Skip to main content Skip to main navigation menu Skip to site footer

Nanocellulose-based Hydrogels: Preparation Strategies, Dye Adsorption and Factors Impacting

Abstract

The improper disposal of dyes without any prior treatment is one of the main causes of water pollution around the globe. Since dye-contaminated water contains a variety of hazardous elements, which may harm the aquatic ecosystem, impact the aquatic organisms and ultimately enter the food web chain. The most effective ways to recycle dye-contaminated waste water are adsorption, electrolysis, advanced oxidation, etc. Out of these techniques, adsorption strategy, due to its superior physico-chemical features, has been preferably employed for treating polluted water. In this review article, the potential of pure nitrocellulose (NC) hydrogel, metal/metal oxide or photo-adsorbents-based, metal-organic-framework supported, surface functionalized, bio-materials filled NC-based hydrogels for dyes adsorption has been thoroughly reviewed. The impact of different factors such as pH, time, temperature and filler/additives on dye adsorption/degradation capability of NC-based adsorbents, and kinetic and isotherm data of dye adsorption has been assessed systematically. Further, the influence of different eluents on the recycling ability of various NC- based hydrogels has also been fully assessed. 

Section

References

  1. Aegerter, M. A., Leventis, N., & Koebel, M. A. (Eds.). (2011). Aerogels handbook. Springer.
  2. Ahmad, A., Kamaruddin, M. A., H.P.S., A. K., Yahya, E. B., Muhammad, S., Rizal, S., Ahmad, M. I., Surya, I., & Abdullah, C. K. (2023). Recent Advances in Nanocellulose Aerogels for Efficient Heavy Metal and Dye Removal. Gels, 9(5), 416. https://doi.org/10.3390/gels9050416
  3. Ahmaruzzaman, Md., & Mishra, S. R. (2021). Photocatalytic performance of g-C3N4 based nanocomposites for effective degradation/removal of dyes from water and wastewater. Materials Research Bulletin, 143, 111417. https://doi.org/10.1016/j.materresbull.2021.111417
  4. Akhtar, M. F., Hanif, M., & Ranjha, N. M. (2016). Methods of synthesis of hydrogels … A review. Saudi Pharmaceutical Journal, 24(5), 554–559. https://doi.org/10.1016/j.jsps.2015.03.022
  5. Akter, M., Bhattacharjee, M., Dhar, A. K., Rahman, F. B. A., Haque, S., Rashid, T. U., & Kabir, S. M. F. (2021). Cellulose-Based Hydrogels for Wastewater Treatment: A Concise Review. Gels, 7(1), 30. https://doi.org/10.3390/gels7010030
  6. Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383
  7. Al-Sabah, A., Burnell, S. E., Simoes, I. N., Jessop, Z., Badiei, N., Blain, E., & Whitaker, I. S. (2019). Structural and mechanical characterization of crosslinked and sterilised nanocellulose-based hydrogels for cartilage tissue engineering. Carbohydrate Polymers, 212, 242–251.
  8. Al-Shemy, M. T., Al-Sayed, A., & Dacrory, S. (2022). Fabrication of sodium alginate/graphene oxide/nanocrystalline cellulose scaffold for methylene blue adsorption: Kinetics and thermodynamics study. Separation and Purification Technology, 290, 120825. https://doi.org/10.1016/j.seppur.2022.120825
  9. Amor, C., Marchão, L., Lucas, M. S., & Peres, J. A. (2019). Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water, 11(2), 205.
  10. Babu, S. G., Vinoth, R., Praveen Kumar, D., Shankar, M. V., Chou, H.-L., Vinodgopal, K., & Neppolian, B. (2015). Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO 2 p–n heterojunction for increased hydrogen production. Nanoscale, 7(17), 7849–7857. https://doi.org/10.1039/C5NR00504C
  11. Barbucci, R., Consumi, M., Lamponi, S., & Leone, G. (2003). Polysaccharides based hydrogels for biological applications. Macromolecular Symposia, 204(1), 37–58.
  12. Beh, J. H., Lim, T. H., Lew, J. H., & Lai, J. C. (2020). Cellulose nanofibril-based aerogel derived from sago pith waste and its application on methylene blue removal. International Journal of Biological Macromolecules, 160, 836–845. https://doi.org/10.1016/j.ijbiomac.2020.05.227
  13. Berglund, L., Squinca, P., Baş, Y., Zattarin, E., Aili, D., Rakar, J., Junker, J., Starkenberg, A., Diamanti, M., Sivlér, P., Skog, M., & Oksman, K. (2023). Self-Assembly of Nanocellulose Hydrogels Mimicking Bacterial Cellulose for Wound Dressing Applications. Biomacromolecules, 24(5), 2264–2277. https://doi.org/10.1021/acs.biomac.3c00152
  14. Bhaladhare, S., & Das, D. (2022). Cellulose: A fascinating biopolymer for hydrogel synthesis. Journal of Materials Chemistry B, 10(12), 1923–1945. https://doi.org/10.1039/D1TB02848K
  15. Bhatnagar, A., Sillanpää, M., & Witek-Krowiak, A. (2015). Agricultural waste peels as versatile biomass for water purification – A review. Chemical Engineering Journal, 270, 244–271. https://doi.org/10.1016/j.cej.2015.01.135
  16. Bokov, D., Turki Jalil, A., Chupradit, S., Suksatan, W., Javed Ansari, M., Shewael, I. H., Valiev, G. H., & Kianfar, E. (2021). Nanomaterial by Sol-Gel Method: Synthesis and Application. Advances in Materials Science and Engineering, 2021, 1–21. https://doi.org/10.1155/2021/5102014
  17. Cai, J., Zhang, D., Xu, W., Ding, W.-P., Zhu, Z.-Z., He, J.-R., & Cheng, S.-Y. (2020). Polysaccharide-based hydrogels derived from cellulose: The architecture change from nanofibers to hydrogels for a putative dual function in dye wastewater treatment. Journal of Agricultural and Food Chemistry, 68(36), 9725–9732.
  18. Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., Chan, K. J. W., Förster, S., Cranston, E. D., Hoare, T., & Kumacheva, E. (2016). Composite Hydrogels with Tunable Anisotropic Morphologies and Mechanical Properties. Chemistry of Materials, 28(10), 3406–3415. https://doi.org/10.1021/acs.chemmater.6b00792
  19. Chaudhary, J., Thakur, S., Mamba, G., Prateek, Gupta, R. K., & Thakur, V. K. (2021). Hydrogel of gelatin in the presence of graphite for the adsorption of dye: Towards the concept for water purification. Journal of Environmental Chemical Engineering, 9(1), 104762. https://doi.org/10.1016/j.jece.2020.104762
  20. Chen, C., Xi, Y., & Weng, Y. (2022). Recent advances in cellulose-based hydrogels for tissue engineering applications. Polymers, 14(16), 3335.
  21. Cheung, C. W., Porter, J. F., & Mckay, G. (2001). Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Research, 35(3), 605–612. https://doi.org/10.1016/S0043-1354(00)00306-7
  22. Ching, T. W., Haritos, V., & Tanksale, A. (2018). Ultrasound-assisted conversion of cellulose into hydrogel and functional carbon material. Cellulose, 25(4), 2629–2645. https://doi.org/10.1007/s10570-018-1746-y
  23. Chu, K. H., Mang, J. S., Lim, J., Hong, S., & Hwang, M.-H. (2021). Variation of free volume and thickness by high pressure applied on thin film composite reverse osmosis membrane. Desalination, 520, 115365.
  24. Costa, F. C., dos Santos, C. R., & Amaral, M. C. (2023). Trace organic contaminants removal by membrane distillation: A review on mechanisms, performance, applications, and challenges. Chemical Engineering Journal, 464, 142461.
  25. Dąbrowski, A. (2001). Adsorption—From theory to practice. Advances in Colloid and Interface Science, 93(1–3), 135–224. https://doi.org/10.1016/S0001-8686(00)00082-8
  26. Dai, L., Cheng, T., Wang, Y., Lu, H., Nie, S., He, H., Duan, C., & Ni, Y. (2019). Injectable all-polysaccharide self-assembling hydrogel: A promising scaffold for localized therapeutic proteins. Cellulose, 26, 6891–6901.
  27. De France, K. J., Hoare, T., & Cranston, E. D. (2017). Review of Hydrogels and Aerogels Containing Nanocellulose. Chemistry of Materials, 29(11), 4609–4631. https://doi.org/10.1021/acs.chemmater.7b00531
  28. Dubinin, M. M. (1960). The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces. Chemical Reviews, 60(2), 235–241. https://doi.org/10.1021/cr60204a006
  29. El Bouazzaoui, Y., Habsaoui, A., & Touhami, M. E. (2022). Hydrogel synthesis using extracted cellulose from Opuntia Ficus indica seeds and its application in methylene blue dye removal. Chemical Data Collections, 41, 100918.
  30. Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y.-H., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162(2–3), 616–645. https://doi.org/10.1016/j.jhazmat.2008.06.042
  31. Ferreira-Neto, E. P., Ullah, S., Da Silva, T. C. A., Domeneguetti, R. R., Perissinotto, A. P., De Vicente, F. S., Rodrigues-Filho, U. P., & Ribeiro, S. J. L. (2020). Bacterial Nanocellulose/MoS 2 Hybrid Aerogels as Bifunctional Adsorbent/Photocatalyst Membranes for in-Flow Water Decontamination. ACS Applied Materials & Interfaces, 12(37), 41627–41643. https://doi.org/10.1021/acsami.0c14137
  32. Fotie, G., Rampazzo, R., Ortenzi, M. A., Checchia, S., Fessas, D., & Piergiovanni, L. (2017). The effect of moisture on cellulose nanocrystals intended as a high gas barrier coating on flexible packaging materials. Polymers, 9(9), 415.
  33. Guastaferro, M., Baldino, L., Reverchon, E., & Cardea, S. (2021). Production of Porous Agarose-Based Structures: Freeze-Drying vs. Supercritical CO2 Drying. Gels, 7(4), 198. https://doi.org/10.3390/gels7040198
  34. Gulrez, S. K. H., Al-Assaf, S., Phillips, G. O., Gulrez, S. K. H., Al-Assaf, S., & Phillips, G. O. (2011). Hydrogels: Methods of Preparation, Characterisation and Applications. In Progress in Molecular and Environmental Bioengineering—From Analysis and Modeling to Technology Applications. IntechOpen. https://doi.org/10.5772/24553
  35. Günay, A., Arslankaya, E., & Tosun, İ. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146(1–2), 362–371. https://doi.org/10.1016/j.jhazmat.2006.12.034
  36. Gurav, J. L., Jung, I.-K., Park, H.-H., Kang, E. S., & Nadargi, D. Y. (2010). Silica Aerogel: Synthesis and Applications. Journal of Nanomaterials, 2010, 1–11. https://doi.org/10.1155/2010/409310
  37. Hammami, C., & René, F. (1997). Determination of freeze-drying process variables for strawberries. Journal of Food Engineering, 32(2), 133–154. https://doi.org/10.1016/S0260-8774(97)00023-X
  38. Hosseinzadeh, S., Hosseinzadeh, H., & Pashaei, S. (2019). Fabrication of nanocellulose loaded poly(AA‐ co ‐HEMA) hydrogels for ceftriaxone controlled delivery and crystal violet adsorption. Polymer Composites, 40(S1). https://doi.org/10.1002/pc.24875
  39. Hsu, C.-J., Xiao, Y.-Z., Chung, A., & Hsi, H.-C. (2023). Novel applications of vacuum distillation for heavy metals removal from wastewater, copper nitrate hydroxide recovery, and copper sulfide impregnated activated carbon synthesis for gaseous mercury adsorption. Science of The Total Environment, 855, 158870.
  40. Huang, R., Xu, Y., Kuznetsov, B. N., Sun, M., Zhou, X., Luo, J., & Jiang, K. (2023). Enhanced hybrid hydrogel based on wheat husk lignin-rich nanocellulose for effective dye removal. Frontiers in Bioengineering and Biotechnology, 11, 1160698. https://doi.org/10.3389/fbioe.2023.1160698
  41. Huang, S., Wu, L., Li, T., Xu, D., Lin, X., & Wu, C. (2019). Facile preparation of biomass lignin-based hydroxyethyl cellulose super-absorbent hydrogel for dye pollutant removal. International Journal of Biological Macromolecules, 137, 939–947.
  42. Huang, X., Hadi, P., Joshi, R., Alhamzani, A. G., & Hsiao, B. S. (2023). A Comparative Study of Mechanism and Performance of Anionic and Cationic Dialdehyde Nanocelluloses for Dye Adsorption and Separation. ACS Omega, 8(9), 8634–8649. https://doi.org/10.1021/acsomega.2c07839
  43. Ibrahim, S., Fatimah, I., Ang, H.-M., & Wang, S. (2010). Adsorption of anionic dyes in aqueous solution using chemically modified barley straw. Water Science and Technology, 62(5), 1177–1182. https://doi.org/10.2166/wst.2010.388
  44. Jamwal, P., Chauhan, G. S., Kumar, P., Kumari, B., Kumar, K., & Chauhan, S. (2023). A study in the synthesis of new Pinus wallichiana derived spherical nanocellulose hydrogel and its evaluation as malachite green adsorbent. Sustainable Chemistry and Pharmacy, 32, 100950. https://doi.org/10.1016/j.scp.2022.100950
  45. Jawaid, M., & Mohammad, F. (2017). Nanocellulose and Nanohydrogel Matrices: Biotechnological and Biomedical Applications. John Wiley & Sons.
  46. Jedrzejczak-Krzepkowska, M., Kubiak, K., Ludwicka, K., & Bielecki, S. (2016). Bacterial nanocellulose synthesis, recent findings. In Bacterial Nanocellulose (pp. 19–46). Elsevier.
  47. Jiang, M., Zhang, Z., Hu, J., Tian, X., Guo, F., Wang, C., & Zhang, J. (2022). Facile In-Situ Growth of Mof-199 Layer on Carboxylated Nanocellulose/Chitosan Aerogel Spheres and Their High-Efficient Adsorption and Catalytic Performance. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4080987
  48. Jin, L., Sun, Q., Xu, Q., & Xu, Y. (2015). Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Bioresource Technology, 197, 348–355.
  49. Kalam, S., Abu-Khamsin, S. A., Kamal, M. S., & Patil, S. (2021). Surfactant Adsorption Isotherms: A Review. ACS Omega, 6(48), 32342–32348. https://doi.org/10.1021/acsomega.1c04661
  50. Kang, H., Liu, R., & Huang, Y. (2016). Cellulose-Based Gels. Macromolecular Chemistry and Physics, 217(12), 1322–1334.
  51. Kaushik, J., Gunture, Tripathi, K. M., Singh, R., & Sonkar, S. K. (2022). Thiourea-functionalized graphene aerogel for the aqueous phase sensing of toxic Pb(II) metal ions and H2O2. Chemosphere, 287, 132105. https://doi.org/10.1016/j.chemosphere.2021.132105
  52. Kaushik, J., Kumar, V., Garg, A. K., Dubey, P., Tripathi, K. M., & Sonkar, S. K. (2021). Bio-mass derived functionalized graphene aerogel: A sustainable approach for the removal of multiple organic dyes and their mixtures. New Journal of Chemistry, 45(20), 9073–9083. https://doi.org/10.1039/D1NJ00470K
  53. Kaushik, J., Sharma, C., Lamba, N. K., Sharma, P., Das, G. S., Tripathi, K. M., Joshi, R. K., & Sonkar, S. K. (2023). 3D Porous MoS 2 -Decorated Reduced Graphene Oxide Aerogel as a Heterogeneous Catalyst for Reductive Transformation Reactions. Langmuir, 39(36), 12865–12877. https://doi.org/10.1021/acs.langmuir.3c01785
  54. Kayra, N., & Aytekin, A. Ö. (2018). Synthesis of Cellulose-Based Hydrogels: Preparation, Formation, Mixture, and Modification. In Md. I. H. Mondal (Ed.), Cellulose-Based Superabsorbent Hydrogels (pp. 1–28). Springer International Publishing. https://doi.org/10.1007/978-3-319-76573-0_16-1
  55. Kumari, H., Sonia, Suman, Ranga, R., Chahal, S., Devi, S., Sharma, S., Kumar, S., Kumar, P., Kumar, S., Kumar, A., & Parmar, R. (2023). A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. Water, Air, & Soil Pollution, 234(6), 349. https://doi.org/10.1007/s11270-023-06359-9
  56. Kumari, P., Disha, Nayak, M. K., Dhruwe, D., Patel, M. K., & Mishra, S. (2023). Synthesis and characterization of sulfonated magnetic graphene-based cation exchangers for the removal of methylene blue from aqueous solutions. Industrial & Engineering Chemistry Research, 62(3), 1245–1256.
  57. Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1–39.
  58. Langmuir, I. (1918). THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. Journal of the American Chemical Society, 40(9), 1361–1403. https://doi.org/10.1021/ja02242a004
  59. Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290.
  60. Li, Q., Li, Y., Li, Y., Chen, Y., Wu, Q., & Wang, S. (2021). Efficient removal of methyl orange by nanocomposite aerogel of polyethyleneimine and Β ‐CYCLODEXTRIN grafted cellulose nanocrystals. Journal of Applied Polymer Science, 138(48), 51481. https://doi.org/10.1002/app.51481
  61. Li, W., Zhang, L., Hu, D., Yang, R., Zhang, J., Guan, Y., Lv, F., & Gao, H. (2021). A mesoporous nanocellulose/sodium alginate/carboxymethyl-chitosan gel beads for efficient adsorption of Cu2+ and Pb2+. International Journal of Biological Macromolecules, 187, 922–930. https://doi.org/10.1016/j.ijbiomac.2021.07.181
  62. Li, Y., Zhang, L., Song, Z., Li, F., & Xie, D. (2022). Intelligent temperature-pH dual responsive nanocellulose hydrogels and the application of drug release towards 5-fluorouracil. International Journal of Biological Macromolecules, 223, 11–16. https://doi.org/10.1016/j.ijbiomac.2022.10.188
  63. Lim, M. B., Hu, M., Manandhar, S., Sakshaug, A., Strong, A., Riley, L., & Pauzauskie, P. J. (2015). Ultrafast sol–gel synthesis of graphene aerogel materials. Carbon, 95, 616–624. https://doi.org/10.1016/j.carbon.2015.08.037
  64. Lin, K., Sun, W., Feng, L., Wang, H., Feng, T., Zhang, J., Cao, M., Zhao, S., Yuan, Y., & Wang, N. (2022). Kelp inspired bio-hydrogel with high antibiofouling activity and super-toughness for ultrafast uranium extraction from seawater. Chemical Engineering Journal, 430, 133121.
  65. Long, L.-Y., Weng, Y.-X., & Wang, Y.-Z. (2018). Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers, 10(6), 623. https://doi.org/10.3390/polym10060623
  66. Lu, F., & Astruc, D. (2020). Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coordination Chemistry Reviews, 408, 213180. https://doi.org/10.1016/j.ccr.2020.213180
  67. Mahfoudhi, N., & Boufi, S. (2017). Nanocellulose as a novel nanostructured adsorbent for environmental remediation: A review. Cellulose, 24(3), 1171–1197. https://doi.org/10.1007/s10570-017-1194-0
  68. Malik, R., Warkar, S. G., & Saxena, R. (2023). Carboxy-methyl tamarind kernel gum based bio-hydrogel for sustainable agronomy. Materials Today Communications, 35, 105473.
  69. Mishnaevsky, L., Mikkelsen, L. P., Gaduan, A. N., Lee, K.-Y., & Madsen, B. (2019). Nanocellulose reinforced polymer composites: Computational analysis of structure-mechanical properties relationships. Composite Structures, 224, 111024. https://doi.org/10.1016/j.compstruct.2019.111024
  70. Mohammadinejad, R., Maleki, H., Larrañeta, E., Fajardo, A. R., Nik, A. B., Shavandi, A., Sheikhi, A., Ghorbanpour, M., Farokhi, M., Govindh, P., Cabane, E., Azizi, S., Aref, A. R., Mozafari, M., Mehrali, M., Thomas, S., Mano, J. F., Mishra, Y. K., & Thakur, V. K. (2019). Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 16, 213–246. https://doi.org/10.1016/j.apmt.2019.04.010
  71. Mohite, P. B., & Adhav, S. S. (2017). A hydrogels: Methods of preparation and applications. Int. J. Adv. Pharm, 6(3), 79–85.
  72. Mullet, M., Fievet, P., Szymczyk, A., Foissy, A., Reggiani, J.-C., & Pagetti, J. (1999). A simple and accurate determination of the point of zero charge of ceramic membranes. Desalination, 121(1), 41–48. https://doi.org/10.1016/S0011-9164(99)00006-5
  73. Nasution, H., Harahap, H., Dalimunthe, N. F., Ginting, M. H. S., Jaafar, M., Tan, O. O., Aruan, H. K., & Herfananda, A. L. (2022). Hydrogel and effects of crosslinking agent on cellulose-based hydrogels: A review. Gels, 8(9), 568.
  74. Nguyen, V. T., Ha, L. Q., Nguyen, T. D. L., Ly, P. H., Nguyen, D. M., & Hoang, D. (2022). Nanocellulose and Graphene Oxide Aerogels for Adsorption and Removal Methylene Blue from an Aqueous Environment. ACS Omega, 7(1), 1003–1013. https://doi.org/10.1021/acsomega.1c05586
  75. Paul, J., & Ahankari, S. S. (2023). Nanocellulose-based aerogels for water purification: A review. Carbohydrate Polymers, 120677.
  76. Piaskowski, K., Świderska-Dąbrowska, R., & Zarzycki, P. K. (2018). Dye removal from water and wastewater using various physical, chemical, and biological processes. Journal of AOAC International, 101(5), 1371–1384.
  77. Piccin, J. S., Dotto, G. L., & Pinto, L. A. A. (2011). Adsorption isotherms and thermochemical data of FD&C Red n° 40 binding by Chitosan. Brazilian Journal of Chemical Engineering, 28(2), 295–304. https://doi.org/10.1590/S0104-66322011000200014
  78. Pooresmaeil, M., & Namazi, H. (2020). Application of polysaccharide-based hydrogels for water treatments. In Hydrogels based on natural polymers (pp. 411–455). Elsevier.
  79. Poornachandhra, C., Jayabalakrishnan, R. M., Prasanthrajan, M., Balasubramanian, G., Lakshmanan, A., Selvakumar, S., & John, J. E. (2023). Cellulose-based hydrogel for adsorptive removal of cationic dyes from aqueous solution: Isotherms and kinetics. RSC Advances, 13(7), 4757–4774. https://doi.org/10.1039/D2RA08283G
  80. Radakisnin, R., Abdul Majid, M. S., Jamir, M. R. M., Jawaid, M., Sultan, M. T. H., & Mat Tahir, M. F. (2020). Structural, morphological and thermal properties of cellulose nanofibers from Napier fiber (Pennisetum purpureum). Materials, 13(18), 4125.
  81. Raj, S., Singh, H., Trivedi, R., & Soni, V. (2020). Biogenic synthesis of AgNPs employing Terminalia arjuna leaf extract and its efficacy towards catalytic degradation of organic dyes. Scientific Reports, 10(1), 9616. https://doi.org/10.1038/s41598-020-66851-8
  82. Rana, A. K. (2022). Green Approaches in the Valorization of Plant Wastes: Recent Insights and Future Directions. Current Opinion in Green and Sustainable Chemistry, 100696.
  83. Rana, A. K., Frollini, E., & Thakur, V. K. (2021). Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization. International Journal of Biological Macromolecules, 182, 1554–1581.
  84. Rana, A. K., Guleria, S., Gupta, V. K., & Thakur, V. K. (2022). Cellulosic pine needles-based biorefinery for a circular bioeconomy. Bioresource Technology, 128255.
  85. Rana, A. K., Gupta, V. K., Saini, A. K., Voicu, S. I., Abdellattifaand, M. H., & Thakur, V. K. (2021). Water desalination using nanocelluloses/cellulose derivatives based membranes for sustainable future. Desalination, 520, 115359.
  86. Rana, A. K., Mishra, Y. K., Gupta, V. K., & Thakur, V. K. (2021). Sustainable materials in the removal of pesticides from contaminated water: Perspective on macro to nanoscale cellulose. Science of The Total Environment, 797, 149129.
  87. Rana, A. K., Mostafavi, E., Alsanie, W. F., Siwal, S. S., & Thakur, V. K. (2023). Cellulose-based materials for air purification: A review. Industrial Crops and Products, 194, 116331. https://doi.org/10.1016/j.indcrop.2023.116331
  88. Rana, A. K., Scarpa, F., & Thakur, V. K. (2022). Cellulose/polyaniline hybrid nanocomposites: Design, fabrication, and emerging multidimensional applications. Industrial Crops and Products, 187, 115356.
  89. Rao, K. M., Kumar, A., & Han, S. S. (2017). Poly(acrylamidoglycolic acid) nanocomposite hydrogels reinforced with cellulose nanocrystals for pH-sensitive controlled release of diclofenac sodium. Polymer Testing, 64, 175–182. https://doi.org/10.1016/j.polymertesting.2017.10.006
  90. Roa, K., Tapiero, Y., Thotiyl, M. O., & Sánchez, J. (2021). Hydrogels Based on Poly([2-(acryloxy)ethyl] Trimethylammonium Chloride) and Nanocellulose Applied to Remove Methyl Orange Dye from Water. Polymers, 13(14), 2265. https://doi.org/10.3390/polym13142265
  91. Ruan, C., Ma, Y., Shi, G., He, C., Du, C., Jin, X., Liu, X., He, S., & Huang, Y. (2022). Self-assembly cellulose nanocrystals/SiO2 composite aerogel under freeze-drying: Adsorption towards dye contaminant. Applied Surface Science, 592, 153280. https://doi.org/10.1016/j.apsusc.2022.153280
  92. Safavi-Mirmahalleh, S.-A., Salami-Kalajahi, M., & Roghani-Mamaqani, H. (2020). Adsorption kinetics of methyl orange from water by pH-sensitive poly (2-(dimethylamino) ethyl methacrylate)/nanocrystalline cellulose hydrogels. Environmental Science and Pollution Research, 27, 28091–28103.
  93. Shaheed, N., Javanshir, S., Esmkhani, M., Dekamin, M. G., & Naimi-Jamal, M. R. (2021). Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions. Scientific Reports, 11(1), 18553. https://doi.org/10.1038/s41598-021-97861-9
  94. Shak, K. P. Y., Pang, Y. L., & Mah, S. K. (2018). Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein Journal of Nanotechnology, 9(1), 2479–2498.
  95. Shandong Agricultural University, Wei, J., Gui, S.-H., Shandong Agricultural University, Wu, J.-H., Shandong Agricultural University, Xu, D.-D., Shandong Agricultural University, Sun, Y., Shandong Agricultural University, Dong, X.-Y., Shandong Agricultural University, Dai, Y.-Y., Shandong Agricultural University, Li, Y.-F., & Shandong Agricultural University. (2019). Nanocellulose-Graphene Oxide Hybrid Aerogel to Water Purification. Applied Environmental Biotechnology, 4(1), 11–17. https://doi.org/10.26789/AEB.2019.01.003
  96. Sharma, A., Mandal, T., & Goswami, S. (2021). Dispersibility and stability studies of cellulose nanofibers: Implications for nanocomposite preparation. Journal of Polymers and the Environment, 29, 1516–1525.
  97. Sharma, P., Kherb, J., Prakash, J., & Kaushal, R. (2023). A novel and facile green synthesis of SiO2 nanoparticles for removal of toxic water pollutants. Applied Nanoscience, 13(1), 735–747. https://doi.org/10.1007/s13204-021-01898-1
  98. Sharma, P., Prakash, J., & Kaushal, R. (2022). An insight into the green synthesis of SiO2 nanostructures as a novel adsorbent for removal of toxic water pollutants. Environmental Research, 212, 113328. https://doi.org/10.1016/j.envres.2022.113328
  99. Sharma, P., Prakash, J., Palai, T., & Kaushal, R. (2022). Surface functionalization of bamboo leave mediated synthesized SiO2 nanoparticles: Study of adsorption mechanism, isotherms and enhanced adsorption capacity for removal of Cr (VI) from aqueous solution. Environmental Research, 214, 113761. https://doi.org/10.1016/j.envres.2022.113761
  100. Sharma, V., Shahnaz, T., Subbiah, S., & Narayanasamy, S. (2020). New insights into the remediation of water pollutants using nanobentonite incorporated nanocellulose chitosan based aerogel. Journal of Polymers and the Environment, 28, 2008–2019.
  101. Singha, A. S., & Rana, A. K. (2012). Preparation and characterization of graft copolymerized Cannabis indica L. fiber-reinforced unsaturated polyester matrix-based biocomposites. Journal of Reinforced Plastics and Composites, 31(22), 1538–1553.
  102. Sinha, V., & Chakma, S. (2019). Advances in the preparation of hydrogel for wastewater treatment: A concise review. Journal of Environmental Chemical Engineering, 7(5), 103295. https://doi.org/10.1016/j.jece.2019.103295
  103. Sips, R. (1948). On the Structure of a Catalyst Surface. The Journal of Chemical Physics, 16(5), 490–495. https://doi.org/10.1063/1.1746922
  104. Solayman, H. M., Hossen, M. A., Abd Aziz, A., Yahya, N. Y., Hon, L. K., Ching, S. L., Monir, M. U., & Zoh, K.-D. (2023). Performance evaluation of dye wastewater treatment technologies: A review. Journal of Environmental Chemical Engineering, 109610.
  105. Sultana, H., & Usman, M. (2023). Surfactant-assisted flocculation for the efficient removal of aqueous dyestuff: A sustainable approach. Journal of Molecular Liquids, 370, 120988.
  106. Taher, T., Munandar, A., Mawaddah, N., Wisnubroto, M. S., Siregar, P. M. S. B. N., Palapa, N. R., Lesbani, A., & Wibowo, Y. G. (2023). Synthesis and characterization of montmorillonite–Mixed metal oxide composite and its adsorption performance for anionic and cationic dyes removal. Inorganic Chemistry Communications, 147, 110231.
  107. Tang, J., Song, Y., Zhao, F., Spinney, S., Da Silva Bernardes, J., & Tam, K. C. (2019). Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal. Carbohydrate Polymers, 208, 404–412. https://doi.org/10.1016/j.carbpol.2018.12.079
  108. Tavakolian, M., Wiebe, H., Sadeghi, M. A., & Van De Ven, T. G. M. (2020). Dye Removal Using Hairy Nanocellulose: Experimental and Theoretical Investigations. ACS Applied Materials & Interfaces, 12(4), 5040–5049. https://doi.org/10.1021/acsami.9b18679
  109. Temkin, M. I. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim. URSS, 12, 327–356.
  110. Thakur, M. K., Rana, A. K., & Thakur, V. K. (2014). Lignocellulosic polymer composites: A brief overview. Lignocellulosic Polymer Composites: Processing, Characterization, and Properties. Vol. 9781118773574, Wiley Blackwell, 1–15.
  111. Thakur, S., Chaudhary, J., Thakur, A., Gunduz, O., Alsanie, W. F., Makatsoris, C., & Thakur, V. K. (2022). Highly efficient poly(acrylic acid-co-aniline) grafted itaconic acid hydrogel: Application in water retention and adsorption of rhodamine B dye for a sustainable environment. Chemosphere, 303, 134917. https://doi.org/10.1016/j.chemosphere.2022.134917
  112. Thakur, S., Verma, A., Kumar, V., Jin Yang, X., Krishnamurthy, S., Coulon, F., & Thakur, V. K. (2022). Cellulosic biomass-based sustainable hydrogels for wastewater remediation: Chemistry and prospective. Fuel, 309, 122114. https://doi.org/10.1016/j.fuel.2021.122114
  113. Tshikovhi, A., Mishra, S. B., & Mishra, A. K. (2020). Nanocellulose-based composites for the removal of contaminants from wastewater. International Journal of Biological Macromolecules, 152, 616–632.
  114. Tzabar, N., & Ter Brake, H. J. M. (2016). Adsorption isotherms and Sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride. Adsorption, 22(7), 901–914. https://doi.org/10.1007/s10450-016-9794-9
  115. Vakili, M. R., Mohammed-Saeid, W., Aljasser, A., Hopwood-Raja, J., Ahvazi, B., Hrynets, Y., Betti, M., & Lavasanifar, A. (2021). Development of mucoadhesive hydrogels based on polyacrylic acid grafted cellulose nanocrystals for local cisplatin delivery. Carbohydrate Polymers, 255, 117332. https://doi.org/10.1016/j.carbpol.2020.117332
  116. Vasconcelos, N. F., Feitosa, J. P. A., da Gama, F. M. P., Morais, J. P. S., Andrade, F. K., de Souza, M. de S. M., & de Freitas Rosa, M. (2017). Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features. Carbohydrate Polymers, 155, 425–431.
  117. Wang, H., Wang, Y., & Dionysiou, D. D. (2023). Advanced oxidation processes for removal of emerging contaminants in water. In Water (Vol. 15, Issue 3, p. 398). MDPI.
  118. Wang, M., Song, Y., Bisoyi, H. K., Yang, J., Liu, L., Yang, H., & Li, Q. (2021). A Liquid Crystal Elastomer‐Based Unprecedented Two‐Way Shape‐Memory Aerogel. Advanced Science, 8(22), 2102674. https://doi.org/10.1002/advs.202102674
  119. Wang, Z., Song, L., Wang, Y., Zhang, X.-F., Hao, D., Feng, Y., & Yao, J. (2019). Lightweight UiO-66/cellulose aerogels constructed through self-crosslinking strategy for adsorption applications. Chemical Engineering Journal, 371, 138–144. https://doi.org/10.1016/j.cej.2019.04.022
  120. Wang, Z., Song, L., Wang, Y., Zhang, X.-F., & Yao, J. (2021). Construction of a hybrid graphene oxide/nanofibrillated cellulose aerogel used for the efficient removal of methylene blue and tetracycline. Journal of Physics and Chemistry of Solids, 150, 109839. https://doi.org/10.1016/j.jpcs.2020.109839
  121. Water Futures and Solutions (WFaS). (n.d.). IIASA - International Institute for Applied Systems Analysis. Retrieved August 15, 2023, from https://iiasa.ac.at/projects/wfas
  122. Water scarcity | UNICEF. (n.d.). Retrieved August 15, 2023, from https://www.unicef.org/wash/water-scarcity
  123. Weber, W. J., & Morris, J. C. (1963). Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division, 89(2), 31–59. https://doi.org/10.1061/JSEDAI.0000430
  124. Wu, P., Zhang, B., Yu, Z., Zou, H., & Liu, P. (2019). Anisotropic polyimide aerogels fabricated by directional freezing. Journal of Applied Polymer Science, 136(11), 47179. https://doi.org/10.1002/app.47179
  125. Wu, Q., Li, X., Fu, S., Li, Q., & Wang, S. (2017). Estimation of aspect ratio of cellulose nanocrystals by viscosity measurement: Influence of surface charge density and NaCl concentration. Cellulose, 24(8), 3255–3264. https://doi.org/10.1007/s10570-017-1341-7
  126. Xia, H., Li, C., Yang, G., Shi, Z., Jin, C., He, W., Xu, J., & Li, G. (2022). A review of microwave-assisted advanced oxidation processes for wastewater treatment. Chemosphere, 287, 131981.
  127. Xue, J., Zhu, E., Zhu, H., Liu, D., Cai, H., Xiong, C., Yang, Q., & Shi, Z. (2023). Dye adsorption performance of nanocellulose beads with different carboxyl group content. Cellulose, 30(3), 1623–1636. https://doi.org/10.1007/s10570-022-04964-1
  128. Yap, J. X., Leo, C. P., Derek, C. J. C., Yasin, N. H. M., & Sajab, M. S. (2023). Chlorella vulgaris nanocellulose in hydrogel beads for dye removal. Separation and Purification Technology, 124613.
  129. Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16, 1193–1226.
  130. Yin, Y., Lucia, L. A., Pal, L., Jiang, X., & Hubbe, M. A. (2020). Lipase-catalyzed laurate esterification of cellulose nanocrystals and their use as reinforcement in PLA composites. Cellulose, 27, 6263–6273.
  131. Zain, Z. M., Abdulhameed, A. S., Jawad, A. H., ALOthman, Z. A., & Yaseen, Z. M. (2023). A pH-sensitive surface of chitosan/sepiolite clay/algae biocomposite for the removal of malachite green and remazol brilliant blue R dyes: Optimization and adsorption mechanism study. Journal of Polymers and the Environment, 31(2), 501–518.
  132. Zainal, S. H., Mohd, N. H., Suhaili, N., Anuar, F. H., Lazim, A. M., & Othaman, R. (2021). Preparation of cellulose-based hydrogel: A review. Journal of Materials Research and Technology, 10, 935–952.
  133. Zhang, T., Xiao, S., Fan, K., He, H., & Qin, Z. (2022). Preparation and adsorption properties of green cellulose-based composite aerogel with selective adsorption of methylene blue. Polymer, 258, 125320. https://doi.org/10.1016/j.polymer.2022.125320
  134. Zhang, W., Wang, X., Zhang, Y., Van Bochove, B., Mäkilä, E., Seppälä, J., Xu, W., Willför, S., & Xu, C. (2020). Robust shape-retaining nanocellulose-based aerogels decorated with silver nanoparticles for fast continuous catalytic discoloration of organic dyes. Separation and Purification Technology, 242, 116523. https://doi.org/10.1016/j.seppur.2020.116523
  135. Zhang, W., Zhang, M., Yao, J., & Long, J. (2023). Industrial indigo dyeing wastewater purification: Effective COD removal with peroxi-AC electrocoagulation system. Arabian Journal of Chemistry, 16(4), 104607.
  136. Zhang, X., Elsayed, I., Navarathna, C., Schueneman, G. T., & Hassan, E. B. (2019). Biohybrid Hydrogel and Aerogel from Self-Assembled Nanocellulose and Nanochitin as a High-Efficiency Adsorbent for Water Purification. ACS Applied Materials & Interfaces, 11(50), 46714–46725. https://doi.org/10.1021/acsami.9b15139
  137. Zhang, X., Li, F., Zhao, X., Cao, J., Liu, S., Zhang, Y., Yuan, Z., Huang, X., De Hoop, C. F., Peng, X., & Huang, X. (2023). Bamboo Nanocellulose/Montmorillonite Nanosheets/Polyethyleneimine Gel Adsorbent for Methylene Blue and Cu(II) Removal from Aqueous Solutions. Gels, 9(1), 40. https://doi.org/10.3390/gels9010040
  138. Zhang, Z., Abidi, N., Lucia, L., Chabi, S., Denny, C. T., Parajuli, P., & Rumi, S. (2022). Cellulose/nanocellulose superabsorbent hydrogels as a sustainable platform for materials applications: A mini-review. Carbohydrate Polymers, 120140.
  139. Zhang, Z., Hu, J., Tian, X., Guo, F., Wang, C., Zhang, J., & Jiang, M. (2022). Facile in-situ growth of metal–organic framework layer on carboxylated nanocellulose/chitosan aerogel spheres and their high-efficient adsorption and catalytic performance. Applied Surface Science, 599, 153974. https://doi.org/10.1016/j.apsusc.2022.153974
  140. Zhao, H., Zhang, Y., Liu, Y., Zheng, P., Gao, T., Cao, Y., Liu, X., Yin, J., & Pei, R. (2021). In Situ Forming Cellulose Nanofibril-Reinforced Hyaluronic Acid Hydrogel for Cartilage Regeneration. Biomacromolecules, 22(12), 5097–5107. https://doi.org/10.1021/acs.biomac.1c01063
  141. Zheng, A. L. T., Sabidi, S., Ohno, T., Maeda, T., & Andou, Y. (2022). Cu2O/TiO2 decorated on cellulose nanofiber/reduced graphene hydrogel for enhanced photocatalytic activity and its antibacterial applications. Chemosphere, 286, 131731. https://doi.org/10.1016/j.chemosphere.2021.131731
  142. Zubik, K., Singhsa, P., Wang, Y., Manuspiya, H., & Narain, R. (2017). Thermo-Responsive Poly(N-Isopropylacrylamide)-Cellulose Nanocrystals Hybrid Hydrogels for Wound Dressing. Polymers, 9(12), 119. https://doi.org/10.3390/polym9040119
  143. Zuo, L., Zhang, Y., Zhang, L., Miao, Y.-E., Fan, W., & Liu, T. (2015). Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications. Materials, 8(10), 6806–6848. https://doi.org/10.3390/ma8105343

How to Cite

Nanocellulose-based Hydrogels: Preparation Strategies, Dye Adsorption and Factors Impacting. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.1757

How to Cite

Nanocellulose-based Hydrogels: Preparation Strategies, Dye Adsorption and Factors Impacting. (2023). Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.1757

HTML
375

Total
515

Share

Search Panel

Ashvinder K. Rana
Google Scholar
Pubmed
JDMFS Journal


Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Ashvinder K. Rana

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.