Skip to main content Skip to main navigation menu Skip to site footer

Advancements and application of sustainable nanotechnology-based biomedical products in cancer therapeutics

  • Vinita Sharma
  • Jurnal Reang
  • Vivek Yadav
  • Archana Sharma
  • Jaseela Majeed
  • Prabodh Chander Sharma

Abstract

Nanotechnology has gained widespread attention in various scientific fields due to the special properties of nanomaterials. Sustainable nanotechnology prioritizes minimizing the environmental impact of nanomaterials and manufacturing processes while ensuring biocompatibility and safety. By utilizing eco-friendly materials, renewable energy sources, and greener production techniques, sustainable nanotechnology addresses the pressing need for eco-conscious advancements in cancer treatment. The integration of sustainable nanotechnology with advanced imaging techniques enables precise tumor detection, characterization, and monitoring. To improve cancer treatment, sustainable nanotechnology-based novel carriers have attracted significant attention, which includes proteins, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanoparticles, micelles, dendrimers, and antibody-drug conjugates that are employed for the co-delivery of phytochemicals and anticancer agents at the targeted sites. Green synthesis approaches to nanomaterials have gained attention due to their sustainability and environmental friendliness. Nevertheless, there are issues with this synthesis process, like bulk manufacturing, cytotoxicity of nanomaterials, and safe solvent selection. Furthermore, several of the anticipated sustainable nanotechnologies, such as gene- and immunotherapy-based nanoformulations and therapeutics, have redefined existing nanotechnologies. This review aims to provide a comprehensive overview of eco-friendly and sustainable nanotechnology for cancer diagnostics and treatment, emphasizing the efficacy, safety, and environmental sustainability of current nanotechnology in cancer treatments.

Section

References

  1. Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., Hanifehpour, Y., Nejati-Koshki, K., & Pashaei-Asl, R. (2014). Dendrimers: synthesis, applications, and properties. Nanoscale Research Letters, 9(1), 247. https://doi.org/10.1186/1556-276X-9-247
  2. Adrita, S. H., Tasnim, K. N., Ryu, J. H., & Sharker, S. M. (2020). Nanotheranostic Carbon Dots as an Emerging Platform for Cancer Therapy. In Journal of Nanotheranostics (Vol. 1, Issue 1, pp. 58–77). https://doi.org/10.3390/jnt1010006
  3. Aggarwal, R. R., Feng, F. Y., & Small, E. J. (2017). Emerging Categories of Disease in Advanced Prostate Cancer and Their Therapeutic Implications. Oncology (Williston Park, N.Y.), 31(6), 467–474.
  4. Aghamiri, S., Mehrjardi, K. F., Shabani, S., Keshavarz-Fathi, M., Kargar, S., & Rezaei, N. (2019). Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy? Nanomedicine, 14(15), 2083–2100. https://doi.org/10.2217/nnm-2018-0379
  5. Aikins, M. E., Xu, C., & Moon, J. J. (2020). Engineered Nanoparticles for Cancer Vaccination and Immunotherapy. Accounts of Chemical Research, 53(10), 2094–2105. https://doi.org/10.1021/acs.accounts.0c00456
  6. Alt, M., Stecca, C., Tobin, S., Jiang, D. M., & Sridhar, S. S. (2020). Enfortumab Vedotin in urothelial cancer. Therapeutic Advances in Urology, 12, 1756287220980192. https://doi.org/10.1177/1756287220980192
  7. Alven, S., & Aderibigbe, B. A. (2020). The Therapeutic Efficacy of Dendrimer and Micelle Formulations for Breast Cancer Treatment. In Pharmaceutics (Vol. 12, Issue 12). https://doi.org/10.3390/pharmaceutics12121212
  8. Anani, T., Rahmati, S., Sultana, N., & David, A. E. (2021). MRI-traceable theranostic nanoparticles for targeted cancer treatment. Theranostics, 11(2), 579–601. https://doi.org/10.7150/thno.48811
  9. Andriole, G., Crawford, E., Grubb, R., Buys, S., Chia, D., Church, T., Fouad, M., Isaacs, C., Kvale, P., Reding, D., Weissfeld, J., Yokochi, L., O’Brien, B., Ragard, L., Clapp, J., Rathmell, J., Riley, T., Hsing, A., Izmirlian, G., & Prorok, P. (2012). Prostate Cancer Screening in the Randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: Mortality Results after 13 Years of Follow-up. Journal of the National Cancer Institute, 104, 125–132. https://doi.org/10.1093/jnci/djr500
  10. Ashford, M. B., England, R. M., & Akhtar, N. (2021). Highway to Success—Developing Advanced Polymer Therapeutics. Advanced Therapeutics, 4(5), 2000285. https://doi.org/https://doi.org/10.1002/adtp.202000285
  11. Aslan, B., Ozpolat, B., Sood, A. K., & Lopez-Berestein, G. (2013). Nanotechnology in cancer therapy. Journal of Drug Targeting, 21(10), 904–913. https://doi.org/10.3109/1061186X.2013.837469
  12. Auffan, M., Rose, J., Bottero, J.-Y., Lowry, G. V, Jolivet, J.-P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10), 634–641. https://doi.org/10.1038/nnano.2009.242
  13. Babu, A., Muralidharan, R., Amreddy, N., Mehta, M., Munshi, A., & Ramesh, R. (2016). Nanoparticles for siRNA-Based Gene Silencing in Tumor Therapy. IEEE Transactions on Nanobioscience, 15(8), 849–863. https://doi.org/10.1109/TNB.2016.2621730
  14. Begines, B., Ortiz, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F., & Alcudia, A. (2020). Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials (Basel, Switzerland), 10(7). https://doi.org/10.3390/nano10071403
  15. Blanco, E., Bey, E. A., Khemtong, C., Yang, S.-G., Setti-Guthi, J., Chen, H., Kessinger, C. W., Carnevale, K. A., Bornmann, W. G., Boothman, D. A., & Gao, J. (2010). Beta-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy. Cancer Research, 70(10), 3896–3904. https://doi.org/10.1158/0008-5472.CAN-09-3995
  16. Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 33(9), 941–951. https://doi.org/10.1038/nbt.3330
  17. Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International Journal of Nanomedicine, 10, 975–999. https://doi.org/10.2147/IJN.S68861
  18. Brinks, J., Fowler, A., Franklin, B. A., & Dulai, J. (2017). Lifestyle Modification in Secondary Prevention: Beyond Pharmacotherapy. American Journal of Lifestyle Medicine, 11(2), 137–152. https://doi.org/10.1177/1559827616651402
  19. Burke, J. M., Morschhauser, F., Andorsky, D., Lee, C., & Sharman, J. P. (2020). Antibody-drug conjugates for previously treated aggressive lymphomas: focus on polatuzumab vedotin. Expert Review of Clinical Pharmacology, 13(10), 1073–1083. https://doi.org/10.1080/17512433.2020.1826303
  20. Caracciolo, G., Vali, H., Moore, A., & Mahmoudi, M. (2019). Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today, 27, 6–10. https://doi.org/10.1016/j.nantod.2019.06.001
  21. Chalouni, C., & Doll, S. (2018). Fate of Antibody-Drug Conjugates in Cancer Cells. Journal of Experimental & Clinical Cancer Research, 37(1), 20. https://doi.org/10.1186/s13046-017-0667-1
  22. Chandrasekar, N., Steffi, A. P., Ramachandran, B., Hwang, M. T., Faramarzi, V., & Govarthanan, M. (2023). MXenes - Versatile 2D materials for identification of biomarkers and contaminants in large scale environments - A review. Environmental Research, 228, 115900. https://doi.org/10.1016/j.envres.2023.115900
  23. Charbe, N. B., Amnerkar, N. D., Ramesh, B., Tambuwala, M. M., Bakshi, H. A., Aljabali, A. A. A., Khadse, S. C., Satheeshkumar, R., Satija, S., Metha, M., Chellappan, D. K., Shrivastava, G., Gupta, G., Negi, P., Dua, K., & Zacconi, F. C. (2020). Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharmaceutica Sinica B, 10(11), 2075–2109. https://doi.org/https://doi.org/10.1016/j.apsb.2020.10.005
  24. Chaturvedi, V. K., Singh, A., Singh, V. K., & Singh, M. P. (2019). Cancer Nanotechnology: A New Revolution for Cancer Diagnosis and Therapy. Current Drug Metabolism, 20(6), 416–429. https://doi.org/10.2174/1389200219666180918111528
  25. Chen, H. H. W., & Kuo, M. T. (2017). Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget, 8(37), 62742–62758. https://doi.org/10.18632/oncotarget.18409
  26. Chen, X.-J., Zhang, X.-Q., Liu, Q., Zhang, J., & Zhou, G. (2018). Nanotechnology: a promising method for oral cancer detection and diagnosis. Journal of Nanobiotechnology, 16(1), 52. https://doi.org/10.1186/s12951-018-0378-6
  27. Chis, A. A., Dobrea, C., Morgovan, C., Arseniu, A. M., Rus, L. L., Butuca, A., Juncan, A. M., Totan, M., Vonica-Tincu, A. L., Cormos, G., Muntean, A. C., Muresan, M. L., Gligor, F. G., & Frum, A. (2020). Applications and Limitations of Dendrimers in Biomedicine. Molecules (Basel, Switzerland), 25(17). https://doi.org/10.3390/molecules25173982
  28. Cho, H., Jeon, S. I., Ahn, C.-H., Shim, M. K., & Kim, K. (2022). Emerging Albumin-Binding Anticancer Drugs for Tumor-Targeted Drug Delivery: Current Understandings and Clinical Translation. Pharmaceutics, 14(4). https://doi.org/10.3390/pharmaceutics14040728
  29. Das, S. K., Menezes, M. E., Bhatia, S., Wang, X.-Y., Emdad, L., Sarkar, D., & Fisher, P. B. (2015). Gene Therapies for Cancer: Strategies, Challenges and Successes. Journal of Cellular Physiology, 230(2), 259–271. https://doi.org/10.1002/jcp.24791
  30. Debele, T. A., Yeh, C.-F., & Su, W.-P. (2020). Cancer Immunotherapy and Application of Nanoparticles in Cancers Immunotherapy as the Delivery of Immunotherapeutic Agents and as the Immunomodulators. Cancers, 12(12). https://doi.org/10.3390/cancers12123773
  31. Deverka, P. A., Douglas, M. P., & Phillips, K. A. (2022). Multicancer Screening Tests: Anticipating And Addressing Considerations For Payer Coverage And Patient Access. Health Affairs (Project Hope), 41(3), 383–389. https://doi.org/10.1377/hlthaff.2021.01316
  32. Di Stasio, G. D., Buonomano, P., Travaini, L. L., Grana, C. M., & Mansi, L. (2021). From the Magic Bullet to Theragnostics: Certitudes and Hypotheses, Trying to Optimize the Somatostatin Model. Cancers, 13(14). https://doi.org/10.3390/cancers13143474
  33. Dichwalkar, T., Patel, S., Bapat, S., Pancholi, P., Jasani, N., Desai, B., Yellepeddi, V. K., & Sehdev, V. (2017). Omega-3 Fatty Acid Grafted PAMAM-Paclitaxel Conjugate Exhibits Enhanced Anticancer Activity in Upper Gastrointestinal Cancer Cells. Macromolecular Bioscience, 17(8). https://doi.org/10.1002/mabi.201600457
  34. Dik, G., Ulu, A., & Ateş, B. (2023). Synthesis and Biomedical Applications of Polymer-Functionalized Magnetic Nanoparticles. Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.329
  35. Dillekås, H., Rogers, M. S., & Straume, O. (2019). Are 90% of deaths from cancer caused by metastases? Cancer Medicine, 8(12), 5574–5576. https://doi.org/10.1002/cam4.2474
  36. Doria, G., Conde, J., Veigas, B., Giestas, L., Almeida, C., Assunção, M., Rosa, J., & Baptista, P. V. (2012). Noble metal nanoparticles for biosensing applications. Sensors (Basel, Switzerland), 12(2), 1657–1687. https://doi.org/10.3390/s120201657
  37. Etrych, T., Braunova, A., Zogala, D., Lambert, L., Renesova, N., & Klener, P. (2022). Targeted Drug Delivery and Theranostic Strategies in Malignant Lymphomas. Cancers, 14(3). https://doi.org/10.3390/cancers14030626
  38. Fathi, M., Majidi, S., Zangabad, P. S., Barar, J., Erfan-Niya, H., & Omidi, Y. (2018). Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Medicinal Research Reviews, 38(6), 2110–2136. https://doi.org/https://doi.org/10.1002/med.21506
  39. Franco, Y. L., Vaidya, T. R., & Ait-Oudhia, S. (2018). Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer (Dove Medical Press), 10, 131–141. https://doi.org/10.2147/BCTT.S170239
  40. Fu, S., Xia, J., & Wu, J. (2016). Functional Chitosan Nanoparticles in Cancer Treatment. Journal of Biomedical Nanotechnology, 12(8), 1585–1603. https://doi.org/10.1166/jbn.2016.2228
  41. Fu, Z., Li, S., Han, S., Shi, C., & Zhang, Y. (2022). Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduction and Targeted Therapy, 7(1), 93. https://doi.org/10.1038/s41392-022-00947-7
  42. Gabizon, A., Shmeeda, H., & Barenholz, Y. (2003). Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clinical Pharmacokinetics, 42(5), 419–436. https://doi.org/10.2165/00003088-200342050-00002
  43. Gandini, A., & M Lacerda, T. (2021). Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives. Molecules (Basel, Switzerland), 27(1). https://doi.org/10.3390/molecules27010159
  44. García-Pinel, B., Porras-Alcalá, C., Ortega-Rodríguez, A., Sarabia, F., Prados, J., Melguizo, C., & López-Romero, J. M. (2019). Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. Nanomaterials (Basel, Switzerland), 9(4). https://doi.org/10.3390/nano9040638
  45. Gaucher, G., Dufresne, M.-H., Sant, V. P., Kang, N., Maysinger, D., & Leroux, J.-C. (2005). Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of Controlled Release : Official Journal of the Controlled Release Society, 109(1–3), 169–188. https://doi.org/10.1016/j.jconrel.2005.09.034
  46. Gavas, S., Quazi, S., & Karpiński, T. M. (2021). Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Research Letters, 16(1), 173. https://doi.org/10.1186/s11671-021-03628-6
  47. Grover, M., Behl, T., & Virmani, T. (2021). Phytochemical Screening, Antioxidant Assay and Cytotoxic Profile for Different Extracts of Chrysopogon zizanioides Roots. Chemistry & Biodiversity, 18(8), e2100012. https://doi.org/https://doi.org/10.1002/cbdv.202100012
  48. Gupta, D., Boora, A., Thakur, A., & Gupta, T. K. (2023). Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environmental Research, 231, 116316. https://doi.org/https://doi.org/10.1016/j.envres.2023.116316
  49. Hafeez, U., Parakh, S., Gan, H. K., & Scott, A. M. (2020). Antibody–Drug Conjugates for Cancer Therapy. Molecules, 25(20). https://doi.org/10.3390/molecules25204764
  50. Haleem, A., Javaid, M., Singh, R. P., Rab, S., & Suman, R. (2023). Applications of nanotechnology in medical field: a brief review. Global Health Journal, 7(2), 70–77. https://doi.org/https://doi.org/10.1016/j.glohj.2023.02.008
  51. Harun, N. A., Benning, M. J., Horrocks, B. R., & Fulton, D. A. (2013). Gold nanoparticle-enhanced luminescence of silicon quantum dots co-encapsulated in polymer nanoparticles. Nanoscale, 5(9), 3817–3827. https://doi.org/10.1039/C3NR00421J
  52. He, Z., Wan, X., Schulz, A., Bludau, H., Dobrovolskaia, M. A., Stern, S. T., Montgomery, S. A., Yuan, H., Li, Z., Alakhova, D., Sokolsky, M., Darr, D. B., Perou, C. M., Jordan, R., Luxenhofer, R., & Kabanov, A. V. (2016). A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials, 101, 296–309. https://doi.org/10.1016/j.biomaterials.2016.06.002
  53. Hong, S., Choi, D. W., Kim, H. N., Park, C. G., Lee, W., & Park, H. H. (2020). Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics, 12(7). https://doi.org/10.3390/pharmaceutics12070604
  54. Horejs, C. (2021). Nebulized lipid nanoparticles. Nature Reviews. Materials, 6(12), 1077. https://doi.org/10.1038/s41578-021-00392-y
  55. Hua, S., & Wu, S. Y. (2018). Editorial: Advances and Challenges in Nanomedicine. In Frontiers in pharmacology (Vol. 9, p. 1397). https://doi.org/10.3389/fphar.2018.01397
  56. Ibrahim, M., Abuwatfa, W. H., Awad, N. S., Sabouni, R., & Husseini, G. A. (2022). Encapsulation, Release, and Cytotoxicity of Doxorubicin Loaded in Liposomes, Micelles, and Metal-Organic Frameworks: A Review. Pharmaceutics, 14(2). https://doi.org/10.3390/pharmaceutics14020254
  57. Jain, D., Prajapati, S. K., Jain, A., & Singhal, R. (2023). Nano-formulated siRNA-based therapeutic approaches for cancer therapy. Nano Trends, 1, 100006. https://doi.org/https://doi.org/10.1016/j.nwnano.2023.100006
  58. Ji, T., Zhao, Y., Wang, J., Zheng, X., Tian, Y., Zhao, Y., & Nie, G. (2013). Tumor fibroblast specific activation of a hybrid ferritin nanocage-based optical probe for tumor microenvironment imaging. Small (Weinheim an Der Bergstrasse, Germany), 9(14), 2427–2431. https://doi.org/10.1002/smll.201300600
  59. Jia, S., Zhang, R., Li, Z., & Li, J. (2017). Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer. Oncotarget, 8(33), 55632–55645. https://doi.org/10.18632/oncotarget.17184
  60. Jiang, Y., Krishnan, N., Heo, J., Fang, R. H., & Zhang, L. (2020). Nanoparticle-hydrogel superstructures for biomedical applications. Journal of Controlled Release : Official Journal of the Controlled Release Society, 324, 505–521. https://doi.org/10.1016/j.jconrel.2020.05.041
  61. Jin, R., Guo, X., Dong, L., Xie, E., & Cao, A. (2017). Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy. Colloids and Surfaces B: Biointerfaces, 158, 47–56. https://doi.org/https://doi.org/10.1016/j.colsurfb.2017.06.023
  62. Jou, J., Harrington, K. J., Zocca, M.-B., Ehrnrooth, E., & Cohen, E. E. W. (2021). The Changing Landscape of Therapeutic Cancer Vaccines-Novel Platforms and Neoantigen Identification. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 27(3), 689–703. https://doi.org/10.1158/1078-0432.CCR-20-0245
  63. Kager, L., Pötschger, U., & Bielack, S. (2010). Review of mifamurtide in the treatment of patients with osteosarcoma. Therapeutics and Clinical Risk Management, 6, 279–286. https://doi.org/10.2147/tcrm.s5688
  64. Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 116(4), 2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346
  65. Kang, B., Mackey, M. A., & El-Sayed, M. A. (2010). Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. Journal of the American Chemical Society, 132(5), 1517–1519. https://doi.org/10.1021/ja9102698
  66. Kaur, H., Siwal, S. S., Kumar, V., & Thakur, V. K. (2023). Deep Eutectic Solvents toward the Detection and Extraction of Neurotransmitters: An Emerging Paradigm for Biomedical Applications. Industrial & Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.3c00410
  67. Kemp, J. A., & Kwon, Y. J. (2021). Cancer nanotechnology: current status and perspectives. Nano Convergence, 8(1), 34. https://doi.org/10.1186/s40580-021-00282-7
  68. Kemp, J. A., Shim, M. S., Heo, C. Y., & Kwon, Y. J. (2016). “Combo” nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Advanced Drug Delivery Reviews, 98, 3–18. https://doi.org/10.1016/j.addr.2015.10.019
  69. Koo, O. M., Rubinstein, I., & Onyuksel, H. (2005). Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine : Nanotechnology, Biology, and Medicine, 1(3), 193–212. https://doi.org/10.1016/j.nano.2005.06.004
  70. Kumar, B., Kumar, R., Skvortsova, I., & Kumar, V. (2017). Mechanisms of Tubulin Binding Ligands to Target Cancer Cells: Updates on their Therapeutic Potential and Clinical Trials. Current Cancer Drug Targets, 17(4), 357–375. https://doi.org/10.2174/1568009616666160928110818
  71. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108(6), 2064–2110. https://doi.org/10.1021/cr068445e
  72. Lee, C. C., Gillies, E. R., Fox, M. E., Guillaudeu, S. J., Fréchet, J. M. J., Dy, E. E., & Szoka, F. C. (2006). A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 103(45), 16649–16654. https://doi.org/10.1073/pnas.0607705103
  73. Lee, E. S., Na, K., & Bae, Y. H. (2005). Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. Journal of Controlled Release : Official Journal of the Controlled Release Society, 103(2), 405–418. https://doi.org/10.1016/j.jconrel.2004.12.018
  74. Machtakova, M., Thérien-Aubin, H., & Landfester, K. (2022). Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chemical Society Reviews, 51(1), 128–152. https://doi.org/10.1039/d1cs00686j
  75. Maja, L., Željko, K., & Mateja, P. (2020). Sustainable technologies for liposome preparation. The Journal of Supercritical Fluids, 165, 104984. https://doi.org/https://doi.org/10.1016/j.supflu.2020.104984
  76. Malone, E. R., Oliva, M., Sabatini, P. J. B., Stockley, T. L., & Siu, L. L. (2020). Molecular profiling for precision cancer therapies. Genome Medicine, 12(1), 8. https://doi.org/10.1186/s13073-019-0703-1
  77. Mansoor, S., Kondiah, P. P. D., Choonara, Y. E., & Pillay, V. (2019). Polymer-Based Nanoparticle Strategies for Insulin Delivery. Polymers, 11(9), 1380. https://doi.org/10.3390/polym11091380
  78. Masuda, N., Ono, M., Mukohara, T., Yasojima, H., Shimoi, T., Kobayashi, K., Harano, K., Mizutani, M., Tanioka, M., Takahashi, S., Kogawa, T., Suzuki, T., Okumura, S., Takase, T., Nagai, R., Semba, T., Zhao, Z.-M., Ren, M., & Yonemori, K. (2022). Phase 1 study of the liposomal formulation of eribulin (E7389-LF): Results from the breast cancer expansion cohort. European Journal of Cancer (Oxford, England : 1990), 168, 108–118. https://doi.org/10.1016/j.ejca.2022.03.004
  79. McCombs, J. R., & Owen, S. C. (2015). Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. The AAPS Journal, 17(2), 339–351. https://doi.org/10.1208/s12248-014-9710-8
  80. McGarvey, N., Gitlin, M., Fadli, E., & Chung, K. C. (2022). Increased healthcare costs by later stage cancer diagnosis. BMC Health Services Research, 22(1), 1155. https://doi.org/10.1186/s12913-022-08457-6
  81. Milano, G., Innocenti, F., & Minami, H. (2022). Liposomal irinotecan (Onivyde): Exemplifying the benefits of nanotherapeutic drugs. Cancer Science, 113(7), 2224–2231. https://doi.org/10.1111/cas.15377
  82. Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20(2), 101–124. https://doi.org/10.1038/s41573-020-0090-8
  83. Mocan, L., Matea, C., Tabaran, F. A., Mosteanu, O., Pop, T., Mocan, T., & Iancu, C. (2015). Photothermal treatment of liver cancer with albumin-conjugated gold nanoparticles initiates Golgi Apparatus-ER dysfunction and caspase-3 apoptotic pathway activation by selective targeting of Gp60 receptor. International Journal of Nanomedicine, 10, 5435–5445. https://doi.org/10.2147/IJN.S86495
  84. Moghimi-Dehkordi, B., & Safaee, A. (2012). An overview of colorectal cancer survival rates and prognosis in Asia. World Journal of Gastrointestinal Oncology, 4(4), 71–75. https://doi.org/10.4251/wjgo.v4.i4.71
  85. Namazi, H., Kulish, V. V, & Wong, A. (2015). Mathematical Modelling and Prediction of the Effect of Chemotherapy on Cancer Cells. Scientific Reports, 5(1), 13583. https://doi.org/10.1038/srep13583
  86. Navya, P. N., Kaphle, A., Srinivas, S. P., Bhargava, S. K., Rotello, V. M., & Daima, H. K. (2019). Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence, 6(1), 23. https://doi.org/10.1186/s40580-019-0193-2
  87. Neelakandan, R. P., R, D., & N, D. (2023). Formulation and Evaluation of Mucoadhesive Buccal tablets using Nimodipine Solid Lipid Nanoparticles. Nanofabrication, 8. https://doi.org/10.37819/nanofab.008.296
  88. Nieto, C., Vega, M. A., & del Valle, E. M. (2020). Trastuzumab: More than a Guide in HER2-Positive Cancer Nanomedicine. Nanomaterials, 10(9). https://doi.org/10.3390/nano10091674
  89. Nirmala, M. J., Kizhuveetil, U., Johnson, A., G, B., Nagarajan, R., & Muthuvijayan, V. (2023). Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Advances, 13(13), 8606–8629. https://doi.org/10.1039/d2ra07863e
  90. Ojha, A., Jaiswal, S., Bharti, P., & Mishra, S. K. (2022). Nanoparticles and Nanomaterials-Based Recent Approaches in Upgraded Targeting and Management of Cancer: A Review. Cancers, 15(1). https://doi.org/10.3390/cancers15010162
  91. Otmani, K., & Lewalle, P. (2021). Tumor Suppressor miRNA in Cancer Cells and the Tumor Microenvironment: Mechanism of Deregulation and Clinical Implications. Frontiers in Oncology, 11, 708765. https://doi.org/10.3389/fonc.2021.708765
  92. Park, E. J. (2022). Tailoring strategies for colorectal cancer screening and treatment based on age in colorectal cancer patients. In Annals of coloproctology (Vol. 38, Issue 3, pp. 181–182). https://doi.org/10.3393/ac.2022.00395.0056
  93. Parodi, A., Kolesova, E. P., Voronina, M. V, Frolova, A. S., Kostyushev, D., Trushina, D. B., Akasov, R., Pallaeva, T., & Zamyatnin, A. A. J. (2022). Anticancer Nanotherapeutics in Clinical Trials: The Work behind Clinical Translation of Nanomedicine. International Journal of Molecular Sciences, 23(21). https://doi.org/10.3390/ijms232113368
  94. Parodi, A., Miao, J., Soond, S. M., Rudzińska, M., & Zamyatnin, A. A. (2019). Albumin Nanovectors in Cancer Therapy and Imaging. In Biomolecules (Vol. 9, Issue 6). https://doi.org/10.3390/biom9060218
  95. Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760. https://doi.org/10.1038/nnano.2007.387
  96. Petkar, K. C., Patil, S. M., Chavhan, S. S., Kaneko, K., Sawant, K. K., Kunda, N. K., & Saleem, I. Y. (2021). An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery. Pharmaceutics, 13(4). https://doi.org/10.3390/pharmaceutics13040455
  97. Petre, C. E., & Dittmer, D. P. (2007). Liposomal daunorubicin as treatment for Kaposi’s sarcoma. International Journal of Nanomedicine, 2(3), 277–288.
  98. Piffoux, M., Silva, A. K. A., Wilhelm, C., Gazeau, F., & Tareste, D. (2018). Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS Nano, 12(7), 6830–6842. https://doi.org/10.1021/acsnano.8b02053
  99. Pillaiyar, T., Meenakshisundaram, S., Manickam, M., & Sankaranarayanan, M. (2020). A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery. European Journal of Medicinal Chemistry, 195, 112275. https://doi.org/10.1016/j.ejmech.2020.112275
  100. Prakash, N., Balaji, R., Chen, S.-M., Steffi, A. P., Tamilalagan, E., Narendhar, C., & Muthusankar, E. (2021). Investigation of template-assisted (MCM-41) mesoporous Co3O4 nanostructures and its superior supercapacitive retention. Vacuum, 185, 109998. https://doi.org/https://doi.org/10.1016/j.vacuum.2020.109998
  101. Prakash, N., Balaji, R., Govindaraju, S., Steffi, A. P., Santhanalakshmi, N., Mohanraj, K., Selvarajan, E., Chandrasekar, N., & Samuel, M. S. (2022). Influence of 2D template-assisted (SBA-15) metal oxide Co3O4 for pseudocapacitive and dye degradation application. Environmental Research, 204, 112383. https://doi.org/https://doi.org/10.1016/j.envres.2021.112383
  102. Rai, R., Alwani, S., & Badea, I. (2019). Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications. Polymers, 11(4). https://doi.org/10.3390/polym11040745
  103. Ramesh, M., Janani, R., Deepa, C., & Rajeshkumar, L. (2023). Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. Biosensors, 13(1). https://doi.org/10.3390/bios13010040
  104. Rasool, M., Malik, A., Waquar, S., Arooj, M., Zahid, S., Asif, M., Shaheen, S., Hussain, A., Ullah, H., & Gan, S. H. (2022). New challenges in the use of nanomedicine in cancer therapy. Bioengineered, 13(1), 759–773. https://doi.org/10.1080/21655979.2021.2012907
  105. Reang, J., Sharma, K., Sharma, P. C., Yadav, V., Sharma, V., & Majeed, J. (2023). Discovery of VEGFR inhibitors through virtual screening and energy assessment. Journal of Biochemical and Molecular Toxicology, n/a(n/a), e23321. https://doi.org/https://doi.org/10.1002/jbt.23321
  106. Reang, J., Sharma, P. C., Thakur, V. K., & Majeed, J. (2021). Understanding the Therapeutic Potential of Ascorbic Acid in the Battle to Overcome Cancer. In Biomolecules (Vol. 11, Issue 8). https://doi.org/10.3390/biom11081130
  107. Rimkus, T., Sirkisoon, S., Harrison, A., & Lo, H.-W. (2017). Tumor suppressor candidate 2 (TUSC2, FUS-1) and human cancers. Discovery Medicine, 23(128), 325–330.
  108. Roma-Rodrigues, C., Rivas-García, L., Baptista, P. V, & Fernandes, A. R. (2020). Gene Therapy in Cancer Treatment: Why Go Nano? In Pharmaceutics (Vol. 12, Issue 3). https://doi.org/10.3390/pharmaceutics12030233
  109. Rosa, W. E., & Hassmiller, S. B. (2020). The Sustainable Development Goals and Building a Culture of Health. The American Journal of Nursing, 120(6), 69–71. https://doi.org/10.1097/01.NAJ.0000668772.33792.1f
  110. Ryu, J. H., Koo, H., Sun, I.-C., Yuk, S. H., Choi, K., Kim, K., & Kwon, I. C. (2012). Tumor-targeting multi-functional nanoparticles for theragnosis: New paradigm for cancer therapy. Advanced Drug Delivery Reviews, 64(13), 1447–1458. https://doi.org/https://doi.org/10.1016/j.addr.2012.06.012
  111. Ryu, J. H., Lee, S., Son, S., Kim, S. H., Leary, J. F., Choi, K., & Kwon, I. C. (2014). Theranostic nanoparticles for future personalized medicine. Journal of Controlled Release : Official Journal of the Controlled Release Society, 190, 477–484. https://doi.org/10.1016/j.jconrel.2014.04.027
  112. Salehi, B., Selamoglu, Z., S Mileski, K., Pezzani, R., Redaelli, M., Cho, W. C., Kobarfard, F., Rajabi, S., Martorell, M., Kumar, P., Martins, N., Subhra Santra, T., & Sharifi-Rad, J. (2019). Liposomal Cytarabine as Cancer Therapy: From Chemistry to Medicine. Biomolecules, 9(12). https://doi.org/10.3390/biom9120773
  113. Sauraj, Kumar, A., Kumar, B., Kulshreshtha, A., & Negi, Y. S. (2021). Redox-sensitive nanoparticles based on xylan-lipoic acid conjugate for tumor targeted drug delivery of niclosamide in cancer therapy. Carbohydrate Research, 499, 108222. https://doi.org/https://doi.org/10.1016/j.carres.2020.108222
  114. Sauraj, Vinay kumar, Kumar, B., Priyadarshi, R., Deeba, F., Kulshreshtha, A., Kumar, A., Agrawal, G., Gopinath, P., & Negi, Y. S. (2020). Redox responsive xylan-SS-curcumin prodrug nanoparticles for dual drug delivery in cancer therapy. Materials Science and Engineering: C, 107, 110356. https://doi.org/https://doi.org/10.1016/j.msec.2019.110356
  115. Shams, F., Golchin, A., Azari, A., Mohammadi Amirabad, L., Zarein, F., Khosravi, A., & Ardeshirylajimi, A. (2022). Nanotechnology-based products for cancer immunotherapy. Molecular Biology Reports, 49(2), 1389–1412. https://doi.org/10.1007/s11033-021-06876-y
  116. Sheoran, S., Arora, S., Samsonraj, R., Govindaiah, P., & Vuree, S. (2022). Lipid-based nanoparticles for treatment of cancer. Heliyon, 8(5), e09403. https://doi.org/10.1016/j.heliyon.2022.e09403
  117. Shrestha, B., Wang, L., Brey, E. M., Uribe, G. R., & Tang, L. (2021). Smart Nanoparticles for Chemo-Based Combinational Therapy. Pharmaceutics, 13(6). https://doi.org/10.3390/pharmaceutics13060853
  118. Siafaka, P. I., Okur, N. Ü., Karantas, I. D., Okur, M. E., & Gündoğdu, E. A. (2021). Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian Journal of Pharmaceutical Sciences, 16(1), 24–46. https://doi.org/https://doi.org/10.1016/j.ajps.2020.03.003
  119. Silverman, J., & Deitcher, S. (2012). Marqibo(R) (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemotherapy and Pharmacology, 71. https://doi.org/10.1007/s00280-012-2042-4
  120. Sochacka-Ćwikła, A., Mączyński, M., & Regiec, A. (2022). FDA-Approved Small Molecule Compounds as Drugs for Solid Cancers from Early 2011 to the End of 2021. Molecules (Basel, Switzerland), 27(7). https://doi.org/10.3390/molecules27072259
  121. Song, S., Qin, Y., He, Y., Huang, Q., Fan, C., & Chen, H.-Y. (2010). Functional nanoprobes for ultrasensitive detection of biomolecules. Chemical Society Reviews, 39(11), 4234–4243. https://doi.org/10.1039/C000682N
  122. Steffi, A. P., Balaji, R., Chandrasekar, N., Prakash, N., Rajesh, T. P., Ethiraj, S., Samuel, M. S., & Vuppala, S. (2022). High-performance anti-corrosive coatings based on rGO-SiO2-TiO2 ternary heterojunction nanocomposites for superior protection for mild steel specimens. Diamond and Related Materials, 125, 108968. https://doi.org/https://doi.org/10.1016/j.diamond.2022.108968
  123. Steffi, A. P., Balaji, R., Prakash, N., Rajesh, T. P., Ethiraj, S., Samuel, M. S., Nadda, A. K., & Chandrasekar, N. (2022). Incorporation of SiO(2) functionalized gC(3)N(4) sheets with TiO(2) nanoparticles to enhance the anticorrosion performance of metal specimens in aggressive Cl(-) environment. Chemosphere, 290, 133332. https://doi.org/10.1016/j.chemosphere.2021.133332
  124. Su, D., & Zhang, D. (2021). Linker Design Impacts Antibody-Drug Conjugate Pharmacokinetics and Efficacy via Modulating the Stability and Payload Release Efficiency. Frontiers in Pharmacology, 12, 687926. https://doi.org/10.3389/fphar.2021.687926
  125. Su, W.-P., Cheng, F.-Y., Shieh, D.-B., Yeh, C.-S., & Su, W.-C. (2012). PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells. International Journal of Nanomedicine, 7, 4269–4283. https://doi.org/10.2147/IJN.S33666
  126. Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 99(Pt A), 28–51. https://doi.org/10.1016/j.addr.2015.09.012
  127. Sun, X., Bao, J., & Shao, Y. (2016). Mathematical Modeling of Therapy-induced Cancer Drug Resistance: Connecting Cancer Mechanisms to Population Survival Rates. Scientific Reports, 6(1), 22498. https://doi.org/10.1038/srep22498
  128. Syed, Y. Y. (2020). Sacituzumab Govitecan: First Approval. Drugs, 80(10), 1019–1025. https://doi.org/10.1007/s40265-020-01337-5
  129. Tawfik, S. M., Azizov, S., Elmasry, M. R., Sharipov, M., & Lee, Y.-I. (2021). Recent Advances in Nanomicelles Delivery Systems. In Nanomaterials (Vol. 11, Issue 1). https://doi.org/10.3390/nano11010070
  130. Tian, Z., Liang, G., Cui, K., Liang, Y., Wang, Q., Lv, S., Cheng, X., & Zhang, L. (2021). Insight Into the Prospects for RNAi Therapy of Cancer . In Frontiers in Pharmacology (Vol. 12). https://www.frontiersin.org/articles/10.3389/fphar.2021.644718
  131. van der Meel, R., Sulheim, E., Shi, Y., Kiessling, F., Mulder, W. J. M., & Lammers, T. (2019). Smart cancer nanomedicine. Nature Nanotechnology, 14(11), 1007–1017. https://doi.org/10.1038/s41565-019-0567-y
  132. Vasan, N., Baselga, J., & Hyman, D. M. (2019). A view on drug resistance in cancer. Nature, 575(7782), 299–309. https://doi.org/10.1038/s41586-019-1730-1
  133. Vijayan, V., Reddy, K. R., Sakthivel, S., & Swetha, C. (2013). Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: in vitro and in vivo studies. Colloids and Surfaces. B, Biointerfaces, 111, 150–155. https://doi.org/10.1016/j.colsurfb.2013.05.020
  134. Vlek, C., Skolnik, M., & Gatersleben, B. (1998). Sustainable development and quality of life: expected effects of prospective changes in economic and environmental conditions. Zeitschrift Fur Experimentelle Psychologie : Organ Der Deutschen Gesellschaft Fur Psychologie, 45(4), 319–333.
  135. Wang, K., Kievit, F. M., & Zhang, M. (2016). Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacological Research, 114, 56–66. https://doi.org/https://doi.org/10.1016/j.phrs.2016.10.016
  136. Wang, K., Shen, R., Meng, T., Hu, F., & Yuan, H. (2022). Nano-Drug Delivery Systems Based on Different Targeting Mechanisms in the Targeted Therapy of Colorectal Cancer. Molecules (Basel, Switzerland), 27(9). https://doi.org/10.3390/molecules27092981
  137. Xu, S., Wang, L., & Liu, Z. (2021). Molecularly Imprinted Polymer Nanoparticles: An Emerging Versatile Platform for Cancer Therapy. Angewandte Chemie International Edition, 60(8), 3858–3869. https://doi.org/https://doi.org/10.1002/anie.202005309
  138. Xue, Y., Gao, Y., Meng, F., & Luo, L. (2021). Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biology & Medicine, 18(2), 336–351. https://doi.org/10.20892/j.issn.2095-3941.2020.0510
  139. Yadav, V., Reang, J., Sharma, V., Majeed, J., Sharma, P. C., Sharma, K., Giri, N., Kumar, A., & Tonk, R. K. (2022). Quinoline-derivatives as privileged scaffolds for medicinal and pharmaceutical chemists: A comprehensive review. Chemical Biology & Drug Design, 100(3), 389–418. https://doi.org/https://doi.org/10.1111/cbdd.14099
  140. Yadav, V., Tonk, K. R., & Khatri, R. (2021). Molecular Docking, 3D-QSAR, Fingerprint-Based 2D-QSAR, Analysis of Pyrimidine, and Analogs of ALK (Anaplastic Lymphoma Kinase) Inhibitors as an Anticancer Agent. In Letters in Drug Design & Discovery (Vol. 18, Issue 5, pp. 509–521). https://doi.org/http://dx.doi.org/10.2174/1570180817999201123163617
  141. Yang, J., Arya, S., Lung, P., Lin, Q., Huang, J., & Li, Q. (2019). Hybrid nanovaccine for the co-delivery of the mRNA antigen and adjuvant. Nanoscale, 11(45), 21782–21789. https://doi.org/10.1039/C9NR05475H
  142. Yao, Y., Zhou, Y., Liu, L., Xu, Y., Chen, Q., Wang, Y., Wu, S., Deng, Y., Zhang, J., & Shao, A. (2020). Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance . In Frontiers in Molecular Biosciences (Vol. 7). https://www.frontiersin.org/articles/10.3389/fmolb.2020.00193
  143. Yuan, H., Guo, H., Luan, X., He, M., Li, F., Burnett, J., Truchan, N., & Sun, D. (2020). Albumin Nanoparticle of Paclitaxel (Abraxane) Decreases while Taxol Increases Breast Cancer Stem Cells in Treatment of Triple Negative Breast Cancer. Molecular Pharmaceutics, 17(7), 2275–2286. https://doi.org/10.1021/acs.molpharmaceut.9b01221
  144. Yue, X., & Dai, Z. (2018). Liposomal Nanotechnology for Cancer Theranostics. Current Medicinal Chemistry, 25(12), 1397–1408. https://doi.org/10.2174/0929867324666170306105350
  145. Zeng, Y., Li, S., Zhang, S., Wang, L., Yuan, H., & Hu, F. (2022). Cell membrane coated-nanoparticles for cancer immunotherapy. Acta Pharmaceutica Sinica. B, 12(8), 3233–3254. https://doi.org/10.1016/j.apsb.2022.02.023
  146. Zhang, E., Xing, R., Liu, S., & Li, P. (2019). Current advances in development of new docetaxel formulations. Expert Opinion on Drug Delivery, 16(3), 301–312. https://doi.org/10.1080/17425247.2019.1583644
  147. Zhang, H., Lv, J., & Jia, Z. (2017). Efficient Fluorescence Resonance Energy Transfer between Quantum Dots and Gold Nanoparticles Based on Porous Silicon Photonic Crystal for DNA Detection. In Sensors (Vol. 17, Issue 5). https://doi.org/10.3390/s17051078
  148. Zhang, S., Jiang, S.-F., Huang, B.-C., Shen, X.-C., Chen, W.-J., Zhou, T.-P., Cheng, H.-Y., Cheng, B.-H., Wu, C.-Z., Li, W.-W., Jiang, H., & Yu, H.-Q. (2020). Sustainable production of value-added carbon nanomaterials from biomass pyrolysis. Nature Sustainability, 3(9), 753–760. https://doi.org/10.1038/s41893-020-0538-1
  149. Zhang, Y., Li, M., Gao, X., Chen, Y., & Liu, T. (2019). Nanotechnology in cancer diagnosis: progress, challenges and opportunities. Journal of Hematology & Oncology, 12(1), 137. https://doi.org/10.1186/s13045-019-0833-3
  150. Zhang, Y., Poon, K., Masonsong, G. S. P., Ramaswamy, Y., & Singh, G. (2023). Sustainable Nanomaterials for Biomedical Applications. In Pharmaceutics (Vol. 15, Issue 3). https://doi.org/10.3390/pharmaceutics15030922
  151. Zhao, P., Tang, X., & Huang, Y. (2021). Teaching new tricks to old dogs: A review of drug repositioning of disulfiram for cancer nanomedicine. VIEW, 2(4), 20200127. https://doi.org/https://doi.org/10.1002/VIW.20200127
  152. Zheng, S., Wang, J., Ding, N., Chen, W., Chen, H., Xue, M., Chen, F., Ni, J., Wang, Z., Lin, Z., Jiang, H., Liu, X., & Wang, L. (2021). Prodrug polymeric micelles integrating cancer-associated fibroblasts deactivation and synergistic chemotherapy for gastric cancer. Journal of Nanobiotechnology, 19(1), 381. https://doi.org/10.1186/s12951-021-01127-5
  153. Zhou, L., Zou, M., Xu, Y., Lin, P., Lei, C., & Xia, X. (2022). Nano Drug Delivery System for Tumor Immunotherapy: Next-Generation Therapeutics. Frontiers in Oncology, 12, 864301. https://doi.org/10.3389/fonc.2022.864301

How to Cite

Advancements and application of sustainable nanotechnology-based biomedical products in cancer therapeutics. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.1772

How to Cite

Advancements and application of sustainable nanotechnology-based biomedical products in cancer therapeutics. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.1772

HTML
171

Total
260

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Vinita Sharma, Jurnal Reang, Vivek Yadav, Archana Sharma, Jaseela Majeed, Prabodh Chander Sharma

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.