Skip to main content Skip to main navigation menu Skip to site footer

PCL/Fe3O4 magnetic electrospun yarn composites as a novel nanomaterial for biomedical applications

  • Ali Akbar Gharehaghaji
  • Mehdi Sadrjahani
  • Roujin Marefat Guravan
  • Seyedeh Nooshin Banitaba
  • Aref Fakhrali
  • Sanaz Khademolqorani

Abstract

Magnetic composite structures were fabricated by embedding iron oxide nanoparticles (Fe3O4) into polycaprolactone (PCL) nanofibers through an electrospinning process. The PCL nanofibers incorporating 0.5 and 1 wt. % Fe3O4 were electrospun with various yarn and membrane architectures. SEM images of the fabricated fibers revealed diameter increment by raising the Fe3O4 proportion. Additionally, elongation at break, in tandem with the ultimate strength of the electrospun PCL yarn was improved by 63 and 67% through embedding 0.5 and 1 wt. % Fe3O4, respectively. The saturation magnetization results depended on the number of magnetic nanoparticles loaded in the electrospun fibers, as well as the architectural design of the electrospun fibers. The magnetic response of the fibrous yarns was enhanced by increasing the Fe3O4 mass fraction from 0.5 to 1 wt. %. The highest saturation magnetization of 5.38 emu/g was obtained for the electrospun yarn containing 1 wt. % Fe3O4, corroborating 13.6 times greater features than that of the fibrous membrane with a similar chemical composition. The obtained results implied that the as-spun fibrous yarn could be a great candidate as a surgical suture with the release capability of bioactive agents under a magnetic field.

Section

References

  1. Bagheripour, E., Moghadassi, A., & Hosseini, S. M. (2017). Incorporated poly acrylic acid-co-fe3o4 nanoparticles mixed matrix polyethersulfone based nanofiltration membrane in desalination process. International Journal Of Engineering, 30(6), 821-829.
  2. Banitaba, S. N., Ahmed, A. A. Q., Norouzi, M.-R., & Khademolqorani, S. (2023). Biomedical applications of non-layered 2DMs.
  3. Banitaba, S. N., Khademolqorani, S., Jadhav, V. V., Chamanehpour, E., Mishra, Y. K., Mostafavi, E., & Kaushik, A. (2023). Recent progress of bio-based smart wearable sensors for healthcare applications. Materials Today Electronics, 5, 100055. doi:https://doi.org/10.1016/j.mtelec.2023.100055
  4. Banitaba, S. N., Semnani, D., Heydari-Soureshjani, E., Arifeen, W. U., Ko, T. J., Rezaei, B., . . . Kaushik, A. K. (2023). Nanocomposite with fast Li+ ion conductivity: a solvent-free polymer electrolyte reinforced with decorated Fe3O4 nanoparticles. ACS Applied Energy Materials, 6(9), 4704-4714.
  5. Banitaba, S. N., Semnani, D., Heydari-Soureshjani, E., Rezaei, B., & Ensafi, A. A. (2019). Effect of titanium dioxide and zinc oxide fillers on morphology, electrochemical and mechanical properties of the PEO-based nanofibers, applicable as an electrolyte for lithium-ion batteries. Materials Research Express, 6(8), 0850d0856.
  6. Cai, N., Li, C., Han, C., Luo, X., Shen, L., Xue, Y., & Yu, F. (2016). Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application. Applied Surface Science, 369, 492-500.
  7. Chen, X., Fan, K., Liu, Y., Li, Y., Liu, X., Feng, W., & Wang, X. (2022). Recent advances in fluorinated graphene from synthesis to applications: Critical review on functional chemistry and structure engineering. Advanced Materials, 34(1), 2101665.
  8. Cheng, J., Jun, Y., Qin, J., & Lee, S.-H. (2017). Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials, 114, 121-143.
  9. Feng, Y., Shi, Y., Tian, Y., Yang, Y., Wang, J., Guo, H., . . . Li, J. a. (2023). The Collagen-Based Scaffolds for Bone Regeneration: A Journey through Electrospun Composites Integrated with Organic and Inorganic Additives. Processes, 11(7), 2105.
  10. Ge, J., Asmatulu, R., Zhu, B., Zhang, Q., & Yang, S. Y. (2022). Synthesis and Properties of Magnetic Fe(3)O(4)/PCL Porous Biocomposite Scaffolds with Different Sizes and Quantities of Fe(3)O(4) Particles. Bioengineering (Basel), 9(7). doi:10.3390/bioengineering9070278
  11. Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Morshed, M., Nasr-Esfahani, M.-H., & Ramakrishna, S. (2008). Electrospun poly (ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 29(34), 4532-4539.
  12. Hadjianfar, M., Semnani, D., Varshosaz, J., Mohammadi, S., & Tehrani, S. P. R. (2021). 5FU-loaded PCL/Chitosan/Fe3O4 core-shell nanofibers structure: an approach to multi-mode anticancer system. Advanced Pharmaceutical Bulletin, 12(3), 568-582.
  13. Hema, M., & Tamilselvi, P. (2016). Lithium ion conducting PVA: PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler. Journal of Physics and Chemistry of Solids, 96, 42-48.
  14. Jiang, C., Wang, K., Liu, Y., Zhang, C., & Wang, B. (2021). Using wet electrospun PCL/gelatin/CNT yarns to fabricate textile-based scaffolds for vascular tissue engineering. ACS Biomaterials Science & Engineering, 7(6), 2627-2637.
  15. Joshi, M., & Roy, A. (2020). Recent Developments on Antimicrobial Polymer Nanocomposites: Focus on Fibers and Yarns. Nanotechnology in Textiles, 205-266.
  16. Khademolqorani, S., & Banitaba, S. N. (2022). Application of electrosprayed nanoparticles as targeted drug delivery systems: A mini review. Journal of Applied Sciences and Nanotechnology, 2(2), 1-7.
  17. Khademolqorani, S., Zeinal Hamadani, A., & Tavanai, H. (2014). Response Surface Modelling of Electrosprayed Polyacrylonitrile Nanoparticle Size. Journal of Nanoparticles, 2014.
  18. Kumar, P. P. P., & Lim, D.-K. (2022). Gold-polymer nanocomposites for future therapeutic and tissue engineering applications. Pharmaceutics, 14(1), 70.
  19. Kumar, R., Sudhaik, A., Nguyen, V.-H., Van Le, Q., Ahamad, T., Thakur, S., . . . Raizada, P. (2023). Graphene oxide modified K, P co-doped g-C3N4 and CoFe2O4 composite for photocatalytic degradation of antibiotics. Journal of the Taiwan Institute of Chemical Engineers, 150, 105077.
  20. Kumar, R., Sudhaik, A., Sonu, Raizada, P., Nguyen, V.-H., Van Le, Q., . . . Singh, P. (2023). Integrating K and P co-doped g-C3N4 with ZnFe2O4 and graphene oxide for S-scheme-based enhanced adsorption coupled photocatalytic real wastewater treatment. Chemosphere, 337, 139267. doi:https://doi.org/10.1016/j.chemosphere.2023.139267
  21. Kumar, Y., Sudhaik, A., Sharma, K., Raizada, P., Khan, A. A. P., Nguyen, V.-H., . . . Asiri, A. M. (2023). Construction of magnetically separable novel arrow down dual S-scheme ZnIn2S4/BiOCl/FeVO4 heterojunction for improved photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 435, 114326.
  22. Liu, Y., Zhao, Z., Yuan, D., Wang, Y., Dai, Y., Zhu, Y., & Chew, J. W. (2019). Introduction of amino groups into polyphosphazene framework supported on CNT and coated Fe3O4 nanoparticles for enhanced selective U (VI) adsorption. Applied Surface Science, 466, 893-902.
  23. Luo, C., Wang, X., Wang, J., & Pan, K. (2016). One-pot preparation of polyimide/Fe3O4 magnetic nanofibers with solvent resistant properties. Composites Science and Technology, 133, 97-103.
  24. Malikmammadov, E., Tanir, T. E., Kiziltay, A., Hasirci, V., & Hasirci, N. (2018). PCL and PCL-based materials in biomedical applications. Journal of Biomaterials science, Polymer edition, 29(7-9), 863-893.
  25. Meredith, R. (1954). 30—The Torsional Rigidity of Textile Fibres. Journal of the Textile Institute Transactions, 45(7), T489-T503.
  26. Mochane, M. J., Motsoeneng, T. S., Sadiku, E. R., Mokhena, T. C., & Sefadi, J. S. (2019). Morphology and properties of electrospun PCL and its composites for medical applications: A mini review. Applied Sciences, 9(11), 2205.
  27. Nasari, M., Poursharifi, N., Fakhrali, A., Banitaba, S. N., Mohammadi, S., & Semnani, D. (2022). Fabrication of novel PCL/PGS fibrous scaffold containing HA and GO through simultaneous electrospinning-electrospray technique. International Journal of Polymeric Materials and Polymeric Biomaterials, 1-17.
  28. Nochehdehi, A., Thomas, S., Sadri, M., Afghahi, S., & Hadavi, S. M. (2017). Iron oxide biomagnetic nanoparticles (IO-BMNPs); synthesis, characterization and biomedical application–a review. J. Nanomed. Nanotechnol, 8(1), 1-9.
  29. Ou, J., Liu, K., Jiang, J., Wilson, D. A., Liu, L., Wang, F., . . . Peng, F. (2020). Micro‐/nanomotors toward biomedical applications: the recent progress in biocompatibility. Small, 16(27), 1906184.
  30. Podsiadlo, P., Kaushik, A. K., Arruda, E. M., Waas, A. M., Shim, B. S., Xu, J., . . . Ramamoorthy, A. (2007). Ultrastrong and stiff layered polymer nanocomposites. Science, 318(5847), 80-83.
  31. Rezaei, V., Mirzaei, E., Taghizadeh, S.-M., Berenjian, A., & Ebrahiminezhad, A. (2021). Nano iron oxide-PCL composite as an improved soft tissue scaffold. Processes, 9(9), 1559.
  32. Saleh, T. A., Parthasarathy, P., & Irfan, M. (2019). Advanced functional polymer nanocomposites and their use in water ultra-purification. Trends in Environmental Analytical Chemistry, 24, e00067.
  33. Shan, J., Wang, L., Yu, H., Ji, J., Amer, W., Chen, Y., . . . Abbasi, N. (2016). Recent progress in Fe3O4 based magnetic nanoparticles: from synthesis to application. Materials Science and Technology, 32(6), 602-614.
  34. Sonu, Dutta, V., Sudhaik, A., Khan, A. A. P., Ahamad, T., Raizada, P., . . . Singh, P. (2023). GCN/CuFe2O4/SiO2 photocatalyst for photo-Fenton assisted degradation of organic dyes. Materials Research Bulletin, 164, 112238. doi:https://doi.org/10.1016/j.materresbull.2023.112238
  35. Unsoy, G., Gunduz, U., Oprea, O., Ficai, D., Sonmez, M., Radulescu, M., . . . Ficai, A. (2015). Magnetite: from synthesis to applications. Current topics in medicinal chemistry, 15(16), 1622-1640.
  36. Vieira, J., Maurmann, N., Venturini, J., Pranke, P., & Bergmann, C. P. (2022). PCL-coated magnetic Fe3O4 nanoparticles: Production, characterization and viability on stem cells. Materials Today Communications, 31, 103416. doi:https://doi.org/10.1016/j.mtcomm.2022.103416
  37. Wang, G., Zhao, D., Li, N., Wang, X., & Ma, Y. (2018). Drug-loaded poly (ε-caprolactone)/Fe3O4 composite microspheres for magnetic resonance imaging and controlled drug delivery. Journal of Magnetism and Magnetic Materials, 456, 316-323.
  38. Wang, S., Wang, C., Zhang, B., Sun, Z., Li, Z., Jiang, X., & Bai, X. (2010). Preparation of Fe3O4/PVA nanofibers via combining in-situ composite with electrospinning. Materials Letters, 64(1), 9-11.
  39. Yue, C., Li, M., Liu, Y., Fang, Y., Song, Y., Xu, M., & Li, J. (2021). Three-dimensional printing of cellulose nanofibers reinforced PHB/PCL/Fe3O4 magneto-responsive shape memory polymer composites with excellent mechanical properties. Additive Manufacturing, 46, 102146.
  40. Zhang, Z., Guo, L., Wang, Y., Zhao, Y., She, Z., Gao, M., & Guo, Y. (2020). Application of iron oxide (Fe3O4) nanoparticles during the two-stage anaerobic digestion with waste sludge: Impact on the biogas production and the substrate metabolism. Renewable Energy, 146, 2724-2735.

How to Cite

PCL/Fe3O4 magnetic electrospun yarn composites as a novel nanomaterial for biomedical applications. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.1782

How to Cite

PCL/Fe3O4 magnetic electrospun yarn composites as a novel nanomaterial for biomedical applications. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.1782

Funding data

HTML
219

Total
258

Share

Search Panel

Ali Akbar Gharehaghaji
Google Scholar
Pubmed
JDMFS Journal


Mehdi Sadrjahani
Google Scholar
Pubmed
JDMFS Journal


Roujin Marefat Guravan
Google Scholar
Pubmed
JDMFS Journal


Seyedeh Nooshin Banitaba
Google Scholar
Pubmed
JDMFS Journal


Aref Fakhrali
Google Scholar
Pubmed
JDMFS Journal


Sanaz Khademolqorani
Google Scholar
Pubmed
JDMFS Journal


Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Ali Akbar Gharehaghaji, Mehdi Sadrjahani, Roujin Marefat Guravan, Seyedeh Nooshin Banitaba, Aref Fakhrali, Sanaz Khademolqorani

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.