Skip to main content Skip to main navigation menu Skip to site footer

A Comprehensive Review of Nanocomposite PVDF as a Piezoelectric Material: Evaluating Manufacturing Methods, Energy Efficiency and Performance

  • Farzane Memarian
  • Reza Mohammadi
  • Roya Akrami
  • Mahdi Bodaghi
  • Mohammad Fotouhi

Abstract

Given the escalating concerns surrounding high energy consumption during manufacturing and the environmental impact of piezoelectric materials, the pursuit of sustainable alternatives has emerged as a critical challenge in shaping our technological future. In light of this imperative, this review paper investigates the domain of polymeric piezoelectric materials, with a specific focus on Polyvinylidene fluoride (PVDF) as a promising avenue for sustainable piezoelectric materials with a low-energy production process. The primary objective of this investigation is to conduct a comprehensive assessment of the existing research on the manufacturing processes of polymeric piezoelectric materials to enhance piezoelectric properties while minimizing energy-intensive production techniques. Through rigorous evaluation, the effectiveness of each manufacturing method is scrutinized, enabling the identification of the most energy-efficient approaches. This review paper paves the way for sustainable development and advancement of piezoelectric technologies.

Section

References

  1. Abbasipour, M., Khajavi, R., Yousefi, A. A., Yazdanshenas, M. E., & Razaghian, F. (2017). The piezoelectric response of electrospun PVDF nanofibers with graphene oxide, graphene, and halloysite nanofillers: a comparative study. Journal of Materials Science: Materials in Electronics, 28, 15942-15952.
  2. Abbasipour, M., Khajavi, R., Yousefi, A. A., Yazdanshenas, M. E., Razaghian, F., & Akbarzadeh, A. (2019). Improving piezoelectric and pyroelectric properties of electrospun PVDF nanofibers using nanofillers for energy harvesting application. Polymers for Advanced Technologies, 30(2), 279-291.
  3. Abolhasani, M. M., Shirvanimoghaddam, K., & Naebe, M. (2017). PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Composites Science and Technology, 138, 49-56.
  4. Al-Saygh, A., Ponnamma, D., AlMaadeed, M. A., Vijayan P, P., Karim, A., & Hassan, M. K. (2017). Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polymers, 9(2), 33.
  5. Ali, T., & Khan, F. U. (2021). A silicone based piezoelectric and electromagnetic hybrid vibration energy harvester. Journal of Micromechanics and Microengineering, 31(5), 055003.
  6. Andò, B., Baglio, S., Bulsara, A. R., Emery, T., Marletta, V., & Pistorio, A. (2017). Low-cost inkjet printing technology for the rapid prototyping of transducers. Sensors, 17(4), 748.
  7. Anwar, S., Hassanpour Amiri, M., Jiang, S., Abolhasani, M. M., Rocha, P. R., & Asadi, K. (2021). Piezoelectric nylon‐11 fibers for electronic textiles, energy harvesting and sensing. Advanced Functional Materials, 31(4), 2004326.
  8. Badatya, S., Kumar, A., Sharma, C., Srivastava, A. K., Chaurasia, J. P., & Gupta, M. K. (2021). Transparent flexible graphene quantum dot-(PVDF-HFP) piezoelectric nanogenerator. Materials Letters, 290, 129493.
  9. Baheti, V., Militky, J., & Marsalkova, M. (2013). Mechanical properties of poly lactic acid composite films reinforced with wet milled jute nanofibers. Polymer Composites, 34(12), 2133-2141.
  10. Bakar, E. A., Mohamed, M. A., Ooi, P. C., Wee, M. M. R., Dee, C. F., & Majlis, B. Y. (2018). Fabrication of indium-tin-oxide free, all-solution-processed flexible nanogenerator device using nanocomposite of barium titanate and graphene quantum dots in polyvinylidene fluoride polymer matrix. Organic Electronics, 61, 289-295.
  11. Barstugan, R., Barstugan, M., & Ozaytekin, I. (2019). PBO/graphene added β-PVDF piezoelectric composite nanofiber production. Composites Part B: Engineering, 158, 141-148.
  12. Batra, A., Sampson, J., Davis, A., Currie, J., & Vaseashta, A. (2023). Electrospun nanofibers doped with PVDF and PLZT nanoparticles for potential biomedical and energy harvesting applications. Journal of Materials Science: Materials in Electronics, 34(22), 1654. doi:10.1007/s10854-023-11066-6
  13. Bernard, F., Gimeno, L., Viala, B., Gusarov, B., & Cugat, O. (2017). Direct piezoelectric coefficient measurements of PVDF and PLLA under controlled strain and stress. Paper presented at the Proceedings.
  14. Bodaghi, M., Serjouei, A., Zolfagharian, A., Fotouhi, M., Rahman, H., & Durand, D. (2020). Reversible energy absorbing meta-sandwiches by FDM 4D printing. International Journal of Mechanical Sciences, 173, 105451. doi:https://doi.org/10.1016/j.ijmecsci.2020.105451
  15. Bodkhe, S., Noonan, C., Gosselin, F. P., & Therriault, D. (2018). Coextrusion of multifunctional smart sensors. Advanced engineering materials, 20(10), 1800206.
  16. Bodkhe, S., Turcot, G., Gosselin, F. P., & Therriault, D. (2017). One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Applied Materials & Interfaces, 9(24), 20833-20842.
  17. Brown, T. W., Bischof-Niemz, T., Blok, K., Breyer, C., Lund, H., & Mathiesen, B. V. (2018). Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems’. Renewable and sustainable energy reviews, 92, 834-847.
  18. Calavalle, F., Zaccaria, M., Selleri, G., Cramer, T., Fabiani, D., & Fraboni, B. (2020). Piezoelectric and electrostatic properties of electrospun PVDF‐TrFE nanofibers and their role in electromechanical transduction in nanogenerators and strain sensors. Macromolecular Materials and Engineering, 305(7), 2000162.
  19. Cardoso, V. F., Minas, G., & Lanceros-Méndez, S. (2013). Multilayer spin-coating deposition of poly (vinylidene fluoride) films for controlling thickness and piezoelectric response. Sensors and Actuators A: Physical, 192, 76-80.
  20. Chang, Y., Yin, B., Qiu, Y., Zhang, H., Lei, J., Zhao, Y., . . . Hu, L. (2016). ZnO nanorods array/BaTiO 3 coating layer composite structure nanogenerator. Journal of Materials Science: Materials in Electronics, 27, 3773-3777.
  21. Chen, C., Cai, F., Zhu, Y., Liao, L., Qian, J., Yuan, F.-G., & Zhang, N. (2019). 3D printing of electroactive PVDF thin films with high β-phase content. Smart Materials and Structures, 28(6), 065017.
  22. Chen, Y., Zhou, J., Li, Y., Chen, C., Jia, B., Guo, H., . . . Wu, K. (2022). Nanoscale Detection of Interfacial Charge Mobility in BaTiO3/Polyvinylidene Fluoride Nanocomposites. ACS Applied Nano Materials, 5(4), 5906-5914.
  23. Chen, Z., Song, X., Lei, L., Chen, X., Fei, C., Chiu, C. T., . . . Shung, K. (2016). 3D printing of piezoelectric element for energy focusing and ultrasonic sensing. Nano Energy, 27, 78-86.
  24. Cherumannil Karumuthil, S., Prabha Rajeev, S., Valiyaneerilakkal, U., Athiyanathil, S., & Varghese, S. (2019). Electrospun poly (vinylidene fluoride-trifluoroethylene)-based polymer nanocomposite fibers for piezoelectric nanogenerators. ACS applied materials & interfaces, 11(43), 40180-40188.
  25. Choi, E. S., Kim, H. C., Muthoka, R. M., Panicker, P. S., Agumba, D. O., & Kim, J. (2021). Aligned cellulose nanofiber composite made with electrospinning of cellulose nanofiber-polyvinyl alcohol and its vibration energy harvesting. Composites Science and Technology, 209, 108795.
  26. Choi, M., Murillo, G., Hwang, S., Kim, J. W., Jung, J. H., Chen, C.-Y., & Lee, M. (2017). Mechanical and electrical characterization of PVDF-ZnO hybrid structure for application to nanogenerator. Nano Energy, 33, 462-468.
  27. Chung, M. H., Yoo, S., Kim, H.-J., Yoo, J., Han, S.-Y., Yoo, K.-H., & Jeong, H. (2019). Enhanced output performance on LbL multilayer PVDF-TrFE piezoelectric films for charging supercapacitor. Scientific Reports, 9(1), 6581. doi:10.1038/s41598-019-43098-6
  28. Correia, D. M., Ribeiro, C., Sencadas, V., Vikingsson, L., Gasch, M. O., Ribelles, J. G., . . . Lanceros-Méndez, S. (2016). Strategies for the development of three dimensional scaffolds from piezoelectric poly (vinylidene fluoride). Materials & Design, 92, 674-681.
  29. Cui, H., Hensleigh, R., Yao, D., Maurya, D., Kumar, P., Kang, M. G., . . . Zheng, X. (2019). Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nature materials, 18(3), 234-241.
  30. Curie, J., & Curie, P. (1880). Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de minéralogie, 3(4), 90-93.
  31. Curry, E. J., Le, T. T., Das, R., Ke, K., Santorella, E. M., Paul, D., . . . Borges, E. R. (2020). Biodegradable nanofiber-based piezoelectric transducer. Proceedings of the National Academy of Sciences, 117(1), 214-220.
  32. Dai, Z., Wang, N., Yu, Y., Lu, Y., Jiang, L., Zhang, D.-A., . . . Long, Y.-Z. (2021). One-step preparation of a core-Spun Cu/P (VDF-TrFE) nanofibrous yarn for wearable smart textile to monitor human movement. ACS Applied Materials & Interfaces, 13(37), 44234-44242.
  33. Damaraju, S. M., Shen, Y., Elele, E., Khusid, B., Eshghinejad, A., Li, J., . . . Arinzeh, T. L. (2017). Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 149, 51-62.
  34. Datta, A., Choi, Y. S., Chalmers, E., Ou, C., & Kar‐Narayan, S. (2017). Piezoelectric nylon‐11 nanowire arrays grown by template wetting for vibrational energy harvesting applications. Advanced Functional Materials, 27(2), 1604262.
  35. Deng, W., Yang, T., Jin, L., Yan, C., Huang, H., Chu, X., . . . Gao, Y. (2019). Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 55, 516-525.
  36. Dutta, B., Bose, N., Kar, E., Das, S., & Mukherjee, S. (2017). Smart, lightweight, flexible NiO/poly (vinylidene flouride) nanocomposites film with significantly enhanced dielectric, piezoelectric and EMI shielding properties. Journal of Polymer Research, 24, 1-15.
  37. Dutta, B., Kar, E., Bose, N., & Mukherjee, S. (2018). NiO@ SiO2/PVDF: A flexible polymer nanocomposite for a high performance human body motion-based energy harvester and tactile e-skin mechanosensor. ACS Sustainable Chemistry & Engineering, 6(8), 10505-10516.
  38. Ekbote, G. S., Khalifa, M., Mahendran, A., & Anandhan, S. (2021). Cationic surfactant assisted enhancement of dielectric and piezoelectric properties of PVDF nanofibers for energy harvesting application. Soft matter, 17(8), 2215-2222.
  39. El Achaby, M., Arrakhiz, F., Vaudreuil, S., Essassi, E., & Qaiss, A. (2012). Piezoelectric β-polymorph formation and properties enhancement in graphene oxide–PVDF nanocomposite films. Applied Surface Science, 258(19), 7668-7677.
  40. Elnabawy, E., Farag, M., Soliman, A., Mahmoud, K., Shehata, N., Nair, R., . . . Khaliq, J. (2021). Solution blow spinning of piezoelectric nanofiber mat for detecting mechanical and acoustic signals. Journal of applied polymer science, 138(45), 51322.
  41. Fakhri, P., Amini, B., Bagherzadeh, R., Kashfi, M., Latifi, M., Yavari, N., . . . Kong, L. (2019). Flexible hybrid structure piezoelectric nanogenerator based on ZnO nanorod/PVDF nanofibers with improved output. RSC advances, 9(18), 10117-10123.
  42. Fang, J., & Lin, T. (2019). Energy harvesting properties of electrospun nanofibers: IOP Publishing.
  43. Fashandi, H., Abolhasani, M. M., Sandoghdar, P., Zohdi, N., Li, Q., & Naebe, M. (2016). Morphological changes towards enhancing piezoelectric properties of PVDF electrical generators using cellulose nanocrystals. Cellulose, 23, 3625-3637.
  44. Feng, W., Chen, Y., Wang, W., & Yu, D. (2022). A waterproof and breathable textile pressure sensor with high sensitivity based on PVDF/ZnO hierarchical structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 633, 127890.
  45. Feng, Z., Wang, K., Liu, Y., Han, B., & Yu, D.-G. (2023). Piezoelectric Enhancement of Piezoceramic Nanoparticle-Doped PVDF/PCL Core-Sheath Fibers. Nanomaterials, 13(7). doi:10.3390/nano13071243
  46. Fotouhi, S., Akrami, R., Ferreira-Green, K., Naser, G. A. M., Fotouhi, M., & Fragassa, C. (2019). Piezoelectric PVDF sensor as a reliable device for strain/load monitoring of engineering structures. IOP Conference Series: Materials Science and Engineering, 659(1), 012085. doi:10.1088/1757-899X/659/1/012085
  47. Fotouhi, S., Fotouhi, M., Pavlovic, A., & Djordjevic, N. (2018). Investigating the Pre-Damaged PZT Sensors under Impact Traction. Journal of Marine Science and Engineering, 6(4). doi:10.3390/jmse6040142
  48. Fu, G., Shi, Q., He, Y., Xie, L., & Liang, Y. (2022). Electroactive and photoluminescence of electrospun P (VDF-HFP) composite nanofibers with Eu3+ complex and BaTiO3 nanoparticles. Polymer, 240, 124496.
  49. Fu, G., Shi, Q., Liang, Y., He, Y., Xue, R., He, S., . . . Zhou, R. (2022). Eu3+-Doped Electrospun Polyvinylidene Fluoride–Hexafluoropropylene/Graphene Oxide Multilayer Composite Nanofiber for the Fabrication of Flexible Pressure Sensors. ACS omega, 7(27), 23521-23531.
  50. Fu, J., Hou, Y., Gao, X., Zheng, M., & Zhu, M. (2018). Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density. Nano Energy, 52, 391-401.
  51. Fu, J., Hou, Y., Zheng, M., & Zhu, M. (2020). Flexible piezoelectric energy harvester with extremely high power generation capability by sandwich structure design strategy. ACS applied materials & interfaces, 12(8), 9766-9774.
  52. Garain, S., Jana, S., Sinha, T. K., & Mandal, D. (2016). Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS applied materials & interfaces, 8(7), 4532-4540.
  53. Gavrilyatchenko, V., Semenchev, A., & Fresenko, E. (1994). Dielectric, elastic and piezoelectric constants of PbTiO3 single crystals. Ferroelectrics, 158(1), 31-35.
  54. Gebrekrstos, A., Madras, G., & Bose, S. (2018). Piezoelectric response in electrospun poly (vinylidene fluoride) fibers containing fluoro-doped graphene derivatives. ACS omega, 3(5), 5317-5326.
  55. Gholizadeh, A., Najafabadi, M. A., Saghafi, H., & Mohammadi, R. (2018). Considering damages to open-holed composite laminates modified by nanofibers under the three-point bending test. Polymer Testing, 70, 363-377. doi:https://doi.org/10.1016/j.polymertesting.2018.07.021
  56. Ghosh, S. K., Biswas, A., Sen, S., Das, C., Henkel, K., Schmeisser, D., & Mandal, D. (2016). Yb3+ assisted self-polarized PVDF based ferroelectretic nanogenerator: A facile strategy of highly efficient mechanical energy harvester fabrication. Nano Energy, 30, 621-629. doi:https://doi.org/10.1016/j.nanoen.2016.10.042
  57. Ghosh, S. K., & Mandal, D. (2018). Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor. Nano Energy, 53, 245-257.
  58. Godard, N., Mahjoub, M. A., Girod, S., Schenk, T., Glinšek, S., & Defay, E. (2020). On the importance of pyrolysis for inkjet-printed oxide piezoelectric thin films. Journal of Materials Chemistry C, 8(11), 3740-3747.
  59. Gomes, J., Nunes, J. S., Sencadas, V., & Lanceros-Méndez, S. (2010). Influence of the β-phase content and degree of crystallinity on the piezo-and ferroelectric properties of poly (vinylidene fluoride). Smart Materials and Structures, 19(6), 065010.
  60. Guan, X., Xu, B., & Gong, J. (2020). Hierarchically architected polydopamine modified BaTiO3@ P (VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy, 70, 104516.
  61. Guo, J., Nie, M., & Wang, Q. (2021). Self-Poling Polyvinylidene Fluoride-Based Piezoelectric Energy Harvester Featuring Highly Oriented β-Phase Structured at Multiple Scales. ACS Sustainable Chemistry & Engineering, 9(1), 499-509. doi:10.1021/acssuschemeng.0c07802
  62. Haddadi, S. A., Ramazani SA, A., Talebi, S., Fattahpour, S., & Hasany, M. (2017). Investigation of the effect of nanosilica on rheological, thermal, mechanical, structural, and piezoelectric properties of poly (vinylidene fluoride) nanofibers fabricated using an electrospinning technique. Industrial & Engineering Chemistry Research, 56(44), 12596-12607.
  63. Haji Abdolrasouli, M., Abdollahi, H., & Samadi, A. (2022). PVDF nanofibers containing GO-supported TiO2–Fe3O4 nanoparticle-nanosheets: piezoelectric and electromagnetic sensitivity. Journal of Materials Science: Materials in Electronics, 33(8), 5970-5982.
  64. Han, J., Li, D., Zhao, C., Wang, X., Li, J., & Wu, X. (2019). Highly sensitive impact sensor based on PVDF-TrFE/Nano-ZnO composite thin film. Sensors, 19(4), 830.
  65. Han, R., Zheng, L., Li, G., Chen, G., Ma, S., Cai, S., & Li, Y. (2021). Self-poled poly (vinylidene fluoride)/MXene piezoelectric energy harvester with boosted power generation ability and the roles of crystalline orientation and polarized interfaces. ACS Applied Materials & Interfaces, 13(39), 46738-46748.
  66. Harstad, S., D’Souza, N., Soin, N., El-Gendy, A. A., Gupta, S., Pecharsky, V. K., . . . Hadimani, R. L. (2017). Enhancement of ?-phase in PVDF films embedded with ferromagnetic Gd5Si4 nanoparticles for piezoelectric energy harvesting. AIP Advances, 7(5), 056411.
  67. Havelka, O., Yalcinkaya, F., Wacławek, S., V. T. Padil, V., Amendola, V., Černík, M., & Torres-Mendieta, R. (2023). Sustainable and scalable development of PVDF-OH Ag/TiOx nanocomposites for simultaneous oil/water separation and pollutant degradation. Environmental Science: Nano, 10(9), 2359-2373. doi:10.1039/D3EN00335C
  68. He, L., Lu, J., Han, C., Liu, X., Liu, J., & Zhang, C. (2022). Electrohydrodynamic pulling consolidated high‐efficiency 3D printing to architect unusual self‐polarized β‐PVDF arrays for advanced piezoelectric sensing. Small, 18(15), 2200114.
  69. He, T., Shi, Q., Wang, H., Wen, F., Chen, T., Ouyang, J., & Lee, C. (2019). Beyond energy harvesting-multi-functional triboelectric nanosensors on a textile. Nano Energy, 57, 338-352.
  70. He, Z., Rault, F., Lewandowski, M., Mohsenzadeh, E., & Salaün, F. (2021). Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers, 13(2), 174.
  71. Hu, P., Yan, L., Zhao, C., Zhang, Y., & Niu, J. (2018). Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property. Composites Science and Technology, 168, 327-335.
  72. Huan, Y., Liu, Y., Yang, Y., & Wu, Y. (2007). Influence of extrusion, stretching and poling on the structural and piezoelectric properties of poly (vinylidene fluoride‐hexafluoropropylene) copolymer films. Journal of applied polymer science, 104(2), 858-862.
  73. Huang, P., Xu, S., Zhong, W., Fu, H., Luo, Y., Xiao, Z., & Zhang, M. (2021). Carbon quantum dots inducing formation of β phase in PVDF-HFP to improve the piezoelectric performance. Sensors and Actuators A: Physical, 330, 112880.
  74. Hwang, G. T., Park, H., Lee, J. H., Oh, S., Park, K. I., Byun, M., . . . No, K. (2014). Self‐powered cardiac pacemaker enabled by flexible single crystalline PMN‐PT piezoelectric energy harvester. Advanced materials, 26(28), 4880-4887.
  75. Indolia, A. P., & Gaur, M. (2013). Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. Journal of thermal analysis and calorimetry, 113, 821-830.
  76. Issa, A. A., Al-Maadeed, M. A., Luyt, A. S., Ponnamma, D., & Hassan, M. K. (2017). Physico-mechanical, dielectric, and piezoelectric properties of PVDF electrospun mats containing silver nanoparticles. C, 3(4), 30.
  77. Jain, A., KJ, P., Sharma, A. K., Jain, A., & PN, R. (2015). Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polymer Engineering & Science, 55(7), 1589-1616.
  78. Jaleh, B., & Jabbari, A. (2014). Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Applied Surface Science, 320, 339-347.
  79. Jana, S., Garain, S., Ghosh, S. K., Sen, S., & Mandal, D. (2016). The preparation of γ-crystalline non-electrically poled photoluminescant ZnO–PVDF nanocomposite film for wearable nanogenerators. Nanotechnology, 27(44), 445403.
  80. Jean-Mistral, C., Basrour, S., & Chaillout, J. (2010). Comparison of electroactive polymers for energy scavenging applications. Smart Materials and Structures, 19(8), 085012.
  81. Jiang, Y., Ye, Y., Yu, J., Wu, Z., Li, W., Xu, J., & Xie, G. (2007). Study of thermally poled and corona charged poly (vinylidene fluoride) films. Polymer Engineering & Science, 47(9), 1344-1350.
  82. Ju, M., Dou, Z., Li, J.-W., Qiu, X., Shen, B., Zhang, D., . . . Wang, K. (2023). Piezoelectric Materials and Sensors for Structural Health Monitoring: Fundamental Aspects, Current Status, and Future Perspectives. Sensors, 23(1), 543.
  83. Jung, W.-S., Do, Y.-H., Kang, M.-G., & Kang, C.-Y. (2013). Energy harvester using PZT nanotubes fabricated by template-assisted method. Current Applied Physics, 13, S131-S134.
  84. Kalimuldina, G., Turdakyn, N., Abay, I., Medeubayev, A., Nurpeissova, A., Adair, D., & Bakenov, Z. (2020a). A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Sensors, 20(18). doi:10.3390/s20185214
  85. Kalimuldina, G., Turdakyn, N., Abay, I., Medeubayev, A., Nurpeissova, A., Adair, D., & Bakenov, Z. (2020b). A review of piezoelectric PVDF film by electrospinning and its applications. Sensors, 20(18), 5214.
  86. Kang, M.-G., Jung, W.-S., Kang, C.-Y., & Yoon, S.-J. (2016). Recent progress on PZT based piezoelectric energy harvesting technologies. Paper presented at the Actuators.
  87. Kapat, K., Shubhra, Q. T., Zhou, M., & Leeuwenburgh, S. (2020). Piezoelectric nano‐biomaterials for biomedicine and tissue regeneration. Advanced Functional Materials, 30(44), 1909045.
  88. Kar, E., Bose, N., Dutta, B., Banerjee, S., Mukherjee, N., & Mukherjee, S. (2019). 2D SnO2 nanosheet/PVDF composite based flexible, self-cleaning piezoelectric energy harvester. Energy conversion and management, 184, 600-608.
  89. Karan, S. K., Bera, R., Paria, S., Das, A. K., Maiti, S., Maitra, A., & Khatua, B. B. (2016). An approach to design highly durable piezoelectric nanogenerator based on self‐poled PVDF/AlO‐rGO flexible nanocomposite with high power density and energy conversion efficiency. Advanced Energy Materials, 6(20), 1601016.
  90. Kawai, H. (1969). The piezoelectricity of poly (vinylidene fluoride). Japanese journal of applied physics, 8(7), 975.
  91. Khalifa, M., Mahendran, A., & Anandhan, S. (2019). Durable, efficient, and flexible piezoelectric nanogenerator from electrospun PANi/HNT/PVDF blend nanocomposite. Polymer Composites, 40(4), 1663-1675.
  92. Kim, H., Fernando, T., Li, M., Lin, Y., & Tseng, T.-L. B. (2018). Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. Journal of Composite Materials, 52(2), 197-206.
  93. Kim, H., Torres, F., Islam, M. T., Islam, M. D., Chavez, L. A., Rosales, C. A. G., . . . Tseng, T.-L. B. (2017). Increased piezoelectric response in functional nanocomposites through multiwall carbon nanotube interface and fused-deposition modeling three-dimensional printing. MRS Communications, 7(4), 960-966.
  94. Kim, H., Torres, F., Wu, Y., Villagran, D., Lin, Y., & Tseng, T.-L. B. (2017). Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Materials and Structures, 26(8), 085027.
  95. Kim, J., Campbell, A. S., de Ávila, B. E.-F., & Wang, J. (2019). Wearable biosensors for healthcare monitoring. Nature biotechnology, 37(4), 389-406.
  96. Kim, J., Yun, S., Mahadeva, S. K., Yun, K., Yang, S. Y., & Maniruzzaman, M. (2010). Paper actuators made with cellulose and hybrid materials. Sensors, 10(3), 1473-1485.
  97. Kitsara, M., Blanquer, A., Murillo, G., Humblot, V., Vieira, S. D. B., Nogués, C., . . . Barrios, L. (2019). Permanently hydrophilic, piezoelectric PVDF nanofibrous scaffolds promoting unaided electromechanical stimulation on osteoblasts. Nanoscale, 11(18), 8906-8917.
  98. Ko, C.-H., Chaiprapat, S., Kim, L.-H., Hadi, P., Hsu, S.-C., & Leu, S.-Y. (2017). Carbon sequestration potential via energy harvesting from agricultural biomass residues in Mekong River basin, Southeast Asia. Renewable and Sustainable Energy Reviews, 68, 1051-1062.
  99. Kochervinskii, V. (2003). Piezoelectricity in crystallizing ferroelectric polymers: Poly (vinylidene fluoride) and its copolymers (A review). Crystallography Reports, 48, 649-675.
  100. Košir, T., & Slavič, J. (2022). Single-process fused filament fabrication 3D-printed high-sensitivity dynamic piezoelectric sensor. Additive Manufacturing, 49, 102482.
  101. Kulkarni, N. D., & Kumari, P. (2023). Development of highly flexible PVDF-TiO2 nanocomposites for piezoelectric nanogenerator applications. Materials Research Bulletin, 157, 112039.
  102. Kumar, B., & Kim, S.-W. (2012). Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy, 1(3), 342-355.
  103. Lee, C., & Tarbutton, J. A. (2014). Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications. Smart materials and structures, 23(9), 095044.
  104. Lee, C., & Tarbutton, J. A. (2019). Polyvinylidene fluoride (PVDF) direct printing for sensors and actuators. The International Journal of Advanced Manufacturing Technology, 104, 3155-3162.
  105. Li, B., Xu, C., Zheng, J., & Xu, C. (2014). Sensitivity of pressure sensors enhanced by doping silver nanowires. Sensors, 14(6), 9889-9899.
  106. Li, H., & Lim, S. (2021). Boosting performance of self-polarized fully printed piezoelectric nanogenerators via modulated strength of hydrogen bonding interactions. Nanomaterials, 11(8), 1908.
  107. Li, J., Chen, S., Liu, W., Fu, R., Tu, S., Zhao, Y., . . . Gu, Y. (2019). High performance piezoelectric nanogenerators based on electrospun ZnO nanorods/poly (vinylidene fluoride) composite membranes. The Journal of Physical Chemistry C, 123(18), 11378-11387.
  108. Li, L., Zhang, M., Rong, M., & Ruan, W. (2014). Studies on the transformation process of PVDF from α to β phase by stretching. Rsc Advances, 4(8), 3938-3943.
  109. Li, R., Zhao, Z., Chen, Z., & Pei, J. (2017). Novel BaTiO3/PVDF composites with enhanced electrical properties modified by calcined BaTiO3 ceramic powders. Materials Express, 7(6), 536-540.
  110. Li, S., & Yuan, J. Lipson Hod (2011),“Ambient wind energy harvesting using cross-flow fluttering,”. Journal of Applied Physics, 109.
  111. Li, X., Ji, D., Yu, B., Ghosh, R., He, J., Qin, X., & Ramakrishna, S. (2021). Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors. Chemical Engineering Journal, 426, 130345.
  112. Li, Z., Wang, Y., & Cheng, Z.-Y. (2006). Electromechanical properties of poly (vinylidene-fluoride-chlorotrifluoroethylene) copolymer. Applied physics letters, 88(6), 062904.
  113. Liang, H., Hao, G., & Olszewski, O. Z. (2021). A review on vibration-based piezoelectric energy harvesting from the aspect of compliant mechanisms. Sensors and Actuators A: Physical, 331, 112743.
  114. Liu, C., Hua, B., You, S., Bu, C., Yu, X., Yu, Z., . . . Li, S. (2015). Self-amplified piezoelectric nanogenerator with enhanced output performance: the synergistic effect of micropatterned polymer film and interweaved silver nanowires. Applied Physics Letters, 106(16), 163901.
  115. Liu, J., Shang, Y., Shao, Z., Liu, X., & Zhang, C. (2021). Three-Dimensional Printing to Translate Simulation to Architecting for Three-Dimensional High Performance Piezoelectric Energy Harvester. Industrial & Engineering Chemistry Research, 61(1), 433-440.
  116. Liu, J., Yang, B., Lu, L., Wang, X., Li, X., Chen, X., & Liu, J. (2020). Flexible and lead-free piezoelectric nanogenerator as self-powered sensor based on electrospinning BZT-BCT/P (VDF-TrFE) nanofibers. Sensors and Actuators A: Physical, 303, 111796.
  117. Liu, X., Liu, J., He, L., Shang, Y., & Zhang, C. (2022). 3D Printed Piezoelectric‐Regulable Cells with Customized Electromechanical Response Distribution for Intelligent Sensing. Advanced Functional Materials, 32(26), 2201274.
  118. Liu, X., Shang, Y., Liu, J., Shao, Z., & Zhang, C. (2022). 3D printing-enabled in-situ orientation of BaTi2O5 nanorods in β-PVDF for high-efficiency piezoelectric energy harvesters. ACS Applied Materials & Interfaces, 14(11), 13361-13368.
  119. Liu, X., Shang, Y., Zhang, J., & Zhang, C. (2021). Ionic liquid-assisted 3D printing of self-polarized β-PVDF for flexible piezoelectric energy harvesting. ACS Applied Materials & Interfaces, 13(12), 14334-14341.
  120. Liu, Z., Li, S., Zhu, J., Mi, L., & Zheng, G. (2022). Fabrication of β-phase-enriched PVDF sheets for self-powered piezoelectric sensing. ACS Applied Materials & Interfaces, 14(9), 11854-11863.
  121. Lu, L., Ding, W., Liu, J., & Yang, B. (2020). Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 78, 105251.
  122. Lu, Q., Liu, L., Lan, X., Liu, Y., & Leng, J. (2016). Dynamic responses of SMA-epoxy composites and application for piezoelectric energy harvesting. Composite Structures, 153, 843-850.
  123. Lutkenhaus, J. L., McEnnis, K., Serghei, A., & Russell, T. P. (2010). Confinement effects on crystallization and curie transitions of poly (vinylidene fluoride-co-trifluoroethylene). Macromolecules, 43(8), 3844-3850.
  124. Ma, Y., Tong, W., Wang, W., An, Q., & Zhang, Y. (2018). Montmorillonite/PVDF-HFP-based energy conversion and storage films with enhanced piezoelectric and dielectric properties. Composites Science and Technology, 168, 397-403.
  125. Machida, O., Shimofuku, A., Tashiro, R., Takeuchi, A., Akiyama, Y., & Ohta, E. (2012). Fabrication of lead zirconate titanate films by inkjet printing. Japanese Journal of Applied Physics, 51(9S1), 09LA11.
  126. Mahapatra, S. D., Mohapatra, P. C., Aria, A. I., Christie, G., Mishra, Y. K., Hofmann, S., & Thakur, V. K. (2021). Piezoelectric materials for energy harvesting and sensing applications: Roadmap for future smart materials. Advanced Science, 8(17), 2100864.
  127. Maity, K., Mahanty, B., Sinha, T. K., Garain, S., Biswas, A., Ghosh, S. K., . . . Mandal, D. (2017). Two‐Dimensional piezoelectric MoS2‐modulated nanogenerator and nanosensor made of poly (vinlydine Fluoride) nanofiber webs for self‐powered electronics and robotics. Energy Technology, 5(2), 234-243.
  128. Malini, V. H., Indumathy, B., Gunasekhar, R., & Prabu, A. A. (2022). A Review on Electrospun PVDF-Doped Metal Oxide Nanoparticles for Sensor Applications. ECS Transactions, 107(1), 14675.
  129. Martins, P., Caparros, C., Gonçalves, R., Martins, P., Benelmekki, M., Botelho, G., & Lanceros-Mendez, S. (2012). Role of nanoparticle surface charge on the nucleation of the electroactive β-poly (vinylidene fluoride) nanocomposites for sensor and actuator applications. The Journal of Physical Chemistry C, 116(29), 15790-15794.
  130. Martins, P., Lopes, A., & Lanceros-Mendez, S. (2014). Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Progress in polymer science, 39(4), 683-706.
  131. Megdich, A., Habibi, M., & Laperrière, L. (2023). A Review on 3D printed piezoelectric energy harvesters: Materials, 3D printing techniques, and applications. Materials Today Communications, 105541.
  132. Mishra, M., Roy, A., Dash, S., & Mukherjee, S. (2018). Flexible nano-GFO/PVDF piezoelectric-polymer nano-composite films for mechanical energy harvesting. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  133. Mohammadi, R., Ahmadi Najafabadi, M., Saghafi, H., Saeedifar, M., & Zarouchas, D. (2021). A quantitative assessment of the damage mechanisms of CFRP laminates interleaved by PA66 electrospun nanofibers using acoustic emission. Composite Structures, 258, 113395. doi:https://doi.org/10.1016/j.compstruct.2020.113395
  134. Mohammadi, R., Akrami, R., Assaad, M., Nasor, M., Imran, A., & Fotouhi, M. (2023). Polysulfone nanofiber-modified composite laminates: Investigation of mode-I fatigue behavior and damage mechanisms. Theoretical and Applied Fracture Mechanics, 127, 104078. doi:https://doi.org/10.1016/j.tafmec.2023.104078
  135. Mohammadi, R., Najafabadi, M. A., Saghafi, H., & Zarouchas, D. (2020a). Fracture and fatigue behavior of carbon/epoxy laminates modified by nanofibers. Composites Part A: Applied Science and Manufacturing, 137, 106015. doi:https://doi.org/10.1016/j.compositesa.2020.106015
  136. Mohammadi, R., Najafabadi, M. A., Saghafi, H., & Zarouchas, D. (2020b). Mode-II fatigue response of AS4/8552 carbon /epoxy composite laminates interleaved by electrospun nanofibers. Thin-Walled Structures, 154, 106811. doi:https://doi.org/10.1016/j.tws.2020.106811
  137. Mohammadpourfazeli, S., Arash, S., Ansari, A., Yang, S., Mallick, K., & Bagherzadeh, R. (2023). Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electro-mechanical properties. RSC Advances, 13(1), 370-387.
  138. Mokhtari, F., Azimi, B., Salehi, M., Hashemikia, S., & Danti, S. (2021). Recent advances of polymer-based piezoelectric composites for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 122, 104669.
  139. Mokhtari, F., Cheng, Z., Raad, R., Xi, J., & Foroughi, J. (2020). Piezofibers to smart textiles: A review on recent advances and future outlook for wearable technology. Journal of Materials Chemistry A, 8(19), 9496-9522.
  140. Mokhtari, F., Latifi, M., & Shamshirsaz, M. (2016). Electrospinning/electrospray of polyvinylidene fluoride (PVDF): piezoelectric nanofibers. The Journal of The Textile Institute, 107(8), 1037-1055.
  141. Motamedi, A. S., Mirzadeh, H., Hajiesmaeilbaigi, F., Bagheri‐Khoulenjani, S., & Shokrgozar, M. A. (2017). Piezoelectric electrospun nanocomposite comprising Au NPs/PVDF for nerve tissue engineering. Journal of Biomedical Materials Research Part A, 105(7), 1984-1993.
  142. Naito, Y., & Uenishi, K. (2019). Electrostatic MEMS vibration energy harvesters inside of tire treads. Sensors, 19(4), 890.
  143. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196.
  144. Ning, H., Hu, N., Kamata, T., Qiu, J., Han, X., Zhou, L. M., . . . Ji, H. (2013). Improved piezoelectric properties of poly (vinylidene fluoride) nanocomposites containing multi-walled carbon nanotubes. Smart materials and structures, 22(6), 065011.
  145. Niu, X., Jia, W., Qian, S., Zhu, J., Zhang, J., Hou, X., . . . He, J. (2018). High-performance PZT-based stretchable piezoelectric nanogenerator. ACS Sustainable Chemistry & Engineering, 7(1), 979-985.
  146. Nunes-Pereira, J., Sencadas, V., Correia, V., Cardoso, V. F., Han, W., Rocha, J. G., & Lanceros-Méndez, S. (2015). Energy harvesting performance of BaTiO3/poly (vinylidene fluoride–trifluoroethylene) spin coated nanocomposites. Composites Part B: Engineering, 72, 130-136.
  147. Ouyang, B., Yilihamu, A., Liu, D., Ouyang, P., Zhang, D., Wu, X., & Yang, S.-T. (2021). Toxicity and environmental impact of multi-walled carbon nanotubes to nitrogen-fixing bacterium Azotobacter chroococcum. Journal of Environmental Chemical Engineering, 9(4), 105291. doi:https://doi.org/10.1016/j.jece.2021.105291
  148. Ouyang, Z.-W., Chen, E.-C., & Wu, T.-M. (2015). Thermal stability and magnetic properties of polyvinylidene fluoride/magnetite nanocomposites. Materials, 8(7), 4553-4564.
  149. Panigrahi, B. K., Sitikantha, D., Bhuyan, A., Panda, H., & Mohanta, K. (2021). Dielectric and ferroelectric properties of PVDF thin film for biomechanical energy harvesting. Materials Today: Proceedings, 41, 335-339.
  150. Paralı, L., Koç, M., & Akça, E. (2023). Fabrication and Characterization of High Performance PVDF-based flexible piezoelectric nanogenerators using PMN-xPT (x:30, 32.5, and 35) particles. Ceramics International, 49(11, Part B), 18388-18396. doi:https://doi.org/10.1016/j.ceramint.2023.02.211
  151. Parangusan, H., Ponnamma, D., & Al-Maadeed, M. A. A. (2018). Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Scientific reports, 8(1), 754.
  152. Parangusan, H., Ponnamma, D., & AlMaadeed, M. A. A. (2017). Flexible tri-layer piezoelectric nanogenerator based on PVDF-HFP/Ni-doped ZnO nanocomposites. RSC advances, 7(79), 50156-50165.
  153. Parangusan, H., Ponnamma, D., & AlMaadeed, M. A. A. (2018). Investigation on the effect of γ-irradiation on the dielectric and piezoelectric properties of stretchable PVDF/Fe–ZnO nanocomposites for self-powering devices. Soft Matter, 14(43), 8803-8813.
  154. Parangusan, H., Ponnamma, D., & AlMaadeed, M. A. A. (2019). Toward high power generating piezoelectric nanofibers: influence of particle size and surface electrostatic interaction of Ce–Fe2O3 and Ce–Co3O4 on PVDF. ACS omega, 4(4), 6312-6323.
  155. Park, K.-I., Xu, S., Liu, Y., Hwang, G.-T., Kang, S.-J. L., Wang, Z. L., & Lee, K. J. (2010). Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano letters, 10(12), 4939-4943.
  156. Park, S., Kim, Y., Jung, H., Park, J.-Y., Lee, N., & Seo, Y. (2017). Energy harvesting efficiency of piezoelectric polymer film with graphene and metal electrodes. Scientific Reports, 7(1), 17290. doi:10.1038/s41598-017-17791-3
  157. Pei, H., Shi, S., Chen, Y., Xiong, Y., & Lv, Q. (2022). Combining solid-state shear milling and FFF 3D-printing strategy to fabricate high-performance biomimetic wearable fish-scale PVDF-based piezoelectric energy harvesters. ACS Applied Materials & Interfaces, 14(13), 15346-15359.
  158. Pei, H., Xie, Y., Xiong, Y., Lv, Q., & Chen, Y. (2021). A novel polarization-free 3D printing strategy for fabrication of poly (Vinylidene fluoride) based nanocomposite piezoelectric energy harvester. Composites Part B: Engineering, 225, 109312.
  159. Peng, L., Jin, X., Niu, J., Wang, W., Wang, H., Shao, H., . . . Lin, T. (2021). High-precision detection of ordinary sound by electrospun polyacrylonitrile nanofibers. Journal of Materials Chemistry C, 9(10), 3477-3485.
  160. Ponnamma, D., & Al-Maadeed, M. A. A. (2019). Influence of BaTiO 3/white graphene filler synergy on the energy harvesting performance of a piezoelectric polymer nanocomposite. Sustainable energy & fuels, 3(3), 774-785.
  161. Ponnamma, D., Aljarod, O., Parangusan, H., & Al-Maadeed, M. A. A. (2020). Electrospun nanofibers of PVDF-HFP composites containing magnetic nickel ferrite for energy harvesting application. Materials Chemistry and Physics, 239, 122257.
  162. Ponnamma, D., & Cabibihan, J. (2019). M. rajan, SS Pethaiah, K. Deshmukh, JP Gogoi, SKK Pasha, MB ahamed, J. Krishnegowda, Bn Chandrashekar, ar Polu, C. Cheng, Synthesis, optimization and applications of ZnO/polymer nanocomposites, Mater. Sci. eng. C, 98, 1210-1240.
  163. Ponnamma, D., Parangusan, H., Tanvir, A., & AlMa'adeed, M. A. A. (2019). Smart and robust electrospun fabrics of piezoelectric polymer nanocomposite for self-powering electronic textiles. Materials & Design, 184, 108176.
  164. Ponnamma, D., Sharma, A. K., Saharan, P., & Al-Maadeed, M. A. A. (2020). Gas Sensing and Power Harvesting Polyvinylidene Fluoride Nanocomposites Containing Hybrid Nanotubes. Journal of Electronic Materials, 49, 2677-2687.
  165. Porter, D. A., Hoang, T. V., & Berfield, T. A. (2017). Effects of in-situ poling and process parameters on fused filament fabrication printed PVDF sheet mechanical and electrical properties. Additive Manufacturing, 13, 81-92.
  166. Pusty, M., Sharma, A., Sinha, L., Chaudhary, A., & Shirage, P. (2017). Comparative study with a unique arrangement to tap piezoelectric output to realize a self poled PVDF based nanocomposite for energy harvesting applications. ChemistrySelect, 2(9), 2774-2782.
  167. Qi, F., Zeng, Z., Yao, J., Cai, W., Zhao, Z., Peng, S., & Shuai, C. (2021). Constructing core-shell structured BaTiO3@ carbon boosts piezoelectric activity and cell response of polymer scaffolds. Materials Science and Engineering: C, 126, 112129.
  168. Rahman, A., Farrok, O., Islam, M. R., & Xu, W. (2020). Recent progress in electrical generators for oceanic wave energy conversion. IEEE Access, 8, 138595-138615.
  169. Rahman, W., Ghosh, S. K., Middya, T. R., & Mandal, D. (2017). Highly durable piezo-electric energy harvester by a super toughened and flexible nanocomposite: effect of laponite nano-clay in poly (vinylidene fluoride). Materials Research Express, 4(9), 095305.
  170. Rajala, S., Siponkoski, T., Sarlin, E., Mettanen, M., Vuoriluoto, M., Pammo, A., . . . Tuukkanen, S. (2016). Cellulose nanofibril film as a piezoelectric sensor material. ACS applied materials & interfaces, 8(24), 15607-15614.
  171. Ramadan, K. S., Sameoto, D., & Evoy, S. (2014). A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Materials and Structures, 23(3), 033001.
  172. Ramasamy, M. S., Rahaman, A., & Kim, B. (2021). Effect of phenyl-isocyanate functionalized graphene oxide on the crystalline phases, mechanical and piezoelectric properties of electrospun PVDF nanofibers. Ceramics International, 47(8), 11010-11021.
  173. Ribeiro, C., Costa, C. M., Correia, D. M., Nunes-Pereira, J., Oliveira, J., Martins, P., . . . Lanceros-Méndez, S. (2018). Electroactive poly (vinylidene fluoride)-based structures for advanced applications. Nature protocols, 13(4), 681-704.
  174. Saeedifar, M., Saghafi, H., Mohammadi, R., & Zarouchas, D. (2021). Temperature dependency of the toughening capability of electrospun PA66 nanofibers for carbon/epoxy laminates. Composites Science and Technology, 216, 109061. doi:https://doi.org/10.1016/j.compscitech.2021.109061
  175. Saghafi, H., Nikbakht, A., Mohammadi, R., & Zarouchas, D. (2021). The Thickness Effect of PSF Nanofibrous Mat on Fracture Toughness of Carbon/Epoxy Laminates. Materials, 14(13). doi:10.3390/ma14133469
  176. Sahu, M., Hajra, S., Lee, K., Deepti, P., Mistewicz, K., & Kim, H. J. (2021). Piezoelectric nanogenerator based on lead-free flexible PVDF-barium titanate composite films for driving low power electronics. Crystals, 11(2), 85.
  177. Samadi, A., Ahmadi, R., & Hosseini, S. M. (2019). Influence of TiO2-Fe3O4-MWCNT hybrid nanotubes on piezoelectric and electromagnetic wave absorption properties of electrospun PVDF nanocomposites. Organic Electronics, 75, 105405.
  178. Samadi, A., Hosseini, S. M., & Mohseni, M. (2018). Investigation of the electromagnetic microwaves absorption and piezoelectric properties of electrospun Fe3O4-GO/PVDF hybrid nanocomposites. Organic Electronics, 59, 149-155.
  179. Sappati, K. K., & Bhadra, S. (2018). Piezoelectric polymer and paper substrates: a review. Sensors, 18(11), 3605.
  180. Scheffler, S., & Poulin, P. (2022). Piezoelectric fibers: processing and challenges. ACS Applied Materials & Interfaces, 14(15), 16961-16982.
  181. Seol, M.-L., Ivaškevičiūtė, R., Ciappesoni, M. A., Thompson, F. V., Moon, D.-I., Kim, S. J., . . . Meyyappan, M. (2018). All 3D printed energy harvester for autonomous and sustainable resource utilization. Nano Energy, 52, 271-278.
  182. Shaik, H., Rachith, S., Rudresh, K., Sheik, A. S., Thulasi Raman, K., Kondaiah, P., & Mohan Rao, G. (2017). Towards β-phase formation probability in spin coated PVDF thin films. Journal of Polymer Research, 24, 1-6.
  183. Shao, H., Chen, G., & He, H. (2021). Elastic wave localization and energy harvesting defined by piezoelectric patches on phononic crystal waveguide. Physics Letters A, 403, 127366.
  184. Shao, H., Wang, H., Cao, Y., Ding, X., Fang, J., Niu, H., . . . Lin, T. (2020). Efficient conversion of sound noise into electric energy using electrospun polyacrylonitrile membranes. Nano Energy, 75, 104956.
  185. Shao, H., Wang, H., Cao, Y., Ding, X., Fang, J., Wang, W., . . . Lin, T. (2021). High‐Performance Voice Recognition Based on Piezoelectric Polyacrylonitrile Nanofibers. Advanced Electronic Materials, 7(6), 2100206.
  186. Sharma, M., Srinivas, V., Madras, G., & Bose, S. (2016). Outstanding dielectric constant and piezoelectric coefficient in electrospun nanofiber mats of PVDF containing silver decorated multiwall carbon nanotubes: Assessing through piezoresponse force microscopy. RSC advances, 6(8), 6251-6258.
  187. Shen, W., & Zhu, S. (2015). Harvesting energy via electromagnetic damper: Application to bridge stay cables. Journal of Intelligent Material Systems and Structures, 26(1), 3-19.
  188. Shepelin, N. A., Lussini, V. C., Fox, P. J., Dicinoski, G. W., Glushenkov, A. M., Shapter, J. G., & Ellis, A. V. (2019). 3D printing of poly (vinylidene fluoride-trifluoroethylene): a poling-free technique to manufacture flexible and transparent piezoelectric generators. MRS Communications, 9(1), 159-164.
  189. Shepelin, N. A., Sherrell, P. C., Goudeli, E., Skountzos, E. N., Lussini, V. C., Dicinoski, G. W., . . . Ellis, A. V. (2020). Printed recyclable and self-poled polymer piezoelectric generators through single-walled carbon nanotube templating. Energy & Environmental Science, 13(3), 868-883. doi:10.1039/C9EE03059J
  190. Shetty, S., Mahendran, A., & Anandhan, S. (2020). Development of a new flexible nanogenerator from electrospun nanofabric based on PVDF/talc nanosheet composites. Soft Matter, 16(24), 5679-5688.
  191. Shi, K., Chai, B., Zou, H., Shen, P., Sun, B., Jiang, P., . . . Huang, X. (2021). Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators. Nano Energy, 80, 105515.
  192. Shin, D.-J., Jeong, S.-J., Seo, C.-E., Cho, K.-H., & Koh, J.-H. (2015). Multi-layered piezoelectric energy harvesters based on PZT ceramic actuators. Ceramics International, 41, S686-S690.
  193. Shin, S.-H., Kim, Y.-H., Jung, J.-Y., Lee, M. H., & Nah, J. (2014). Solvent-assisted optimal BaTiO3 nanoparticles-polymer composite cluster formation for high performance piezoelectric nanogenerators. Nanotechnology, 25(48), 485401.
  194. Shin, S.-H., Kim, Y.-H., Lee, M. H., Jung, J.-Y., & Nah, J. (2014). Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS nano, 8(3), 2766-2773.
  195. Shuai, C., Liu, G., Yang, Y., Qi, F., Peng, S., Yang, W., . . . Qian, G. (2020). A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold. Nano Energy, 74, 104825.
  196. Si, S. K., Karan, S. K., Paria, S., Maitra, A., Das, A. K., Bera, R., . . . Khatua, B. B. (2018). A strategy to develop an efficient piezoelectric nanogenerator through ZTO assisted γ-phase nucleation of PVDF in ZTO/PVDF nanocomposite for harvesting bio-mechanical energy and energy storage application. Materials Chemistry and Physics, 213, 525-537.
  197. Siddiqui, S., Kim, D.-I., Nguyen, M. T., Muhammad, S., Yoon, W.-S., & Lee, N.-E. (2015). High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy, 15, 177-185.
  198. Singh, D., Choudhary, A., & Garg, A. (2018). Flexible and robust piezoelectric polymer nanocomposites based energy harvesters. ACS applied materials & interfaces, 10(3), 2793-2800.
  199. Singh, R. K., Lye, S. W., & Miao, J. (2021). Holistic investigation of the electrospinning parameters for high percentage of β-phase in PVDF nanofibers. Polymer, 214, 123366.
  200. Sinha, T. K., Ghosh, S. K., Maiti, R., Jana, S., Adhikari, B., Mandal, D., & Ray, S. K. (2016). Graphene-silver-induced self-polarized PVDF-based flexible plasmonic nanogenerator toward the realization for new class of self powered optical sensor. ACS applied materials & interfaces, 8(24), 14986-14993.
  201. Smith, M., & Kar-Narayan, S. (2022). Piezoelectric polymers: Theory, challenges and opportunities. International Materials Reviews, 67(1), 65-88.
  202. Song, L., Dai, R., Li, Y., Wang, Q., & Zhang, C. (2021). Polyvinylidene Fluoride Energy Harvester with Boosting Piezoelectric Performance through 3D Printed Biomimetic Bone Structures. ACS Sustainable Chemistry & Engineering, 9(22), 7561-7568.
  203. Song, S., Li, Y., Wang, Q., & Zhang, C. (2021). Boosting piezoelectric performance with a new selective laser sintering 3D printable PVDF/graphene nanocomposite. Composites Part A: Applied Science and Manufacturing, 147, 106452.
  204. Sood, A., Desseigne, M., Dev, A., Maurizi, L., Kumar, A., Millot, N., & Han, S. S. (2023). A Comprehensive Review on Barium Titanate Nanoparticles as a Persuasive Piezoelectric Material for Biomedical Applications: Prospects and Challenges. Small, 19(12), 2206401. doi:https://doi.org/10.1002/smll.202206401
  205. Sorayani Bafqi, M. S., Bagherzadeh, R., & Latifi, M. (2015). Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. Journal of polymer research, 22, 1-9.
  206. Soulestin, T., Ladmiral, V., Dos Santos, F. D., & Ameduri, B. (2017). Vinylidene fluoride-and trifluoroethylene-containing fluorinated electroactive copolymers. How does chemistry impact properties? Progress in Polymer Science, 72, 16-60.
  207. Street, R. M., Minagawa, M., Vengrenyuk, A., & Schauer, C. L. (2019). Piezoelectric electrospun polyacrylonitrile with various tacticities. Journal of Applied Polymer Science, 136(20), 47530.
  208. Su, Y., Chen, C., Pan, H., Yang, Y., Chen, G., Zhao, X., . . . Zhou, Y. (2021). Piezoelectric Textiles: Muscle Fibers Inspired High‐Performance Piezoelectric Textiles for Wearable Physiological Monitoring (Adv. Funct. Mater. 19/2021). Advanced Functional Materials, 31(19), 2170136.
  209. Su, Y., Li, W., Yuan, L., Chen, C., Pan, H., Xie, G., . . . Chen, G. (2021). Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy, 89, 106321.
  210. Sun, J., Guo, H., Ribera, J., Wu, C., Tu, K., Binelli, M., . . . Burgert, I. (2020). Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications. ACS nano, 14(11), 14665-14674.
  211. Sundarakannan, B., Kakimoto, K., & Ohsato, H. (2003). Frequency and temperature dependent dielectric and conductivity behavior of KNbO 3 ceramics. Journal of applied physics, 94(8), 5182-5187.
  212. Surmenev, R. A., Orlova, T., Chernozem, R. V., Ivanova, A. A., Bartasyte, A., Mathur, S., & Surmeneva, M. A. (2019). Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: A review. Nano Energy, 62, 475-506.
  213. Tai, Y., Yang, S., Yu, S., Banerjee, A., Myung, N. V., & Nam, J. (2021). Modulation of piezoelectric properties in electrospun PLLA nanofibers for application-specific self-powered stem cell culture platforms. Nano Energy, 89, 106444.
  214. Tarbuttona, J., Leb, T., Helfrichb, G., & Kirkpatrickb, M. (2017). Phase transformation and shock sensor response of additively manufactured piezoelectric PVDF. Procedia Manufacturing, 10, 982-989.
  215. Tian, G., Deng, W., Gao, Y., Xiong, D., Yan, C., He, X., . . . Zhang, H. (2019). Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy, 59, 574-581.
  216. Tiwari, S., Gaur, A., Kumar, C., & Maiti, P. (2019). Enhanced piezoelectric response in nanoclay induced electrospun PVDF nanofibers for energy harvesting. Energy, 171, 485-492.
  217. Tiwari, S., Gaur, A., Kumar, C., & Maiti, P. (2021). Ionic liquid-based electrospun polymer nanohybrid for energy harvesting. ACS Applied Electronic Materials, 3(6), 2738-2747.
  218. Tiwari, V., & Srivastava, G. (2015). Structural, dielectric and piezoelectric properties of 0–3 PZT/PVDF composites. Ceramics International, 41(6), 8008-8013.
  219. Toroń, B., Szperlich, P., & Kozioł, M. (2020). SbSI composites based on epoxy resin and cellulose for energy harvesting and sensors—The influence of SBSI nanowires conglomeration on piezoelectric properties. Materials, 13(4), 902.
  220. Tuloup, C., Harizi, W., Aboura, Z., Meyer, Y., Khellil, K., & Lachat, R. (2019). On the use of in-situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: A literature review. Composite Structures, 215, 127-149.
  221. Vassiliadis, S. G., & Matsouka, D. (2018). Piezoelectricity: Organic and Inorganic Materials and Applications: BoD–Books on Demand.
  222. Vu, D. L., Le, C. D., & Ahn, K. K. (2022). Functionalized graphene oxide/polyvinylidene fluoride composite membrane acting as a triboelectric layer for hydropower energy harvesting. International Journal of Energy Research, 46(7), 9549-9559.
  223. Vysotskyi, B., Aubry, D., Gaucher, P., Le Roux, X., Parrain, F., & Lefeuvre, E. (2018). Nonlinear electrostatic energy harvester using compensational springs in gravity field. Journal of Micromechanics and Microengineering, 28(7), 074004.
  224. Wahid, F., Khan, T., Hussain, Z., & Ullah, H. (2018). Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. In Applications of nanocomposite materials in drug delivery (pp. 701-735): Elsevier.
  225. Wan, C., & Bowen, C. R. (2017). Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro-and macro-structure. Journal of Materials Chemistry A, 5(7), 3091-3128.
  226. Wan, X., Cong, H., Jiang, G., Liang, X., Liu, L., & He, H. (2023). A Review on PVDF Nanofibers in Textiles for Flexible Piezoelectric Sensors. ACS Applied Nano Materials.
  227. Wang, S., Shao, H.-Q., Liu, Y., Tang, C.-Y., Zhao, X., Ke, K., . . . Yang, W. (2021). Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Composites Science and Technology, 202, 108600.
  228. Wang, Y., Zhu, M., Wei, X., Yu, J., Li, Z., & Ding, B. (2021). A dual-mode electronic skin textile for pressure and temperature sensing. Chemical Engineering Journal, 425, 130599.
  229. Wu, C.-M., Chou, M.-H., & Zeng, W.-Y. (2018). Piezoelectric response of aligned electrospun polyvinylidene fluoride/carbon nanotube nanofibrous membranes. Nanomaterials, 8(6), 420.
  230. Wu, L., Jin, Z., Liu, Y., Ning, H., Liu, X., Alamusi, & Hu, N. (2022). Recent advances in the preparation of PVDF-based piezoelectric materials. 11(1), 1386-1407. doi:doi:10.1515/ntrev-2022-0082
  231. Wu, L., Jin, Z., Liu, Y., Ning, H., Liu, X., & Hu, N. (2022). Recent advances in the preparation of PVDF-based piezoelectric materials. Nanotechnology Reviews, 11(1), 1386-1407.
  232. Wu, L., Jing, M., Liu, Y., Ning, H., Liu, X., Liu, S., . . . Liu, L. (2019). Power generation by PVDF-TrFE/graphene nanocomposite films. Composites Part B: Engineering, 164, 703-709.
  233. Wu, L., Yuan, W., Hu, N., Wang, Z., Chen, C., Qiu, J., . . . Li, Y. (2014). Improved piezoelectricity of PVDF-HFP/carbon black composite films. Journal of Physics D: Applied Physics, 47(13), 135302.
  234. Wu, Y., Qu, J., Daoud, W. A., Wang, L., & Qi, T. (2019). Flexible composite-nanofiber based piezo-triboelectric nanogenerators for wearable electronics. Journal of Materials Chemistry A, 7(21), 13347-13355.
  235. Xia, W., Che, P., Ren, M., Zhang, X., & Cao, C. (2023). A flexible P (VDF-TrFE) piezoelectric sensor array for orientation identification of impulse stress. Organic Electronics, 114, 106729.
  236. Xue, J., Wu, L., Hu, N., Qiu, J., Chang, C., Atobe, S., . . . Ning, H. (2012). Evaluation of piezoelectric property of reduced graphene oxide (rGO)–poly (vinylidene fluoride) nanocomposites. Nanoscale, 4(22), 7250-7255.
  237. Xue, L., Fan, W., Yu, Y., Dong, K., Liu, C., Sun, Y., . . . Rong, K. (2021). A novel strategy to fabricate core-sheath structure piezoelectric yarns for wearable energy harvesters. Advanced Fiber Materials, 3(4), 239-250.
  238. Yadav, P., Raju, T. D., & Badhulika, S. (2020). Self-poled hBN-PVDF nanofiber mat-based low-cost, ultrahigh-performance piezoelectric nanogenerator for biomechanical energy harvesting. ACS Applied Electronic Materials, 2(7), 1970-1980.
  239. Yagi, T., Tatemoto, M., & Sako, J.-i. (1980). Transition behavior and dielectric properties in trifluoroethylene and vinylidene fluoride copolymers. Polymer Journal, 12(4), 209-223.
  240. Yan, M., Liu, S., Liu, Y., Xiao, Z., Yuan, X., Zhai, D., . . . Bowen, C. (2022). Flexible PVDF–TrFE Nanocomposites with Ag-decorated BCZT Heterostructures for Piezoelectric Nanogenerator Applications. ACS Applied Materials & Interfaces, 14(47), 53261-53273.
  241. Yang, C., Chen, F., Sun, J., & Chen, N. (2021). Boosted mechanical piezoelectric energy harvesting of polyvinylidene fluoride/barium titanate composite porous foam based on three-dimensional printing and foaming technology. ACS omega, 6(45), 30769-30778.
  242. Yang, C., Song, S., Chen, F., & Chen, N. (2021). Fabrication of PVDF/BaTiO3/CNT piezoelectric energy harvesters with bionic balsa wood structures through 3D printing and supercritical carbon dioxide foaming. ACS Applied Materials & Interfaces, 13(35), 41723-41734.
  243. Yang, J., Xu, F., Jiang, H., Wang, C., Li, X., Zhang, X., & Zhu, G. (2021). Piezoelectric enhancement of an electrospun AlN-doped P (VDF-TrFE) nanofiber membrane. Materials Chemistry Frontiers, 5(15), 5679-5688.
  244. Yang, J., Zhang, Y., Li, Y., Wang, Z., Wang, W., An, Q., & Tong, W. (2021). Piezoelectric nanogenerators based on graphene oxide/PVDF electrospun nanofiber with enhanced performances by in-situ reduction. Materials Today Communications, 26, 101629.
  245. Yang, L., Cheng, M., Lyu, W., Shen, M., Qiu, J., Ji, H., & Zhao, Q. (2018). Tunable piezoelectric performance of flexible PVDF based nanocomposites from MWCNTs/graphene/MnO2 three-dimensional architectures under low poling electric fields. Composites Part A: Applied Science and Manufacturing, 107, 536-544.
  246. Yang, L., Ji, H., Zhu, K., Wang, J., & Qiu, J. (2016). Dramatically improved piezoelectric properties of poly (vinylidene fluoride) composites by incorporating aligned TiO2@ MWCNTs. Composites Science and Technology, 123, 259-267.
  247. Yang, Z., Zhou, S., Zu, J., & Inman, D. (2018). High-performance piezoelectric energy harvesters and their applications. Joule, 2(4), 642-697.
  248. Yaqoob, U., & Kim, H. C. (2018). Enhancement in energy harvesting performances of piezoelectric nanogenerator by sandwiching electrostatic rGO layer between PVDF-BTO layers. Paper presented at the 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS).
  249. Yaqoob, U., Uddin, A. I., & Chung, G.-S. (2017). A novel tri-layer flexible piezoelectric nanogenerator based on surface-modified graphene and PVDF-BaTiO3 nanocomposites. Applied Surface Science, 405, 420-426.
  250. Ye, L., Chen, L., Yu, J., Tu, S., Yan, B., Zhao, Y., . . . Chen, S. (2021). High-performance piezoelectric nanogenerator based on electrospun ZnO nanorods/P (VDF-TrFE) composite membranes for energy harvesting application. Journal of Materials Science: Materials in Electronics, 32, 3966-3978.
  251. Yoon, E.-J., & Yu, C.-G. (2016). Power management circuits for self-powered systems based on micro-scale solar energy harvesting. International Journal of Electronics, 103(3), 516-529.
  252. You, S., Zhang, L., Gui, J., Cui, H., & Guo, S. (2019). A flexible piezoelectric nanogenerator based on aligned P (VDF-TrFE) nanofibers. Micromachines, 10(5), 302.
  253. Yu, H., Huang, T., Lu, M., Mao, M., Zhang, Q., & Wang, H. (2013). Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology, 24(40), 405401.
  254. Yuan, H., Lei, T., Qin, Y., & Yang, R. (2019). Flexible electronic skins based on piezoelectric nanogenerators and piezotronics. Nano Energy, 59, 84-90.
  255. Yuan, M., Ma, R., Ye, Q., Bai, X., Li, H., Yan, F., . . . Wang, Z. (2023). Melt-stretched poly (vinylidene fluoride)/zinc oxide nanocomposite films with enhanced piezoelectricity by stress concentrations in piezoelectric domains for wearable electronics. Chemical Engineering Journal, 455, 140771.
  256. Yuan, X., Gao, X., Yang, J., Shen, X., Li, Z., You, S., . . . Dong, S. (2020). The large piezoelectricity and high power density of a 3D-printed multilayer copolymer in a rugby ball-structured mechanical energy harvester. Energy & Environmental Science, 13(1), 152-161.
  257. Yuan, X., Yan, A., Lai, Z., Liu, Z., Yu, Z., Li, Z., . . . Dong, S. (2022). A poling-free PVDF nanocomposite via mechanically directional stress field for self-powered pressure sensor application. Nano Energy, 98, 107340.
  258. Yun, B. K., Park, Y. K., Lee, M., Lee, N., Jo, W., Lee, S., & Jung, J. H. (2014). Lead-free LiNbO 3 nanowire-based nanocomposite for piezoelectric power generation. Nanoscale research letters, 9, 1-7.
  259. Zaarour, B., Zhu, L., Huang, C., & Jin, X. (2018). Fabrication of a polyvinylidene fluoride cactus-like nanofiber through one-step electrospinning. RSC advances, 8(74), 42353-42360.
  260. Zabek, D., Pullins, R., Pearson, M., Grzebielec, A., & Skoczkowski, T. (2021). Piezoelectric-silicone structure for vibration energy harvesting: Experimental testing and modelling. Smart Materials and Structures, 30(3), 035002.
  261. Zhang, H., Ke, F., Shao, J., Wang, C., Wang, H., & Chen, Y. (2022). One-step fabrication of highly sensitive pressure sensor by all FDM printing. Composites Science and Technology, 226, 109531.
  262. Zhang, X., Xia, W., Liu, J., Zhao, M., Li, M., & Xing, J. (2022). PVDF-based and its Copolymer-Based Piezoelectric Composites: Preparation Methods and Applications. Journal of Electronic Materials, 51(10), 5528-5549.
  263. Zhang, Y., Jiang, S., Fan, M., Zeng, Y., Yu, Y., & He, J. (2013). Piezoelectric formation mechanisms and phase transformation of poly (vinylidene fluoride)/graphite nanosheets nanocomposites. Journal of Materials Science: Materials in Electronics, 24, 927-932.
  264. Zhao, C., Niu, J., Zhang, Y., Li, C., & Hu, P. (2019). Coaxially aligned MWCNTs improve performance of electrospun P (VDF-TrFE)-based fibrous membrane applied in wearable piezoelectric nanogenerator. Composites Part B: Engineering, 178, 107447.
  265. Zhao, X., Cai, J., Guo, Y., Li, C., Wang, J., & Zheng, H. (2018). Modeling and experimental investigation of an AA-sized electromagnetic generator for harvesting energy from human motion. Smart Materials and Structures, 27(8), 085008.
  266. Zhao, Y., Liao, Q., Zhang, G., Zhang, Z., Liang, Q., Liao, X., & Zhang, Y. (2015). High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@ PVDF. Nano Energy, 11, 719-727.
  267. Zhou, Z., Zhang, Z., Zhang, Q., Yang, H., Zhu, Y., Wang, Y., & Chen, L. (2019). Controllable core–shell BaTiO3@ carbon nanoparticle-enabled P (VDF-TrFE) composites: A cost-effective approach to high-performance piezoelectric nanogenerators. ACS applied materials & interfaces, 12(1), 1567-1576.
  268. Zhuang, Y., Li, J., Hu, Q., Han, S., Liu, W., Peng, C., . . . Xu, Z. (2020). Flexible composites with Ce-doped BaTiO3/P (VDF-TrFE) nanofibers for piezoelectric device. Composites Science and Technology, 200, 108386.
  269. Zolfagharian, A., Kouzani, A. Z., Khoo, S. Y., Moghadam, A. A. A., Gibson, I., & Kaynak, A. (2016). Evolution of 3D printed soft actuators. Sensors and Actuators A: Physical, 250, 258-272.
  270. Zuo, L., & Tang, X. (2013). Large-scale vibration energy harvesting. Journal of intelligent material systems and structures, 24(11), 1405-1430.

How to Cite

A Comprehensive Review of Nanocomposite PVDF as a Piezoelectric Material: Evaluating Manufacturing Methods, Energy Efficiency and Performance. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.1775

How to Cite

A Comprehensive Review of Nanocomposite PVDF as a Piezoelectric Material: Evaluating Manufacturing Methods, Energy Efficiency and Performance. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.1775

HTML
265

Total
407

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Farzane Memarian, Reza Mohammadi, Roya Akrami, Mahdi Bodaghi, Mohammad Fotouhi

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.