Skip to main content Skip to main navigation menu Skip to site footer

Advancements and application of sustainable nanotechnology-based biomedical products in cancer therapeutics

  • Vinita Sharma
  • Jurnal Reang
  • Vivek Yadav
  • Archana Sharma
  • Jaseela Majeed
  • Prabodh Chander Sharma


Nanotechnology has gained widespread attention in various scientific fields due to the special properties of nanomaterials. Sustainable nanotechnology prioritizes minimizing the environmental impact of nanomaterials and manufacturing processes while ensuring biocompatibility and safety. By utilizing eco-friendly materials, renewable energy sources, and greener production techniques, sustainable nanotechnology addresses the pressing need for eco-conscious advancements in cancer treatment. The integration of sustainable nanotechnology with advanced imaging techniques enables precise tumor detection, characterization, and monitoring. To improve cancer treatment, sustainable nanotechnology-based novel carriers have attracted significant attention, which includes proteins, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanoparticles, micelles, dendrimers, and antibody-drug conjugates that are employed for the co-delivery of phytochemicals and anticancer agents at the targeted sites. Green synthesis approaches to nanomaterials have gained attention due to their sustainability and environmental friendliness. Nevertheless, there are issues with this synthesis process, like bulk manufacturing, cytotoxicity of nanomaterials, and safe solvent selection. Furthermore, several of the anticipated sustainable nanotechnologies, such as gene- and immunotherapy-based nanoformulations and therapeutics, have redefined existing nanotechnologies. This review aims to provide a comprehensive overview of eco-friendly and sustainable nanotechnology for cancer diagnostics and treatment, emphasizing the efficacy, safety, and environmental sustainability of current nanotechnology in cancer treatments.



  1. Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., Hanifehpour, Y., Nejati-Koshki, K., & Pashaei-Asl, R. (2014). Dendrimers: synthesis, applications, and properties. Nanoscale Research Letters, 9(1), 247.
  2. Adrita, S. H., Tasnim, K. N., Ryu, J. H., & Sharker, S. M. (2020). Nanotheranostic Carbon Dots as an Emerging Platform for Cancer Therapy. In Journal of Nanotheranostics (Vol. 1, Issue 1, pp. 58–77).
  3. Aggarwal, R. R., Feng, F. Y., & Small, E. J. (2017). Emerging Categories of Disease in Advanced Prostate Cancer and Their Therapeutic Implications. Oncology (Williston Park, N.Y.), 31(6), 467–474.
  4. Aghamiri, S., Mehrjardi, K. F., Shabani, S., Keshavarz-Fathi, M., Kargar, S., & Rezaei, N. (2019). Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy? Nanomedicine, 14(15), 2083–2100.
  5. Aikins, M. E., Xu, C., & Moon, J. J. (2020). Engineered Nanoparticles for Cancer Vaccination and Immunotherapy. Accounts of Chemical Research, 53(10), 2094–2105.
  6. Alt, M., Stecca, C., Tobin, S., Jiang, D. M., & Sridhar, S. S. (2020). Enfortumab Vedotin in urothelial cancer. Therapeutic Advances in Urology, 12, 1756287220980192.
  7. Alven, S., & Aderibigbe, B. A. (2020). The Therapeutic Efficacy of Dendrimer and Micelle Formulations for Breast Cancer Treatment. In Pharmaceutics (Vol. 12, Issue 12).
  8. Anani, T., Rahmati, S., Sultana, N., & David, A. E. (2021). MRI-traceable theranostic nanoparticles for targeted cancer treatment. Theranostics, 11(2), 579–601.
  9. Andriole, G., Crawford, E., Grubb, R., Buys, S., Chia, D., Church, T., Fouad, M., Isaacs, C., Kvale, P., Reding, D., Weissfeld, J., Yokochi, L., O’Brien, B., Ragard, L., Clapp, J., Rathmell, J., Riley, T., Hsing, A., Izmirlian, G., & Prorok, P. (2012). Prostate Cancer Screening in the Randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: Mortality Results after 13 Years of Follow-up. Journal of the National Cancer Institute, 104, 125–132.
  10. Ashford, M. B., England, R. M., & Akhtar, N. (2021). Highway to Success—Developing Advanced Polymer Therapeutics. Advanced Therapeutics, 4(5), 2000285.
  11. Aslan, B., Ozpolat, B., Sood, A. K., & Lopez-Berestein, G. (2013). Nanotechnology in cancer therapy. Journal of Drug Targeting, 21(10), 904–913.
  12. Auffan, M., Rose, J., Bottero, J.-Y., Lowry, G. V, Jolivet, J.-P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10), 634–641.
  13. Babu, A., Muralidharan, R., Amreddy, N., Mehta, M., Munshi, A., & Ramesh, R. (2016). Nanoparticles for siRNA-Based Gene Silencing in Tumor Therapy. IEEE Transactions on Nanobioscience, 15(8), 849–863.
  14. Begines, B., Ortiz, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F., & Alcudia, A. (2020). Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials (Basel, Switzerland), 10(7).
  15. Blanco, E., Bey, E. A., Khemtong, C., Yang, S.-G., Setti-Guthi, J., Chen, H., Kessinger, C. W., Carnevale, K. A., Bornmann, W. G., Boothman, D. A., & Gao, J. (2010). Beta-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy. Cancer Research, 70(10), 3896–3904.
  16. Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 33(9), 941–951.
  17. Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International Journal of Nanomedicine, 10, 975–999.
  18. Brinks, J., Fowler, A., Franklin, B. A., & Dulai, J. (2017). Lifestyle Modification in Secondary Prevention: Beyond Pharmacotherapy. American Journal of Lifestyle Medicine, 11(2), 137–152.
  19. Burke, J. M., Morschhauser, F., Andorsky, D., Lee, C., & Sharman, J. P. (2020). Antibody-drug conjugates for previously treated aggressive lymphomas: focus on polatuzumab vedotin. Expert Review of Clinical Pharmacology, 13(10), 1073–1083.
  20. Caracciolo, G., Vali, H., Moore, A., & Mahmoudi, M. (2019). Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today, 27, 6–10.
  21. Chalouni, C., & Doll, S. (2018). Fate of Antibody-Drug Conjugates in Cancer Cells. Journal of Experimental & Clinical Cancer Research, 37(1), 20.
  22. Chandrasekar, N., Steffi, A. P., Ramachandran, B., Hwang, M. T., Faramarzi, V., & Govarthanan, M. (2023). MXenes - Versatile 2D materials for identification of biomarkers and contaminants in large scale environments - A review. Environmental Research, 228, 115900.
  23. Charbe, N. B., Amnerkar, N. D., Ramesh, B., Tambuwala, M. M., Bakshi, H. A., Aljabali, A. A. A., Khadse, S. C., Satheeshkumar, R., Satija, S., Metha, M., Chellappan, D. K., Shrivastava, G., Gupta, G., Negi, P., Dua, K., & Zacconi, F. C. (2020). Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharmaceutica Sinica B, 10(11), 2075–2109.
  24. Chaturvedi, V. K., Singh, A., Singh, V. K., & Singh, M. P. (2019). Cancer Nanotechnology: A New Revolution for Cancer Diagnosis and Therapy. Current Drug Metabolism, 20(6), 416–429.
  25. Chen, H. H. W., & Kuo, M. T. (2017). Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget, 8(37), 62742–62758.
  26. Chen, X.-J., Zhang, X.-Q., Liu, Q., Zhang, J., & Zhou, G. (2018). Nanotechnology: a promising method for oral cancer detection and diagnosis. Journal of Nanobiotechnology, 16(1), 52.
  27. Chis, A. A., Dobrea, C., Morgovan, C., Arseniu, A. M., Rus, L. L., Butuca, A., Juncan, A. M., Totan, M., Vonica-Tincu, A. L., Cormos, G., Muntean, A. C., Muresan, M. L., Gligor, F. G., & Frum, A. (2020). Applications and Limitations of Dendrimers in Biomedicine. Molecules (Basel, Switzerland), 25(17).
  28. Cho, H., Jeon, S. I., Ahn, C.-H., Shim, M. K., & Kim, K. (2022). Emerging Albumin-Binding Anticancer Drugs for Tumor-Targeted Drug Delivery: Current Understandings and Clinical Translation. Pharmaceutics, 14(4).
  29. Das, S. K., Menezes, M. E., Bhatia, S., Wang, X.-Y., Emdad, L., Sarkar, D., & Fisher, P. B. (2015). Gene Therapies for Cancer: Strategies, Challenges and Successes. Journal of Cellular Physiology, 230(2), 259–271.
  30. Debele, T. A., Yeh, C.-F., & Su, W.-P. (2020). Cancer Immunotherapy and Application of Nanoparticles in Cancers Immunotherapy as the Delivery of Immunotherapeutic Agents and as the Immunomodulators. Cancers, 12(12).
  31. Deverka, P. A., Douglas, M. P., & Phillips, K. A. (2022). Multicancer Screening Tests: Anticipating And Addressing Considerations For Payer Coverage And Patient Access. Health Affairs (Project Hope), 41(3), 383–389.
  32. Di Stasio, G. D., Buonomano, P., Travaini, L. L., Grana, C. M., & Mansi, L. (2021). From the Magic Bullet to Theragnostics: Certitudes and Hypotheses, Trying to Optimize the Somatostatin Model. Cancers, 13(14).
  33. Dichwalkar, T., Patel, S., Bapat, S., Pancholi, P., Jasani, N., Desai, B., Yellepeddi, V. K., & Sehdev, V. (2017). Omega-3 Fatty Acid Grafted PAMAM-Paclitaxel Conjugate Exhibits Enhanced Anticancer Activity in Upper Gastrointestinal Cancer Cells. Macromolecular Bioscience, 17(8).
  34. Dik, G., Ulu, A., & Ateş, B. (2023). Synthesis and Biomedical Applications of Polymer-Functionalized Magnetic Nanoparticles. Nanofabrication, 8.
  35. Dillekås, H., Rogers, M. S., & Straume, O. (2019). Are 90% of deaths from cancer caused by metastases? Cancer Medicine, 8(12), 5574–5576.
  36. Doria, G., Conde, J., Veigas, B., Giestas, L., Almeida, C., Assunção, M., Rosa, J., & Baptista, P. V. (2012). Noble metal nanoparticles for biosensing applications. Sensors (Basel, Switzerland), 12(2), 1657–1687.
  37. Etrych, T., Braunova, A., Zogala, D., Lambert, L., Renesova, N., & Klener, P. (2022). Targeted Drug Delivery and Theranostic Strategies in Malignant Lymphomas. Cancers, 14(3).
  38. Fathi, M., Majidi, S., Zangabad, P. S., Barar, J., Erfan-Niya, H., & Omidi, Y. (2018). Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Medicinal Research Reviews, 38(6), 2110–2136.
  39. Franco, Y. L., Vaidya, T. R., & Ait-Oudhia, S. (2018). Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer (Dove Medical Press), 10, 131–141.
  40. Fu, S., Xia, J., & Wu, J. (2016). Functional Chitosan Nanoparticles in Cancer Treatment. Journal of Biomedical Nanotechnology, 12(8), 1585–1603.
  41. Fu, Z., Li, S., Han, S., Shi, C., & Zhang, Y. (2022). Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduction and Targeted Therapy, 7(1), 93.
  42. Gabizon, A., Shmeeda, H., & Barenholz, Y. (2003). Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clinical Pharmacokinetics, 42(5), 419–436.
  43. Gandini, A., & M Lacerda, T. (2021). Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives. Molecules (Basel, Switzerland), 27(1).
  44. García-Pinel, B., Porras-Alcalá, C., Ortega-Rodríguez, A., Sarabia, F., Prados, J., Melguizo, C., & López-Romero, J. M. (2019). Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. Nanomaterials (Basel, Switzerland), 9(4).
  45. Gaucher, G., Dufresne, M.-H., Sant, V. P., Kang, N., Maysinger, D., & Leroux, J.-C. (2005). Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of Controlled Release : Official Journal of the Controlled Release Society, 109(1–3), 169–188.
  46. Gavas, S., Quazi, S., & Karpiński, T. M. (2021). Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Research Letters, 16(1), 173.
  47. Grover, M., Behl, T., & Virmani, T. (2021). Phytochemical Screening, Antioxidant Assay and Cytotoxic Profile for Different Extracts of Chrysopogon zizanioides Roots. Chemistry & Biodiversity, 18(8), e2100012.
  48. Gupta, D., Boora, A., Thakur, A., & Gupta, T. K. (2023). Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environmental Research, 231, 116316.
  49. Hafeez, U., Parakh, S., Gan, H. K., & Scott, A. M. (2020). Antibody–Drug Conjugates for Cancer Therapy. Molecules, 25(20).
  50. Haleem, A., Javaid, M., Singh, R. P., Rab, S., & Suman, R. (2023). Applications of nanotechnology in medical field: a brief review. Global Health Journal, 7(2), 70–77.
  51. Harun, N. A., Benning, M. J., Horrocks, B. R., & Fulton, D. A. (2013). Gold nanoparticle-enhanced luminescence of silicon quantum dots co-encapsulated in polymer nanoparticles. Nanoscale, 5(9), 3817–3827.
  52. He, Z., Wan, X., Schulz, A., Bludau, H., Dobrovolskaia, M. A., Stern, S. T., Montgomery, S. A., Yuan, H., Li, Z., Alakhova, D., Sokolsky, M., Darr, D. B., Perou, C. M., Jordan, R., Luxenhofer, R., & Kabanov, A. V. (2016). A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials, 101, 296–309.
  53. Hong, S., Choi, D. W., Kim, H. N., Park, C. G., Lee, W., & Park, H. H. (2020). Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics, 12(7).
  54. Horejs, C. (2021). Nebulized lipid nanoparticles. Nature Reviews. Materials, 6(12), 1077.
  55. Hua, S., & Wu, S. Y. (2018). Editorial: Advances and Challenges in Nanomedicine. In Frontiers in pharmacology (Vol. 9, p. 1397).
  56. Ibrahim, M., Abuwatfa, W. H., Awad, N. S., Sabouni, R., & Husseini, G. A. (2022). Encapsulation, Release, and Cytotoxicity of Doxorubicin Loaded in Liposomes, Micelles, and Metal-Organic Frameworks: A Review. Pharmaceutics, 14(2).
  57. Jain, D., Prajapati, S. K., Jain, A., & Singhal, R. (2023). Nano-formulated siRNA-based therapeutic approaches for cancer therapy. Nano Trends, 1, 100006.
  58. Ji, T., Zhao, Y., Wang, J., Zheng, X., Tian, Y., Zhao, Y., & Nie, G. (2013). Tumor fibroblast specific activation of a hybrid ferritin nanocage-based optical probe for tumor microenvironment imaging. Small (Weinheim an Der Bergstrasse, Germany), 9(14), 2427–2431.
  59. Jia, S., Zhang, R., Li, Z., & Li, J. (2017). Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer. Oncotarget, 8(33), 55632–55645.
  60. Jiang, Y., Krishnan, N., Heo, J., Fang, R. H., & Zhang, L. (2020). Nanoparticle-hydrogel superstructures for biomedical applications. Journal of Controlled Release : Official Journal of the Controlled Release Society, 324, 505–521.
  61. Jin, R., Guo, X., Dong, L., Xie, E., & Cao, A. (2017). Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy. Colloids and Surfaces B: Biointerfaces, 158, 47–56.
  62. Jou, J., Harrington, K. J., Zocca, M.-B., Ehrnrooth, E., & Cohen, E. E. W. (2021). The Changing Landscape of Therapeutic Cancer Vaccines-Novel Platforms and Neoantigen Identification. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 27(3), 689–703.
  63. Kager, L., Pötschger, U., & Bielack, S. (2010). Review of mifamurtide in the treatment of patients with osteosarcoma. Therapeutics and Clinical Risk Management, 6, 279–286.
  64. Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 116(4), 2602–2663.
  65. Kang, B., Mackey, M. A., & El-Sayed, M. A. (2010). Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. Journal of the American Chemical Society, 132(5), 1517–1519.
  66. Kaur, H., Siwal, S. S., Kumar, V., & Thakur, V. K. (2023). Deep Eutectic Solvents toward the Detection and Extraction of Neurotransmitters: An Emerging Paradigm for Biomedical Applications. Industrial & Engineering Chemistry Research.
  67. Kemp, J. A., & Kwon, Y. J. (2021). Cancer nanotechnology: current status and perspectives. Nano Convergence, 8(1), 34.
  68. Kemp, J. A., Shim, M. S., Heo, C. Y., & Kwon, Y. J. (2016). “Combo” nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Advanced Drug Delivery Reviews, 98, 3–18.
  69. Koo, O. M., Rubinstein, I., & Onyuksel, H. (2005). Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine : Nanotechnology, Biology, and Medicine, 1(3), 193–212.
  70. Kumar, B., Kumar, R., Skvortsova, I., & Kumar, V. (2017). Mechanisms of Tubulin Binding Ligands to Target Cancer Cells: Updates on their Therapeutic Potential and Clinical Trials. Current Cancer Drug Targets, 17(4), 357–375.
  71. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108(6), 2064–2110.
  72. Lee, C. C., Gillies, E. R., Fox, M. E., Guillaudeu, S. J., Fréchet, J. M. J., Dy, E. E., & Szoka, F. C. (2006). A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 103(45), 16649–16654.
  73. Lee, E. S., Na, K., & Bae, Y. H. (2005). Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. Journal of Controlled Release : Official Journal of the Controlled Release Society, 103(2), 405–418.
  74. Machtakova, M., Thérien-Aubin, H., & Landfester, K. (2022). Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chemical Society Reviews, 51(1), 128–152.
  75. Maja, L., Željko, K., & Mateja, P. (2020). Sustainable technologies for liposome preparation. The Journal of Supercritical Fluids, 165, 104984.
  76. Malone, E. R., Oliva, M., Sabatini, P. J. B., Stockley, T. L., & Siu, L. L. (2020). Molecular profiling for precision cancer therapies. Genome Medicine, 12(1), 8.
  77. Mansoor, S., Kondiah, P. P. D., Choonara, Y. E., & Pillay, V. (2019). Polymer-Based Nanoparticle Strategies for Insulin Delivery. Polymers, 11(9), 1380.
  78. Masuda, N., Ono, M., Mukohara, T., Yasojima, H., Shimoi, T., Kobayashi, K., Harano, K., Mizutani, M., Tanioka, M., Takahashi, S., Kogawa, T., Suzuki, T., Okumura, S., Takase, T., Nagai, R., Semba, T., Zhao, Z.-M., Ren, M., & Yonemori, K. (2022). Phase 1 study of the liposomal formulation of eribulin (E7389-LF): Results from the breast cancer expansion cohort. European Journal of Cancer (Oxford, England : 1990), 168, 108–118.
  79. McCombs, J. R., & Owen, S. C. (2015). Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. The AAPS Journal, 17(2), 339–351.
  80. McGarvey, N., Gitlin, M., Fadli, E., & Chung, K. C. (2022). Increased healthcare costs by later stage cancer diagnosis. BMC Health Services Research, 22(1), 1155.
  81. Milano, G., Innocenti, F., & Minami, H. (2022). Liposomal irinotecan (Onivyde): Exemplifying the benefits of nanotherapeutic drugs. Cancer Science, 113(7), 2224–2231.
  82. Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20(2), 101–124.
  83. Mocan, L., Matea, C., Tabaran, F. A., Mosteanu, O., Pop, T., Mocan, T., & Iancu, C. (2015). Photothermal treatment of liver cancer with albumin-conjugated gold nanoparticles initiates Golgi Apparatus-ER dysfunction and caspase-3 apoptotic pathway activation by selective targeting of Gp60 receptor. International Journal of Nanomedicine, 10, 5435–5445.
  84. Moghimi-Dehkordi, B., & Safaee, A. (2012). An overview of colorectal cancer survival rates and prognosis in Asia. World Journal of Gastrointestinal Oncology, 4(4), 71–75.
  85. Namazi, H., Kulish, V. V, & Wong, A. (2015). Mathematical Modelling and Prediction of the Effect of Chemotherapy on Cancer Cells. Scientific Reports, 5(1), 13583.
  86. Navya, P. N., Kaphle, A., Srinivas, S. P., Bhargava, S. K., Rotello, V. M., & Daima, H. K. (2019). Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence, 6(1), 23.
  87. Neelakandan, R. P., R, D., & N, D. (2023). Formulation and Evaluation of Mucoadhesive Buccal tablets using Nimodipine Solid Lipid Nanoparticles. Nanofabrication, 8.
  88. Nieto, C., Vega, M. A., & del Valle, E. M. (2020). Trastuzumab: More than a Guide in HER2-Positive Cancer Nanomedicine. Nanomaterials, 10(9).
  89. Nirmala, M. J., Kizhuveetil, U., Johnson, A., G, B., Nagarajan, R., & Muthuvijayan, V. (2023). Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Advances, 13(13), 8606–8629.
  90. Ojha, A., Jaiswal, S., Bharti, P., & Mishra, S. K. (2022). Nanoparticles and Nanomaterials-Based Recent Approaches in Upgraded Targeting and Management of Cancer: A Review. Cancers, 15(1).
  91. Otmani, K., & Lewalle, P. (2021). Tumor Suppressor miRNA in Cancer Cells and the Tumor Microenvironment: Mechanism of Deregulation and Clinical Implications. Frontiers in Oncology, 11, 708765.
  92. Park, E. J. (2022). Tailoring strategies for colorectal cancer screening and treatment based on age in colorectal cancer patients. In Annals of coloproctology (Vol. 38, Issue 3, pp. 181–182).
  93. Parodi, A., Kolesova, E. P., Voronina, M. V, Frolova, A. S., Kostyushev, D., Trushina, D. B., Akasov, R., Pallaeva, T., & Zamyatnin, A. A. J. (2022). Anticancer Nanotherapeutics in Clinical Trials: The Work behind Clinical Translation of Nanomedicine. International Journal of Molecular Sciences, 23(21).
  94. Parodi, A., Miao, J., Soond, S. M., Rudzińska, M., & Zamyatnin, A. A. (2019). Albumin Nanovectors in Cancer Therapy and Imaging. In Biomolecules (Vol. 9, Issue 6).
  95. Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760.
  96. Petkar, K. C., Patil, S. M., Chavhan, S. S., Kaneko, K., Sawant, K. K., Kunda, N. K., & Saleem, I. Y. (2021). An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery. Pharmaceutics, 13(4).
  97. Petre, C. E., & Dittmer, D. P. (2007). Liposomal daunorubicin as treatment for Kaposi’s sarcoma. International Journal of Nanomedicine, 2(3), 277–288.
  98. Piffoux, M., Silva, A. K. A., Wilhelm, C., Gazeau, F., & Tareste, D. (2018). Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS Nano, 12(7), 6830–6842.
  99. Pillaiyar, T., Meenakshisundaram, S., Manickam, M., & Sankaranarayanan, M. (2020). A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery. European Journal of Medicinal Chemistry, 195, 112275.
  100. Prakash, N., Balaji, R., Chen, S.-M., Steffi, A. P., Tamilalagan, E., Narendhar, C., & Muthusankar, E. (2021). Investigation of template-assisted (MCM-41) mesoporous Co3O4 nanostructures and its superior supercapacitive retention. Vacuum, 185, 109998.
  101. Prakash, N., Balaji, R., Govindaraju, S., Steffi, A. P., Santhanalakshmi, N., Mohanraj, K., Selvarajan, E., Chandrasekar, N., & Samuel, M. S. (2022). Influence of 2D template-assisted (SBA-15) metal oxide Co3O4 for pseudocapacitive and dye degradation application. Environmental Research, 204, 112383.
  102. Rai, R., Alwani, S., & Badea, I. (2019). Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications. Polymers, 11(4).
  103. Ramesh, M., Janani, R., Deepa, C., & Rajeshkumar, L. (2023). Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. Biosensors, 13(1).
  104. Rasool, M., Malik, A., Waquar, S., Arooj, M., Zahid, S., Asif, M., Shaheen, S., Hussain, A., Ullah, H., & Gan, S. H. (2022). New challenges in the use of nanomedicine in cancer therapy. Bioengineered, 13(1), 759–773.
  105. Reang, J., Sharma, K., Sharma, P. C., Yadav, V., Sharma, V., & Majeed, J. (2023). Discovery of VEGFR inhibitors through virtual screening and energy assessment. Journal of Biochemical and Molecular Toxicology, n/a(n/a), e23321.
  106. Reang, J., Sharma, P. C., Thakur, V. K., & Majeed, J. (2021). Understanding the Therapeutic Potential of Ascorbic Acid in the Battle to Overcome Cancer. In Biomolecules (Vol. 11, Issue 8).
  107. Rimkus, T., Sirkisoon, S., Harrison, A., & Lo, H.-W. (2017). Tumor suppressor candidate 2 (TUSC2, FUS-1) and human cancers. Discovery Medicine, 23(128), 325–330.
  108. Roma-Rodrigues, C., Rivas-García, L., Baptista, P. V, & Fernandes, A. R. (2020). Gene Therapy in Cancer Treatment: Why Go Nano? In Pharmaceutics (Vol. 12, Issue 3).
  109. Rosa, W. E., & Hassmiller, S. B. (2020). The Sustainable Development Goals and Building a Culture of Health. The American Journal of Nursing, 120(6), 69–71.
  110. Ryu, J. H., Koo, H., Sun, I.-C., Yuk, S. H., Choi, K., Kim, K., & Kwon, I. C. (2012). Tumor-targeting multi-functional nanoparticles for theragnosis: New paradigm for cancer therapy. Advanced Drug Delivery Reviews, 64(13), 1447–1458.
  111. Ryu, J. H., Lee, S., Son, S., Kim, S. H., Leary, J. F., Choi, K., & Kwon, I. C. (2014). Theranostic nanoparticles for future personalized medicine. Journal of Controlled Release : Official Journal of the Controlled Release Society, 190, 477–484.
  112. Salehi, B., Selamoglu, Z., S Mileski, K., Pezzani, R., Redaelli, M., Cho, W. C., Kobarfard, F., Rajabi, S., Martorell, M., Kumar, P., Martins, N., Subhra Santra, T., & Sharifi-Rad, J. (2019). Liposomal Cytarabine as Cancer Therapy: From Chemistry to Medicine. Biomolecules, 9(12).
  113. Sauraj, Kumar, A., Kumar, B., Kulshreshtha, A., & Negi, Y. S. (2021). Redox-sensitive nanoparticles based on xylan-lipoic acid conjugate for tumor targeted drug delivery of niclosamide in cancer therapy. Carbohydrate Research, 499, 108222.
  114. Sauraj, Vinay kumar, Kumar, B., Priyadarshi, R., Deeba, F., Kulshreshtha, A., Kumar, A., Agrawal, G., Gopinath, P., & Negi, Y. S. (2020). Redox responsive xylan-SS-curcumin prodrug nanoparticles for dual drug delivery in cancer therapy. Materials Science and Engineering: C, 107, 110356.
  115. Shams, F., Golchin, A., Azari, A., Mohammadi Amirabad, L., Zarein, F., Khosravi, A., & Ardeshirylajimi, A. (2022). Nanotechnology-based products for cancer immunotherapy. Molecular Biology Reports, 49(2), 1389–1412.
  116. Sheoran, S., Arora, S., Samsonraj, R., Govindaiah, P., & Vuree, S. (2022). Lipid-based nanoparticles for treatment of cancer. Heliyon, 8(5), e09403.
  117. Shrestha, B., Wang, L., Brey, E. M., Uribe, G. R., & Tang, L. (2021). Smart Nanoparticles for Chemo-Based Combinational Therapy. Pharmaceutics, 13(6).
  118. Siafaka, P. I., Okur, N. Ü., Karantas, I. D., Okur, M. E., & Gündoğdu, E. A. (2021). Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian Journal of Pharmaceutical Sciences, 16(1), 24–46.
  119. Silverman, J., & Deitcher, S. (2012). Marqibo(R) (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemotherapy and Pharmacology, 71.
  120. Sochacka-Ćwikła, A., Mączyński, M., & Regiec, A. (2022). FDA-Approved Small Molecule Compounds as Drugs for Solid Cancers from Early 2011 to the End of 2021. Molecules (Basel, Switzerland), 27(7).
  121. Song, S., Qin, Y., He, Y., Huang, Q., Fan, C., & Chen, H.-Y. (2010). Functional nanoprobes for ultrasensitive detection of biomolecules. Chemical Society Reviews, 39(11), 4234–4243.
  122. Steffi, A. P., Balaji, R., Chandrasekar, N., Prakash, N., Rajesh, T. P., Ethiraj, S., Samuel, M. S., & Vuppala, S. (2022). High-performance anti-corrosive coatings based on rGO-SiO2-TiO2 ternary heterojunction nanocomposites for superior protection for mild steel specimens. Diamond and Related Materials, 125, 108968.
  123. Steffi, A. P., Balaji, R., Prakash, N., Rajesh, T. P., Ethiraj, S., Samuel, M. S., Nadda, A. K., & Chandrasekar, N. (2022). Incorporation of SiO(2) functionalized gC(3)N(4) sheets with TiO(2) nanoparticles to enhance the anticorrosion performance of metal specimens in aggressive Cl(-) environment. Chemosphere, 290, 133332.
  124. Su, D., & Zhang, D. (2021). Linker Design Impacts Antibody-Drug Conjugate Pharmacokinetics and Efficacy via Modulating the Stability and Payload Release Efficiency. Frontiers in Pharmacology, 12, 687926.
  125. Su, W.-P., Cheng, F.-Y., Shieh, D.-B., Yeh, C.-S., & Su, W.-C. (2012). PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells. International Journal of Nanomedicine, 7, 4269–4283.
  126. Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 99(Pt A), 28–51.
  127. Sun, X., Bao, J., & Shao, Y. (2016). Mathematical Modeling of Therapy-induced Cancer Drug Resistance: Connecting Cancer Mechanisms to Population Survival Rates. Scientific Reports, 6(1), 22498.
  128. Syed, Y. Y. (2020). Sacituzumab Govitecan: First Approval. Drugs, 80(10), 1019–1025.
  129. Tawfik, S. M., Azizov, S., Elmasry, M. R., Sharipov, M., & Lee, Y.-I. (2021). Recent Advances in Nanomicelles Delivery Systems. In Nanomaterials (Vol. 11, Issue 1).
  130. Tian, Z., Liang, G., Cui, K., Liang, Y., Wang, Q., Lv, S., Cheng, X., & Zhang, L. (2021). Insight Into the Prospects for RNAi Therapy of Cancer . In Frontiers in Pharmacology (Vol. 12).
  131. van der Meel, R., Sulheim, E., Shi, Y., Kiessling, F., Mulder, W. J. M., & Lammers, T. (2019). Smart cancer nanomedicine. Nature Nanotechnology, 14(11), 1007–1017.
  132. Vasan, N., Baselga, J., & Hyman, D. M. (2019). A view on drug resistance in cancer. Nature, 575(7782), 299–309.
  133. Vijayan, V., Reddy, K. R., Sakthivel, S., & Swetha, C. (2013). Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: in vitro and in vivo studies. Colloids and Surfaces. B, Biointerfaces, 111, 150–155.
  134. Vlek, C., Skolnik, M., & Gatersleben, B. (1998). Sustainable development and quality of life: expected effects of prospective changes in economic and environmental conditions. Zeitschrift Fur Experimentelle Psychologie : Organ Der Deutschen Gesellschaft Fur Psychologie, 45(4), 319–333.
  135. Wang, K., Kievit, F. M., & Zhang, M. (2016). Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacological Research, 114, 56–66.
  136. Wang, K., Shen, R., Meng, T., Hu, F., & Yuan, H. (2022). Nano-Drug Delivery Systems Based on Different Targeting Mechanisms in the Targeted Therapy of Colorectal Cancer. Molecules (Basel, Switzerland), 27(9).
  137. Xu, S., Wang, L., & Liu, Z. (2021). Molecularly Imprinted Polymer Nanoparticles: An Emerging Versatile Platform for Cancer Therapy. Angewandte Chemie International Edition, 60(8), 3858–3869.
  138. Xue, Y., Gao, Y., Meng, F., & Luo, L. (2021). Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biology & Medicine, 18(2), 336–351.
  139. Yadav, V., Reang, J., Sharma, V., Majeed, J., Sharma, P. C., Sharma, K., Giri, N., Kumar, A., & Tonk, R. K. (2022). Quinoline-derivatives as privileged scaffolds for medicinal and pharmaceutical chemists: A comprehensive review. Chemical Biology & Drug Design, 100(3), 389–418.
  140. Yadav, V., Tonk, K. R., & Khatri, R. (2021). Molecular Docking, 3D-QSAR, Fingerprint-Based 2D-QSAR, Analysis of Pyrimidine, and Analogs of ALK (Anaplastic Lymphoma Kinase) Inhibitors as an Anticancer Agent. In Letters in Drug Design & Discovery (Vol. 18, Issue 5, pp. 509–521).
  141. Yang, J., Arya, S., Lung, P., Lin, Q., Huang, J., & Li, Q. (2019). Hybrid nanovaccine for the co-delivery of the mRNA antigen and adjuvant. Nanoscale, 11(45), 21782–21789.
  142. Yao, Y., Zhou, Y., Liu, L., Xu, Y., Chen, Q., Wang, Y., Wu, S., Deng, Y., Zhang, J., & Shao, A. (2020). Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance . In Frontiers in Molecular Biosciences (Vol. 7).
  143. Yuan, H., Guo, H., Luan, X., He, M., Li, F., Burnett, J., Truchan, N., & Sun, D. (2020). Albumin Nanoparticle of Paclitaxel (Abraxane) Decreases while Taxol Increases Breast Cancer Stem Cells in Treatment of Triple Negative Breast Cancer. Molecular Pharmaceutics, 17(7), 2275–2286.
  144. Yue, X., & Dai, Z. (2018). Liposomal Nanotechnology for Cancer Theranostics. Current Medicinal Chemistry, 25(12), 1397–1408.
  145. Zeng, Y., Li, S., Zhang, S., Wang, L., Yuan, H., & Hu, F. (2022). Cell membrane coated-nanoparticles for cancer immunotherapy. Acta Pharmaceutica Sinica. B, 12(8), 3233–3254.
  146. Zhang, E., Xing, R., Liu, S., & Li, P. (2019). Current advances in development of new docetaxel formulations. Expert Opinion on Drug Delivery, 16(3), 301–312.
  147. Zhang, H., Lv, J., & Jia, Z. (2017). Efficient Fluorescence Resonance Energy Transfer between Quantum Dots and Gold Nanoparticles Based on Porous Silicon Photonic Crystal for DNA Detection. In Sensors (Vol. 17, Issue 5).
  148. Zhang, S., Jiang, S.-F., Huang, B.-C., Shen, X.-C., Chen, W.-J., Zhou, T.-P., Cheng, H.-Y., Cheng, B.-H., Wu, C.-Z., Li, W.-W., Jiang, H., & Yu, H.-Q. (2020). Sustainable production of value-added carbon nanomaterials from biomass pyrolysis. Nature Sustainability, 3(9), 753–760.
  149. Zhang, Y., Li, M., Gao, X., Chen, Y., & Liu, T. (2019). Nanotechnology in cancer diagnosis: progress, challenges and opportunities. Journal of Hematology & Oncology, 12(1), 137.
  150. Zhang, Y., Poon, K., Masonsong, G. S. P., Ramaswamy, Y., & Singh, G. (2023). Sustainable Nanomaterials for Biomedical Applications. In Pharmaceutics (Vol. 15, Issue 3).
  151. Zhao, P., Tang, X., & Huang, Y. (2021). Teaching new tricks to old dogs: A review of drug repositioning of disulfiram for cancer nanomedicine. VIEW, 2(4), 20200127.
  152. Zheng, S., Wang, J., Ding, N., Chen, W., Chen, H., Xue, M., Chen, F., Ni, J., Wang, Z., Lin, Z., Jiang, H., Liu, X., & Wang, L. (2021). Prodrug polymeric micelles integrating cancer-associated fibroblasts deactivation and synergistic chemotherapy for gastric cancer. Journal of Nanobiotechnology, 19(1), 381.
  153. Zhou, L., Zou, M., Xu, Y., Lin, P., Lei, C., & Xia, X. (2022). Nano Drug Delivery System for Tumor Immunotherapy: Next-Generation Therapeutics. Frontiers in Oncology, 12, 864301.

How to Cite

Sharma, V., Reang, J., Yadav, V., Sharma, A., Majeed, J., & Sharma, P. C. (2023). Advancements and application of sustainable nanotechnology-based biomedical products in cancer therapeutics. Nanofabrication, 8.





Article Details

Most Read This Month


Copyright (c) 2023 Vinita Sharma, Jurnal Reang, Vivek Yadav, Archana Sharma, Jaseela Majeed, Prabodh Chander Sharma

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.