P. K., Chandra, S., Bano, D., Kumar, V., Koch, B., Talat, M., & Hasan, S. H. (2018). Bright-blue-emission nitrogen and phosphorus-doped carbon quantum dots as a promising nanoprobe for detection of Cr( vi ) and ascorbic acid in pure aqueous solution and in living cells. New Journal of Chemistry, 42(15), 12990–12997. https://doi.org/10.1039/C8NJ02126K
  36. Tadesse, A., Belachew, N., Hagos, M., & Basavaiah, K. (2021). Synthesis of Fluorescent Nitrogen and Phosphorous Co-doped Carbon Quantum Dots for Sensing of Iron, Cell Imaging and Antioxidant Activities. Journal of Fluorescence, 31(3), 763–774. https://doi.org/10.1007/s10895-021-02696-2
  37. Tammina, S. K., Yang, D., Koppala, S., Cheng, C., & Yang, Y. (2019). Highly photoluminescent N, P doped carbon quantum dots as a fluorescent sensor for the detection of dopamine and temperature. Journal of Photochemistry and Photobiology B: Biology, 194, 61–70. https://doi.org/10.1016/j.jphotobiol.2019.01.004
  38. Truong, H. B., Doan, T. T. L., Hoang, N. T., Van Tam, N., Nguyen, M. K., Trung, L. G., Gwag, J. S., & Tran, N. T. (2024). Tungsten-based nanocatalysts with different structures for visible light responsive photocatalytic degradation of bisphenol A. Journal of Environmental Sciences, 139, 569–588. https://doi.org/10.1016/j.jes.2023.09.028
  39. Upadhyay, P., Mishra, S. K., Purohit, S., Dubey, G. P., Singh Chauhan, B., & Srikrishna, S. (2019). Antioxidant, antimicrobial and cytotoxic potential of silver nanoparticles synthesized using flavonoid rich alcoholic leaves extract of Reinwardtia indica. Drug and Chemical Toxicology, 42(1), 65–75. https://doi.org/10.1080/01480545.2018.1488859
  40. Vasimalai, N., Vilas-Boas, V., Gallo, J., Cerqueira, M. de F., Menéndez-Miranda, M., Costa-Fernández, J. M., Diéguez, L., Espiña, B., & Fernández-Argüelles, M. T. (2018). Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition. Beilstein Journal of Nanotechnology, 9, 530–544. https://doi.org/10.3762/bjnano.9.51
  41. Wang, B., Cai, H., Waterhouse, G. I. N., Qu, X., Yang, B., & Lu, S. (2022). Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. Small Science, 2(6), 2200012. https://doi.org/10.1002/smsc.202200012
  42. Xu, Jingyi, Zhou, Y., Cheng, G., Dong, M., Liu, S., & Huang, C. (2015). Carbon dots as a luminescence sensor for ultrasensitive detection of phosphate and their bioimaging properties. Luminescence, 30(4), 411–415. https://doi.org/10.1002/bio.2752
  43. Xu, Jixiang, Ji, Q., Wang, Y., Wang, C., & Wang, L. (2021). Enhanced photocatalytic H2/H2O2 production and tetracycline degradation performance of CdSe quantum dots supported on K, P, N-co-doped hollow carbon polyhedrons. Chemical Engineering Journal, 426, 130808. https://doi.org/10.1016/j.cej.2021.130808
  44. Xu, Q., Liu, Y., Gao, C., Wei, J., Zhou, H., Chen, Y., Dong, C., Sreeprasad, T. S., Li, N., & Xia, Z. (2015). Synthesis, mechanistic investigation, and application of photoluminescent sulfur and nitrogen co-doped carbon dots. Journal of Materials Chemistry C, 3(38), 9885–9893. https://doi.org/10.1039/C5TC01912E
  45. Yao, Y., Zhang, H., Hu, K., Nie, G., Yang, Y., Wang, Y., Duan, X., & Wang, S. (2022). Carbon dots based photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 10(2), 107336. https://doi.org/10.1016/j.jece.2022.107336
  46. Zenteno., G., . B. I., . J. R., . M. D., . C., & . J. A. (2015). EVALUACIÓN DE AZÚCARES Y FIBRA SOLUBLE EN EL JUGO DE VARIANTES DE TUNAS (Opuntia spp .). Agrociencia, 49, 141–152. https://www.redalyc.org/articulo.oa?id=30236851003
  47. Zhang, L., Wang, H., Hu, Q., Guo, X., Li, L., Shuang, S., Gong, X., & Dong, C. (2019). Carbon quantum dots doped with phosphorus and nitrogen are a viable fluorescent nanoprobe for determination and cellular imaging of vitamin B12 and cobalt(II). Microchimica Acta, 186(8), 506. https://doi.org/10.1007/s00604-019-3617-0
  48. Zhang, Y., Chan, K. F., Wang, B., Chiu, P. W. Y., & Zhang, L. (2018). Spore-derived color-tunable multi-doped carbon nanodots as sensitive nanosensors and intracellular imaging agents. Sensors and Actuators B: Chemical, 271, 128–136. https://doi.org/10.1016/j.snb.2018.05.112
  49. Zhou, X., Zhao, G., Tan, X., Qian, X., Zhang, T., Gui, J., Yang, L., & Xie, X. (2019). Nitrogen-doped carbon dots with high quantum yield for colorimetric and fluorometric detection of ferric ions and in a fluorescent ink. Microchimica Acta, 186(2), 67. https://doi.org/10.1007/s00604-018-3176-9
  50. Zhu, P., Zhao, X., Zhu, Q., Han, X., Tang, Y., Liao, S., Guo, Z., Wang, Z., Bi, W., Xu, Q., Zhang, L., & Xu, M. (2023). Exploring multi-element co-doped carbon dots as dual-mode probes for fluorescence/CT imaging. Chemical Engineering Journal, 470, 144042. https://doi.org/10.1016/j.cej.2023.144042

How to Cite

Green synthesis of multi-doped carbon dots from Prickly Pear in the presence of nitrogen, phosphorus, and nitrogen-phosphorus solutions. (2022). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.1784

How to Cite

Green synthesis of multi-doped carbon dots from Prickly Pear in the presence of nitrogen, phosphorus, and nitrogen-phosphorus solutions. (2022). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.1784

HTML
219

Total
161

Share

Search Panel

Pablo Alfredo Sánchez-Pineda
Google Scholar
Pubmed
JDMFS Journal


Itzel Y. López-Pacheco
Google Scholar
Pubmed
JDMFS Journal


Angel M. Villalba-Rodríguez
Google Scholar
Pubmed
JDMFS Journal


Reyna Berenice González-González
Google Scholar
Pubmed
JDMFS Journal


Roberto Parra-Saldívar
Google Scholar
Pubmed
JDMFS Journal


Hafiz M.N. Iqbal
Google Scholar
Pubmed
JDMFS Journal


Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Pablo Alfredo Sánchez-Pineda, Itzel Y. López-Pacheco, Angel M. Villalba-Rodríguez, Reyna Berenice González-González, Roberto Parra-Saldívar, Hafiz M. N. Iqbal

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Most read articles by the same author(s)