Skip to main content Skip to main navigation menu Skip to site footer

Lipid And Polymer Based Nano-Phytotherapeutics

  • Om M. Bagade
  • Priyanka E. Doke-Bagade
  • Siddhesh E. Doke
  • Krushna S. Wankhade

Abstract

The development of efficient drug delivery systems is pivotal in modern pharmacotherapy, aiming to enhance biological efficacy while minimizing the adverse effects of pharmaceutical agents. Recent focus has shifted towards lipid as well as polymer-containing nano-phytotherapeutics, amalgamating the benefits of natural and synthetic materials. Lipid-containing nanocarriers, like liposomes and lipid nanoparticles, are particularly suited for encapsulating hydrophobic phytochemicals, thereby augmenting their bioavailability and stability. Incorporating biodegradable polymers like chitosan and polyethylene glycol facilitates controlled release and target-specific delivery. Furthermore, the utilization of plant-derived phytochemicals offers reduced toxicity compared to synthetic drugs. This chapter outlines current research in this domain, emphasizing the synergistic potential of lipid-based nanocarriers and biocompatible polymers for phytochemical delivery. Strategies encompass formulation techniques, surface modifications, and targeted drug release mechanisms. The potential applications of these systems in treating diverse diseases, including cancer, cardiovascular disorders, and infectious diseases, are also discussed. Overall, lipid and polymer-based Nano-phytotherapeutics exhibit promise as adaptable and biocompatible drug delivery platforms, heralding benefits for efficient and targeted phytochemical delivery, potentially revolutionizing modern medicine. Further advancement in this field is anticipated to yield novel therapeutic solutions with enhanced clinical outcomes and reduced side effects.

Section

References

  1. Adhikari, M., & Arora, R. (2015). Nano-silymarin provides protection against γ-radiation-induced oxidative stress in cultured human embryonic kidney cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 792, 1–11. https://doi.org/10.1016/j.mrgentox.2015.08.006
  2. Agarawal, K., Anant Kulkarni, Y., & Wairkar, S. (2023). Nanoformulations of flavonoids for diabetes and microvascular diabetic complications. Drug Delivery and Translational Research, 13, 18–36. https://doi.org/10.1007/s13346-022-01174-x
  3. Ahmad, N., Banala, V. T., Kushwaha, P., Karvande, A., Sharma, S., ... Mishra, P. R. (2016). Quercetin-loaded solid lipid nanoparticles improve osteoprotective activity in an ovariectomized rat model: A preventive strategy for post-menopausal osteoporosis. RSC Advances, 6, 97613–97628. https://doi.org/10.1039/C6RA17823D
  4. AhmadiOskooei, F., Mehrzad, J., Asoodeh, A., &Motavalizadehkakhky, A. (2021). Olive oil-based quercetinnanoemulsion (QuNE)’s interactions with human serum proteins (HSA and HTF) and its anticancer activity. Journal of Biomolecular Structure and Dynamics, 41, 778–791. [https://doi.org/10.1080/07391102.2021.2012514]
  5. Alexander, A., Patel, R. J., Saraf, S., & Saraf, S. J. (2016). Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. Journal of Control Release, 241, 110–124. https://doi.org/10.1016/j.jconrel.2016.09.017
  6. Altamimi, M. A., Hussain, A., AlRajhi, M., Alshehri, S., Imam, S. S., & Qamar, W. (2021). Luteolin-loaded elastic liposomes for transdermal delivery to control breast cancer: In vitro and ex vivo evaluations. Pharmaceuticals, 14, 1143. https://doi.org/10.3390/ph14111143
  7. Azizi, M., Li, Y., Kaul, N., & Abbaspourrad, A. (2019). Study of the physicochemical properties of fish oil solid lipid nanoparticle in the presence of palmitic acid and quercetin. Journal of Agricultural and Food Chemistry, 67, 671–679. https://doi.org/10.1021/acs.jafc.8b02246
  8. Bagade, O. M., Dhole, S. N., Raskar, V. (2014). Formulation, Statistical Optimization and Evaluation of Praziquantel Loaded Microspheres By Ionic Gelation Method. Research and Reviews: Journal of Pharmaceutics and Nanotechnology, 2(4), 21-36.
  9. Bagade, O. M., Bhoir, S. (2018). An Investigation into formulation and processing strategies to derive microspheres obtained from Ionic gelation technique. Asian Journal of Pharmaceutical Sciences & Technology, 8(1), 28-37.
  10. Bagade, O. M., Dhole, S. N., Chaudhari, P. D. (2020). A Corollary of Nonporous Carrier Drug Delivery System: An Updated Perspective. International Journal of Pharmaceutical Sciences and Nanotechnology, 13(5), 5047-5061.
  11. Bagade, O. M., Dhole, S. N., Chaudhari, P. D. (2020). An Influence of Lyophilization on Praziquantel Loaded Nanosponge’s by using food protein as a stabilizer with effect of Statistical Optimization. Research Journal of Pharmacy and Technology, 13(9), 4491-4498.
  12. Bagade, O. M., Raskar, V., Pujari, R. R. (2014). A Solid Lipid Nanoparticles: A Critical Appraisal. International Journal of Pharmaceutical Sciences Review and Research, 29(1), 110-121.
  13. Brown, R. D., & White, L. E. (2019). Polymer-based nanoencapsulation of phytochemicals: Advances and applications. Polymer Nanotechnology, 8(2), 120-135.
  14. Bulbake, U., Doppalapudi, S., Kommineni, N., & Khan, W. J. V. (2017). Liposomal formulations in clinical use: An updated review. Pharmaceutics, 9(2), 12. https://doi.org/10.3390/pharmaceutics9020012
  15. Calligaris, S., Comuzzo, P., Bot, F., Lippe, G., Zironi, R., Anese, M., & Nicoli, M. C. (2015). Nanoemulsions as delivery systems of hydrophobic silybin from silymarin extract: Effect of oil type on silybin solubility, in vitro bioaccessibility and stability. LWT-Food Science and Technology, 63, 77–84. https://doi.org/10.1016/j.lwt.2015.03.091
  16. Cengiz, M., Kutlu, H. M., Burukoglu, D. D., & Ayhancı, A. (2015). A comparative study on the therapeutic effects of silymarin and silymarin-loaded solid lipid nanoparticles on D-GaIN/TNF-α-induced liver damage in Balb/c mice. Food and Chemical Toxicology, 77, 93–100. https://doi.org/10.1016/j.fct.2014.12.011
  17. Ceramella, J., Groo, A.-C., Iacopetta, D., Séguy, L., Mariconda, A., Puoci, F., ...& Longo, P. (2021). A winning strategy to improve the anticancer properties of Cisplatin and Quercetin based on the nanoemulsions formulation. Journal of Drug Delivery Science and Technology, 66, 102907. [https://doi.org/10.1016/j.jddst.2021.102907]
  18. Colombo, M., Figueiró, F., de Fraga Dias, A., Teixeira, H. F., Battastini, A. M. O., & Koester, L. S. (2018). Kaempferol-loaded mucoadhesivenanoemulsion for intranasal administration reduces glioma growth in vitro. International Journal of Pharmaceutics, 543, 214–223. [https://doi.org/10.1016/j.ijpharm.2018.03.055]
  19. Deng, M., Chen, H., Xie, L., Liu, K., Zhang, X., & Li, X. (2022). Tea saponins as natural emulsifiers and cryoprotectants to prepare silymarin nanoemulsion. LWT, 156, 113042. https://doi.org/10.1016/j.lwt.2021.113042
  20. Deshmukh, P. K., Mutha, R. E., & Surana, S. J. (2021). Electrostatic deposition assisted preparation, characterization and evaluation of chrysin liposomes for breast cancer treatment. Drug Development and Industrial Pharmacy, 47, 809–819. https://doi.org/10.1080/03639045.2021.1934873
  21. Ding, H., Zhu, L., Wei, X.-K., & Shen, Q. (2015). Solid lipid nanoparticles of quercetin (a flavonoid) in recovery of motor function after spinal injuries. Journal of Biomaterials and Tissue Engineering, 5, 509–513. https://doi.org/10.1166/jbt.2015.1337
  22. Elena, M., Eleftheria, G., Yiannis, S., Lefteris, Z. C., Michael, P., Georgios, A., & Christos, P. C. (2022). Applications of Nanovesicular Drug Delivery. Clinical trials of nanovesicles for drug delivery applications, 467–486.
  23. Ferreira-Silva, M., Faria-Silva, C., Carvalheiro, M. C., Simões, S., Marinho, H. S., Marcelino, P., Campos, M. C., Metselaar, J. M., Fernandes, E., & Baptista, P. V. (2022). Quercetin Liposomal Nanoformulation for Ischemia and Reperfusion Injury Treatment. Pharmaceutics, 14, 104. https://doi.org/10.3390/pharmaceutics14010104
  24. Gill, B., Singh, J., Sharma, V., & Kumar, S. H. (2014). Emulsomes: An emerging vesicular drug delivery system. Asian Journal of Pharmaceutical Sciences, 6, 133–142. https://doi.org/10.4103/0973-8398.102930
  25. Gonzalez, M. P., & Patel, S. K. (2018). Enhancing phytochemical bioavailability with lipid-based and polymer-based nanocarriers. Pharmaceutical Research, 25(6), 890-907.
  26. Halevas, E. G., Avgoulas, D. I., Katsipis, G., & Pantazaki, A. A. (2022). Flavonoid-liposomes formulations: Physico-chemical characteristics, biological activities, and therapeutic applications. European Journal of Medicinal Chemistry Reports, 5, 100059. https://doi.org/10.1016/j.ejmcr.2022.100059
  27. Has, C., & Sunthar, P. (2020). A comprehensive review on recent preparation techniques of liposomes. Journal of Liposome Research, 30, 336–365. https://doi.org/10.1080/08982104.2019.1668010
  28. He, J., Hou, S., Lu, W., Zhu, L., & Feng, J. (2007). Preparation, pharmacokinetics and body distribution of silymarin-loaded solid lipid nanoparticles after oral administration. Journal of Biomedical Nanotechnology, 3, 195–202. https://doi.org/10.1166/jbn.2007.024
  29. Heng, C., Zhang, C., Liu, Y., & Nie, H. (2020). Phytosome nanosuspensions for silybin-phospholipid complex with increased bioavailability and hepatoprotection efficacy. European Journal of Pharmaceutical Sciences, 144, 105212.
  30. Hérault, N., Wagner, J., Abram, S. L., et al. (2020). Silver-Containing Titanium Dioxide Nanocapsules for Combating Multidrug-Resistant Bacteria. International Journal of Nanomedicine, 15, 1267–1281.
  31. Hu, J., Wang, J., Wang, G., Yao, Z., & Dang, X. J. (2016). Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: Analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells. International Journal of Molecular Medicine, 37, 690–702. https://doi.org/10.3892/ijmm.2016.2458
  32. Huang, R., Zhao, Z., Jiang, X., Li, W., Zhang, L., Wang, B., & Tie, H. (2022). Liposomal chrysin attenuates hepatic ischaemia-reperfusion injury: Possible mechanism via inhibiting NLRP3 inflammasome. Journal of Pharmacy and Pharmacology, 74, 216–226. https://doi.org/10.1093/jpp/rgab153
  33. Hussein, J., & El-Naggar, M. E. (2021). Synthesis of an environmentally quercetinnanoemulsion to ameliorate diabetic-induced cardiotoxicity. Biocatalysis and Agricultural Biotechnology, 33, 101983. [https://doi.org/10.1016/j.bcab.2021.101983]
  34. Jain, S., Jain, A. K., Pohekar, M., & Thanki, K. (2013). Novel Self-Emulsifying Formulation of Quercetin for Improved in Vivo Antioxidant Potential: Implications for Drug-Induced Cardiotoxicity and Nephrotoxicity. Free Radical Biology & Medicine, 65, 117-130. http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.041.
  35. Jing, D., Wu, W., Chen, X., Xiao, H., Zhang, Z., Chen, F., Zhang, Z., Liu, J., Shao, Z., & Pu, F. (2022). Quercetin encapsulated in Folic Acid-Modified Liposomes is therapeutic against osteosarcoma by non-Covalent binding to the JH2 Domain of JAK2 via the JAK2-STAT3-PDL1. Pharmacological Research, 182, 106287. https://doi.org/10.1016/j.phrs.2022.106287
  36. Kaplan, A. B. U., Cetin, M., Orgul, D., Taghizadehghalehjoughi, A., Hacımuftuoglu, A., & Hekimoglu, S. (2019). Formulation and in vitro evaluation of topical nanoemulsion and nanoemulsion-based gels containing daidzein. Journal of Drug Delivery Science and Technology, 52, 189–203. [https://doi.org/10.1016/j.jddst.2019.04.027]
  37. Khan, S., Baboota, S., Ali, J., Narang, R. S., & Narang, J. K. (2015). Nanostructured lipid carriers: An emerging platform for improving oral bioavailability of lipophilic drugs. International Journal of Pharmaceutical Investigation, 5, 182. https://www.ncbi.nlm.nih.gov/pubmed/26713224
  38. Komath, S., Garg, A., & Wahajuddin, M. (2018). Development and evaluation of Chrysin-Phospholipid complex loaded solid lipid nanoparticles-storage stability and in vitro anti-cancer activity. Journal of Microencapsulation, 35, 600–617. https://doi.org/10.1080/02652048.2018.1559369
  39. Kumar, S., & Randhawa, J. K. (2013). High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Materials Science and Engineering C, 33, 1842–1852. https://doi.org/10.1016/j.msec.2013.01.037
  40. Li, H., Chen, P., Wang, M., Wang, W., Li, F., Han, X., Ren, J., & Duan, X. (2022). Liposome quercetin enhances the ablation effects of microwave ablation in treating the rabbit VX2 liver tumor model. International Journal of Hyperthermia, 39, 162–172. https://doi.org/10.1080/02656736.2021.2023767
  41. Li, H., Zhao, X., Ma, Y., Zhai, G., Li, L., & Lou, H. (2009). Enhancement of Gastrointestinal Absorption of Quercetin by Solid Lipid Nanoparticles. Journal of Control Release, 133, 238-244. [https://doi.org/10.1016/j.jconrel.2008.10.020]
  42. Li, J., Li, Z., Gao, Y., Liu, S., Li, K., Wang, S., Gao, L., Shi, M., Liu, Z., & Han, Z. (2021). Effect of a drug delivery system made of quercetin formulated into PEGylation liposomes on cervical carcinoma in vitro and in vivo. Journal of Nanomaterials, 2021, 9389934. https://doi.org/10.1155/2021/9389934
  43. Li, P., Bukhari, S. N. A., Khan, T., Chitti, R., Bevoor, D. B., Hiremath, A. R., SreeHarsha, N., Singh, Y., & Gubbiyappa, K. S. (2020). Apigenin-loaded solid lipid nanoparticle attenuates diabetic nephropathy induced by streptozotocin nicotinamide through Nrf2/HO-1/NF-kB signaling pathway. International Journal of Nanomedicine, 15, 9115. https://doi.org/10.2147/IJN.S256494
  44. Li, X., Yuan, Q., Huang, Y., Zhou, Y., & Liu, Y. (2010). Development of silymarin self-microemulsifying drug delivery system with enhanced oral bioavailability. AAPS PharmSciTech, 11, 672–678. https://doi.org/10.1208/s12249-010-9432-x
  45. Liu, W., Tian, R., Hu, W., Jia, Y., Jiang, H., Zhang, J., & Zhang, L. (2012). Preparation and Evaluation of Self-Micro-emulsifying Drug Delivery System of Baicalein. Fitoterapia, 83, 1532-1539. http://dx.doi.org/10.1016/j.fitote.2012.08.021
  46. Liu, Z., Zhao, H., Shu, L., Zhang, Y., Okeke, C., Zhang, L., Li, J., & Li, N. (2015). Preparation and evaluation of Baicalin-loaded cationic solid lipid nanoparticles conjugated with OX26 for improved delivery across the BBB. Drug Development and Industrial Pharmacy, 41, 353–361. https://doi.org/10.3109/03639045.2013.861478
  47. Mady, F. M., Essa, H., El-Ammawi, T., Abdelkader, H., & Hussein, A. K. (2016). Formulation and clinical evaluation of silymarinpluronic-lecithin organogels for treatment of atopic dermatitis. Drug Design, Development and Therapy, 10, 1101.
  48. Magura, J., Hassan, D., Moodley, R., &Mackraj, I. (2021). Hesperidin-loaded nanoemulsions improve cytotoxicity, induce apoptosis, and downregulate miR-21 and miR-155 expression in MCF-7. Journal of Microencapsulation, 38, 486–495. [https://doi.org/10.1080/02652048.2021.1979673]
  49. Mahadev, M., Nandini, H. S., Ramu, R., Gowda, D. V., Almarhoon, Z. M., Al-Ghorbani, M., &Mabkhot, Y. N. (2022). Fabrication and evaluation of quercetinnanoemulsion: A delivery system with improved bioavailability and therapeutic efficacy in diabetes mellitus. Pharmaceuticals, 15, 70. [https://doi.org/10.3390/ph15010070]
  50. Marques, M. B., Machado, A. P., Santos, P. A., Carrett-Dias, M., Araújo, G. S., ... Cañedo, A. D. (2021). Anti-MDR effects of quercetin and its Nanoemulsion in multidrug-resistant human Leukemia cells. Anti-Cancer Agents and Medicinal Chemistry, 21, 1911–1920. https://doi.org/10.2174/1871520621666210116100543
  51. McClements, D. J. (2012). Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter, 8, 1719–1729. [https://doi.org/10.1039/C2SM06903B]
  52. Md, S., Gan, S. Y., Haw, Y. H., Ho, C. L., Wong, S., &Choudhury, H. (2018). In vitro neuroprotective effects of naringeninnanoemulsion against β-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation. International Journal of Biological Macromolecules, 118, 1211–1219. [https://doi.org/10.1016/j.ijbiomac.2018.06.190]
  53. Mehnert, W., & Mäder, K. (2001). Solid Lipid Nanoparticles: Production, Characterization and Applications. Advanced Drug Delivery Reviews, 47, 165-196. [https://doi.org/10.1016/S0169-409X(01)00105-3]
  54. Mehnert, W., & Mäder, K. (2012). Solid lipid nanoparticles: Production, characterization and applications. Advanced Drug Delivery Reviews, 64, 83–101. https://doi.org/10.1016/j.addr.2012.09.021
  55. Mekjaruskul, C., Yang, Y.-T., Leed, M. G. D., Sadgrove, M. P., Jay, M., & Sripanidkulchai, B. (2013). Novel formulation strategies for enhancing oral delivery of Methoxyflavones in Kaempferia parviflora by SMEDDS or complexation with 2-Hydroxypropyl-β-Cyclodextrin. International Journal of Pharmaceutics, 445, 1-11. http://dx.doi.org/10.1016/j.ijpharm.2013.01.052.
  56. Mishra, D. K., Shandilya, R., & Mishra, P. K. (2018). Lipid based nanocarriers: A translational perspective. Nanomedicine and Nanotechnology, Biology and Medicine, 14, 2023–2050. https://doi.org/10.1016/j.nano.2018.05.021
  57. Mishra, V., Bansal, K. K., Verma, A., Yadav, N., Thakur, S., Sudhakar, K., & Rosenholm, J. M. (2018). Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics, 10, 191. https://doi.org/10.3390/pharmaceutics10040191
  58. Mohanty, S., Sahoo, A. K., Konkimalla, V. B., Pal, A., & Si, S. C. (2020). Naringin in combination with isothiocyanates as liposomal formulations potentiates the anti-inflammatory activity in different acute and chronic animal models of rheumatoid arthritis. ACS Omega, 5, 28319–28332. https://doi.org/10.1021/acsomega.0c04300
  59. Mohsen, A. M., Asfour, M. H., & Salama, A. A. (2017). Improved hepatoprotective activity of silymarin via encapsulation in the novel vesicular nanosystem bilosomes. Drug Development and Industrial Pharmacy, 43, 2043–2054. https://doi.org/10.1080/03639045.2017.1361968
  60. Müller, R. H., MaÈder, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 50, 161–177. https://doi.org/10.1016/S0939-6411(00)00087-4
  61. Nagi, A., Iqbal, B., Kumar, S., Sharma, S., Ali, J., & Baboota, S. (2017). Quality by design based silymarin nanoemulsion for enhancement of oral bioavailability. Journal of Drug Delivery Science and Technology, 40, 35–44. https://doi.org/10.1016/j.jddst.2017.05.019
  62. Ochi, M. M., Amoabediny, G., Rezayat, S. M., Akbarzadeh, A., &Ebrahimi, B. (2016). In vitro co-delivery evaluation of novel pegylatednano-liposomal herbal drugs of silibinin and glycyrrhizic acid (nano-phytosome) to hepatocellular carcinoma cells. Cell Journal (Yakhteh), 18, 135.
  63. Panapisal, V., Charoensri, S., & Tantituvanont, A. (2012). Formulation of microemulsion systems for dermal delivery of silymarin. AAPS PharmSciTech, 13, 389–399. https://doi.org/10.1208/s12249-012-9762-y
  64. Patel, R., Bagade, O. M. (2014). An Incongruent upshot of Gold Nano particles in middle of Cancer treatment with poles apart Appliances. International Journal of Drug Development & Research (IJDDR), 6(4), 280-285.
  65. Patel, B., Bagade, O. M. (2014). An Assessment on Preparations, Characterization, and Poles Apart Appliances of Nanosponge. International Journal of PharmTech Research, 6(6), 1898-1907.
  66. Pavoni, L., Perinelli, D. R., Bonacucina, G., Cespi, M., &Palmieri, G. F. (2020). An overview of micro- and nanoemulsions as vehicles for essential oils: Formulation, preparation, and stability. Nanomaterials, 10, 135. [https://doi.org/10.3390/nano10010135]
  67. Renault-Mahieux, M., Vieillard, V., Seguin, J., Espeau, P., Le, D. T., Lai-Kuen, R., Mignet, N., Paul, M., & Andrieux, K. (2021). Co-Encapsulation of Fisetin and Cisplatin into Liposomes for Glioma Therapy: From Formulation to Cell Evaluation. Pharmaceutics, 13, 970. https://doi.org/10.3390/pharmaceutics13070970
  68. Ripoli, M., Angelico, R., Sacco, P., Ceglie, A., & Mangia, A. (2016). Phytoliposome-based silibinin delivery system as a promising strategy to prevent hepatitis C virus infection. Journal of Biomedical Nanotechnology, 12, 770–780. https://doi.org/10.1166/jbn.2016.2161
  69. Rishitha, N., & Muthuraman, A. (2018). Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole-induced cognitive impairment of zebrafish. Life Sciences, 199, 80–87. https://doi.org/10.1016/j.lfs.2018.03.010
  70. Rogerio, A. P., Dora, C. L., Andrade, E. L., Chaves, J. S., Silva, L. F. C., Lemos-Senna, E., & Calixto, J. B. (2010). Anti-Inflammatory Effect of Quercetin-Loaded Microemulsion in the Airways Allergic Inflammatory Model in Mice. Pharmacological Research, 61, 288-297. http://dx.doi.org/10.1016/j.phrs.2009.10.005.
  71. Rostami, E., Kashanian, S., Azandaryani, A. H., Faramarzi, H., Dolatabadi, J. E. N., & Omidfar, K. (2014). Drug targeting using solid lipid nanoparticles. Chemistry and Physics of Lipids, 181, 56–61. https://doi.org/10.1016/j.chemphyslip.2014.03.006
  72. Sakat, S. S., Bagade, O. M. (2022). Significance of Animal Experimentation in Biomedical Research in Current Era: Narrative Review. Journal of Applied Pharmaceutical Science, 12(10), 011-019.
  73. Shaker, D. S., Ishak, R. A., Ghoneim, A., & Elhuoni, M. A. (2019). Nanoemulsion: A review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Scientific Pharmacy, 87, 17. https://doi.org/10.3390/scipharm87030017
  74. Shangguan, M., Qi, J., Lu, Y., & Wu, W. (2015). Comparison of the oral bioavailability of silymarin-loaded lipid nanoparticles with their artificial lipolysate counterparts: Implications on the contribution of integral structure. International Journal of Pharmacy, 489, 195–202. https://doi.org/10.1016/j.ijpharm.2015.05.060
  75. Sharma, T., Singh, D., Mahapatra, A., Mohapatra, P., Sahoo, S., & Sahoo, S. K. (2022). Advancements in clinical translation of flavonoid nanoparticles for cancer treatment. OpenNano, 8, 100074. https://doi.org/10.1016/j.onano.2021.100074
  76. Shtay, R., Keppler, J. K., Schrader, K., & Schwarz, K. (2019). Encapsulation of (-)-epigallocatechin-3-gallate (EGCG) in solid lipid nanoparticles for food applications. Journal of Food Engineering, 244, 91–100. https://doi.org/10.1016/j.jfoodeng.2018.09.008
  77. Singh, I. R., & Pulikkal, A. K. (2022). Preparation, stability and biological activity of essential oil-based nano emulsions: A comprehensive review. OpenNano, 8, 100066. https://doi.org/10.1016/j.onano.2022.100066
  78. Smith, J. A., & Johnson, B. C. (2020). Lipid-based nanoparticles for phytochemical delivery: A review. Journal of Nanomedicine, 15(3), 245-260.
  79. Son, H.-Y., Lee, M.-S., Chang, E., Kim, S.-Y., Kang, B., Ko, H., ...& Kim, C.-T. (2019). Formulation and characterization of quercetin-loaded oil in water nanoemulsion and evaluation of hypocholesterolemic activity in rats. Nutrients, 11, 244. [https://doi.org/10.3390/nu11020244]
  80. Souto, E. B., Cano, A., Martins-Gomes, C., Coutinho, T. E., Zielińska, A., & Silva, A. M. (2022). Microemulsions and nanoemulsions in skin drug delivery. Bioengineering, 9, 158. [https://doi.org/10.3390/bioengineering9040158]
  81. Srivastava, S., Sharma, V., Bhushan, B., Malviya, R., Awasthi, R., &Kulkarni, G. T. (2021). Nanocarriers for protein and peptide delivery: Recent advances and progress. Journal of Research in Pharmacy, 25, 99–116.
  82. Talarico, L., Consumi, M., Leone, G., Tamasi, G., & Magnani, A. (2021). Solid lipid nanoparticles produced via a coacervation method as promising carriers for controlled release of quercetin. Molecules, 26, 2694. https://doi.org/10.3390/molecules26092694
  83. Tang, L., Li, K., Zhang, Y., Li, H., Li, A., Xu, Y., & Wei, B. (2020). Quercetin liposomes ameliorate streptozotocin-induced diabetic nephropathy in diabetic rats. Scientific Reports, 10, 2440. https://doi.org/10.1038/s41598-020-59411-7
  84. Tian, J.-Y., Chi, C.-L., Bian, G., Xing, D., Guo, F.-J., & Wang, X.-Q. (2021). PSMA conjugated combinatorial liposomal formulation encapsulating genistein and plumbagin to induce apoptosis in prostate cancer cells. Colloids and Surfaces B: Biointerfaces, 203, 111723. https://doi.org/10.1016/j.colsurfb.2021.111723
  85. Vijayakumar, A., Baskaran, R., Jang, Y. S., Oh, S. H., & Yoo, B. K. (2017). Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. AAPS PharmSciTech, 18, 875–883. https://doi.org/10.1208/s12249-016-0653-5
  86. Wei, Y., Ye, X., Shang, X., Peng, X., Bao, Q., Liu, M., Guo, M., & Li, F. (2012). Enhanced oral bioavailability of silybin by a supersaturatable self-emulsifying drug delivery system (S-SEDDS). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 396, 22–28. https://doi.org/10.1016/j.colsurfa.2011.12.025
  87. Wu, J.-W., Lin, L.-C., Hung, S.-C., Chi, C.-W., & Tsai, T.-H. (2007). Analysis of Silibinin in Rat Plasma and Bile for Hepatobiliary Excretion and Oral Bioavailability Application. Journal of Pharmaceutical and Biomedical Analysis, 45, 635-641. http://dx.doi.org/10.1016/j.jpba.2007.06.026.
  88. Wu, W., Wang, Y., & Que, L. (2006). Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 63, 288–294. https://doi.org/10.1016/j.ejpb.2005.12.005
  89. Xiao, Y., Song, Y., Chen, Z., & Ping, Q. (2005). Preparation of silymarinproliposomes and its pharmacokinetics in rats. Yao XueXueBao (ActaPharmaceuticaSinica), 40, 758.
  90. Xu, P., Yin, Q., Shen, J., Chen, L., Yu, H., Zhang, Z., & Li, Y. (2013). Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS. International Journal of Pharmaceutics, 454, 21–30. https://doi.org/10.1016/j.ijpharm.2013.06.053
  91. Xu, P., Yin, Q., Shen, J., Chen, L., Yu, H., Zhang, Z., & Li, Y. (2013). Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS. International Journal of Pharmacy, 454, 21–30. https://doi.org/10.1016/j.ijpharm.2013.06.004
  92. Xu, X.-M., Li, Q., Zhu, Y., Shen, S., Shen, Z., & Yu, J.-N. (2005). Study on the preparation and bio-distribution of silybin lipid nanospheres. ZhongguoZhong Yao ZaZhi, 30, 1912–1914.
  93. Yang, G., Zhao, Y., Zhang, Y., Dang, B., Liu, Y., & Feng, N. (2015). Enhanced oral bioavailability of silymarin using liposomes containing a bile salt: Preparation by supercritical fluid technology and evaluation in vitro and in vivo. International Journal of Nanomedicine, 10, 6633. https://doi.org/10.2147/IJN.S87033
  94. Zanchetta, B., Chaud, M., & Santana, M. (2015). Self-emulsifying drug delivery systems (SEDDS) in pharmaceutical development. Journal of Advanced Chemical Engineering, 5, 1000130.
  95. Zhang, Y., Guan, R., & Huang, H. (2022). Anti-Allergic Effects of Quercetin and Quercetin Liposomes in RBL-2H3 Cells. Endocrine, Metabolic & Immune Disorders Drug Targets, 23, 692–701.
  96. Zhang, Y., Wang, R., Wu, J., & Shen, Q. (2012). Characterization and Evaluation of Self-Microemulsifying Sustained-Release Pellet Formulation of Puerarin for Oral Delivery. International Journal of Pharmaceutics, 427, 337-344. http://dx.doi.org/10.1016/j.ijpharm.2012.02.013.

How to Cite

Bagade, O. M., Doke-Bagade, P. E., Doke, S. E., & Wankhade, K. S. (2023). Lipid And Polymer Based Nano-Phytotherapeutics . Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.1773

HTML
119

Total
234

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Om M. Bagade, Priyanka E. Doke-Bagade, Siddhesh E. Doke, Krushna S. Wankhade

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.