Skip to main content Skip to main navigation menu Skip to site footer

Human Brain Banking as a Convergence Platform of Neuroscience and Neuropsychiatric Research

  • Fan Liu
  • Xiang-Sha Yin
  • Cong Cong
  • Yuanzhuo Wang
  • Chao Ma

Abstract

Neuropsychiatric disorders affect hundreds of millions of people and their families worldwide. Many studies have used human postmortem brain samples to decipher the molecular framework of these diseases. These studies uncovered brain-specific genetic and epigenetic patterns using high-throughput sequencing techniques. Therefore, determining the best way to collect human postmortem brain samples, analysing such a large amount of sequencing data, and interpreting these results is critical to advancing the field of neuropsychiatric sciences. By collecting postmortem/biopsied neural tissues and information about the diseases and life of donors, human brain banks support the observation and research of human brain sciences. Furthermore, the construction of large-scale brain banks has promoted the exploration of human brain morphology and function, development and ageing, as well as the mechanism of many neuropsychiatric diseases, which progressively reveal the normal mechanism of human brain activities and lead the direction of the prevention and treatment of neurological diseases. This article introduces the significance of human brain tissue bank construction and the current situation of the human brain tissue bank worldwide, as well as an overview of neurology or neuroscience advanced by using human brain samples.

Section

References

  1. Abbas, N., Lucking, C. B., Ricard, S., Durr, A., Bonifati, V., De Michele, G., . . . European Consortium Genetic Susceptibility, P. (1999). A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. Human Molecular Genetics, 8(4), 567-574. doi:10.1093/hmg/8.4.567
  2. Abou-Sleiman, P. M., Healy, D. G., & Wood, N. W. (2004). Causes of Parkinson's disease: genetics of DJ-1. Cell and Tissue Research, 318(1), 185-188. doi:10.1007/s00441-004-0922-6
  3. Allen, M., Zou, F., Chai, H. S., Younkin, C. S., Crook, J., Pankratz, V. S., . . . Woltjer, R. L. (2012). Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology, 79(3), 221-228. doi:10.1212/WNL.0b013e3182605801
  4. Alzheimer, A., Stelzmann, R. A., Schnitzlein, H. N., & Murtagh, F. R. (1995). An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". Clinical Anatomy, 8(6), 429-431. doi:10.1002/ca.980080612
  5. Beal, M. F. (2001). Experimental models of Parkinson's disease. Nature Reviews Neuroscience, 2(5), 325-332. doi:10.1038/35072550
  6. Bereczki, E., Branca, R. M., Francis, P. T., Pereira, J. B., Baek, J. H., Hortobágyi, T., . . . Aarsland, D. (2018). Synaptic markers of cognitive decline in neurodegenerative diseases: a proteomic approach. Brain, 141(2), 582-595. doi:10.1093/brain/awx352
  7. Bereczki, E., Francis, P. T., Howlett, D., Pereira, J. B., Höglund, K., Bogstedt, A., . . . Aarsland, D. (2016). Synaptic proteins predict cognitive decline in Alzheimer's disease and Lewy body dementia. Alzheimers & Dementia, 12(11), 1149-1158. doi:10.1016/j.jalz.2016.04.005
  8. Blesa, J., Phani, S., Jackson-Lewis, V., & Przedborski, S. (2012). Classic and New Animal Models of Parkinson's Disease. Journal of Biomedicine and Biotechnology. doi:10.1155/2012/845618
  9. Blesa, J., & Przedborski, S. (2014). Parkinson's disease: animal models and dopaminergic cell vulnerability. Frontiers In Neuroanatomy, 8, 155. doi:10.3389/fnana.2014.00155
  10. Bonifati, V., Rohe, C. F., Breedveld, G. J., Fabrizio, E., De Mari, M., Tassorelli, C., . . . Italian Parkinson, N. (2005). Early-onset parkinsonism associated with PINK1 mutations - Frequency, genotypes, and phenotypes. Neurology, 65(1), 87-95. doi:10.1212/01.wnl.0000167546.39375.82
  11. Borchelt, D. R., Ratovitski, T., van Lare, J., Lee, M. K., Gonzales, V., Jenkins, N. A., . . . Sisodia, S. S. (1997). Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron, 19(4), 939-945. doi:10.1016/s0896-6273(00)80974-5
  12. Borchelt, D. R., Thinakaran, G., Eckman, C. B., Lee, M. K., Davenport, F., Ratovitsky, T., . . . Younkin, S. G. (1996). Familial Alzheimer's disease-linked presenilin 1 variants elevate A beta 1-42/1-40 ratio in vitro and in vivo. Neuron, 17(5), 1005-1013. doi:10.1016/s0896-6273(00)80230-5
  13. Borchelt, D. R., Thinakaran, G., Eckman, C. B., Lee, M. K., Davenport, F., Ratovitsky, T., . . . Sisodia, S. S. (1996). Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron, 17(5), 1005-1013. doi:10.1016/s0896-6273(00)80230-5
  14. Bowen, D. M., Smith, C. B., White, P., & Davison, A. N. (1976). Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain, 99(3), 459-496. doi:10.1093/brain/99.3.459
  15. Brichta, L., Greengard, P., & Flajolet, M. (2013). Advances in the pharmacological treatment of Parkinson's disease: targeting neurotransmitter systems. Trends in Neurosciences, 36(9), 543-554. doi:10.1016/j.tins.2013.06.003
  16. Campion, D., Dumanchin, C., Hannequin, D., Dubois, B., Belliard, S., Puel, M., . . . Frebourg, T. (1999). Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. American journal of human genetics, 65(3), 664-670. doi:10.1086/302553
  17. Carlson, G. A., Borchelt, D. R., Dake, A., Turner, S., Danielson, V., Coffin, J. D., . . . Hsiao, K. K. (1997). Genetic modification of the phenotypes produced by amyloid precursor protein overexpression in transgenic mice. Human Molecular Genetics, 6(11), 1951-1959. doi:10.1093/hmg/6.11.1951
  18. Chan, P., Tanner, C. M., Jiang, X., & Langston, J. W. (1998). Failure to find the alpha-synuclein gene missense mutation (G(209)A) in 100 patients with younger onset Parkinson's disease. Neurology, 50(2), 513-514. doi:10.1212/wnl.50.2.513
  19. Chesselet, M.-F., & Richter, F. (2011). Modelling of Parkinson's disease in mice. Lancet Neurology, 10(12), 1108-1118. doi:10.1016/s1474-4422(11)70227-7
  20. Choi, S. H., Kim, Y. H., Hebisch, M., Sliwinski, C., Lee, S., D'Avanzo, C., . . . Kim, D. Y. (2014). A three-dimensional human neural cell culture model of Alzheimer's disease. Nature, 515(7526), 274-U293. doi:10.1038/nature13800
  21. Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A. Y., Seubert, P., . . . Selkoe, D. J. (1992). Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature, 360(6405), 672-674. doi:10.1038/360672a0
  22. Colantuoni, C., Lipska, B. K., Ye, T., Hyde, T. M., Tao, R., Leek, J. T., . . . Kleinman, J. E. (2011). Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature, 478(7370), 519-523. doi:10.1038/nature10524
  23. Corbett, B. F., Leiser, S. C., Ling, H.-P., Nagy, R., Breysse, N., Zhang, X., . . . Chin, J. (2013). Sodium Channel Cleavage Is Associated with Aberrant Neuronal Activity and Cognitive Deficits in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 33(16), 7020-7026. doi:10.1523/jneurosci.2325-12.2013
  24. Deep-Soboslay, A., Benes, F. M., Haroutunian, V., Ellis, J. K., Kleinman, J. E., & Hyde, T. M. (2011). Psychiatric Brain Banking: Three Perspectives on Current Trends and Future Directions. Biological Psychiatry, 69(2), 104-112. doi:10.1016/j.biopsych.2010.05.025
  25. Deng, H., Le, W. D., Zhang, X., Pan, T. H., & Jankovic, J. (2005). G309D and W437OPA PINK1 mutations in Caucasian Parkinson's disease patients. Acta Neurologica Scandinavica, 111(6), 351-352. doi:10.1111/j.1600-0404.2005.00383.x
  26. Di Fonzo, A., Rohe, C. F., Ferreira, R. J., Chien, H. F., Vacca, L., Stocchi, F., . . . Italian Parkinson Genetics, N. (2005). A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet, 365(9457), 412-415. Retrieved from ://WOS:000226610900028
  27. Di Lullo, E., & Kriegstein, A. R. (2017). The use of brain organoids to investigate neural development and disease. Nature Reviews Neuroscience, 18(10), 573-584. doi:10.1038/nrn.2017.107
  28. Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., . . . Eggan, K. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893), 1218-1221. doi:10.1126/science.1158799
  29. Duyckaerts, C., Potier, M. C., & Delatour, B. (2008). Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathologica, 115(1), 5-38. doi:10.1007/s00401-007-0312-8
  30. Ebert, A. D., Yu, J., Rose, F. F., Jr., Mattis, V. B., Lorson, C. L., Thomson, J. A., & Svendsen, C. N. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227), 277-280. doi:10.1038/nature07677
  31. Egawa, N., Kitaoka, S., Tsukita, K., Naitoh, M., Takahashi, K., Yamamoto, T., . . . Inoue, H. (2012). Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells. Science Translational Medicine, 4(145). doi:10.1126/scitranslmed.3004052
  32. Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., . . . Sasai, Y. (2011). Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 472(7341), 51-U73. doi:10.1038/nature09941
  33. Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., Kawada, M., Yonemura, S., Matsumura, M., . . . Sasail, Y. (2008). Self-Organized Formation of Polarized Cortical Tissues from ESCs and Its Active Manipulation by Extrinsic Signals. Cell Stem Cell, 3(5), 519-532. doi:10.1016/j.stem.2008.09.002
  34. Ertekin-Taner, N. (2010). Genetics of Alzheimer disease in the pre- and post-GWAS era. Alzheimer's Research & Therapy, 2(1), 3-3. doi:10.1186/alzrt26
  35. Farrer, M., Wavrant-De Vrieze, F., Crook, R., Boles, L., Perez-Tur, J., Hardy, J., . . . Lynch, T. (1998). Low frequency of alpha-synuclein mutations in familial Parkinson's disease. Annals of Neurology, 43(3), 394-397. doi:10.1002/ana.410430320
  36. Francis, P. T., Hayes, G. M., Costello, H., & Whitfield, D. R. (2019). Brains for Dementia Research: The Importance of Cohorts in Brain Banking. Neuroscience Bulletin, 35(2), 289-294. doi:10.1007/s12264-018-0327-2
  37. Fryer, J. D., Simmons, K., Parsadanian, M., Bales, K. R., Paul, S. M., Sullivan, P. M., & Holtzman, D. M. (2005). Human apolipoprotein E4 alters the amyloid-beta 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. Journal of Neuroscience, 25(11), 2803-2810. doi:10.1523/jneurosci.5170-04.2005
  38. Funato, H., Yoshimura, M., Kusui, K., Tamaoka, A., Ishikawa, K., Ohkoshi, N., . . . Ihara, Y. (1998). Quantitation of amyloid beta-protein (A beta) in the cortex during aging and in Alzheimer's disease. American Journal of Pathology, 152(6), 1633-1640.
  39. Funayama, M., Hasegawa, K., Ohta, E., Kawashima, N., Komiyama, M., Kowa, H., . . . Obata, F. (2005). An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Annals of Neurology, 57(6), 918-921. doi:10.1002/ana.20484
  40. Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., . . . et al. (1995). Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature, 373(6514), 523-527. doi:10.1038/373523a0
  41. Gessel, M. M., Bernstein, S., Kemper, M., Teplow, D. B., & Bowers, M. T. (2012). Familial Alzheimer's disease mutations differentially alter amyloid β-protein oligomerization. ACS Chemical Neuroscience, 3(11), 909-918. doi:10.1021/cn300050d
  42. Gilks, W. P., Abou-Sleiman, P. M., Gandhi, S., Jain, S., Singleton, A., Lees, A. J., . . . Wood, N. W. (2005). Common LRRK2 mutation in idiopathic Parkinson's disease. Lancet, 365(9457), 415-416. doi:10.1016/s0140-6736(05)17830-1
  43. Hamm, V., Heraud, C., Bott, J.-B., Herbeaux, K., Strittmatter, C., Mathis, C., & Goutagny, R. (2017). Differential contribution of APP metabolites to early cognitive deficits in a TgCRND8 mouse model of Alzheimer's disease. Science Advances, 3(2). doi:10.1126/sciadv.1601068
  44. Hattori, N., Matsumine, H., Asakawa, S., Kitada, T., Yoshino, H., Elibol, B., . . . Mizuno, Y. (1998). Point mutations (Thr240Arg and Ala311Stop) in the Parkin gene. Biochemical and Biophysical Research Communications, 249(3), 754-758. doi:10.1006/bbrc.1998.9134
  45. Healy, D. G., Abou-Sleiman, P. M., Ahmadi, K. R., Muqit, M. M. K., Bhatia, K. P., Quinn, N. P., . . . Wood, N. W. (2004). The gene responsible for PARK6 Parkinson's disease, PINK1, does not influence common forms of parkinsonism. Annals of Neurology, 56(3), 329-335. doi:10.1002/ana.20206
  46. Hinkle, K. M., Yue, M., Behrouz, B., Dächsel, J. C., Lincoln, S. J., Bowles, E. E., . . . Melrose, H. L. (2012). LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors. Molecular Neurodegeneration, 7, 25. doi:10.1186/1750-1326-7-25
  47. Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, J. C., Carrasquillo, M. M., . . . Williams, J. (2011). Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature genetics, 43(5), 429-435. doi:10.1038/ng.803
  48. Hor, J. H., Soh, E. S. Y., Tan, L. Y., Lim, V. J. W., Santosa, M. M., Winanto, . . . Ng, S. Y. (2018). Cell cycle inhibitors protect motor neurons in an organoid model of Spinal Muscular Atrophy. Cell Death & Disease, 9. doi:10.1038/s41419-018-1081-0
  49. Israel, M. A., Yuan, S. H., Bardy, C., Reyna, S. M., Mu, Y., Herrera, C., . . . Goldstein, L. S. B. (2012). Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature, 482(7384), 216-U107. doi:10.1038/nature10821
  50. Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., & Ihara, Y. (1994). VISUALIZATION OF A-BETA-42(43) AND A-BETA-40 IN SENILE PLAQUES WITH END-SPECIFIC A-BETA MONOCLONALS - EVIDENCE THAT AN INITIALLY DEPOSITED SPECIES IS A-BETA-42(43). Neuron, 13(1), 45-53. doi:10.1016/0896-6273(94)90458-8
  51. Jo, J., Xiao, Y. X., Sun, A. X., Cukuroglu, E., Tran, H. D., Goke, J., . . . Ng, H. H. (2016). Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell, 19(2), 248-257. doi:10.1016/j.stem.2016.07.005
  52. Kawada, J., Kaneda, S., Kirihara, T., Maroof, A., Levi, T., Eggan, K., . . . Ikeuchi, Y. (2017). Generation of a Motor Nerve Organoid with Human Stem Cell-Derived Neurons. Stem Cell Reports, 9(5), 1441-1449. doi:10.1016/j.stemcr.2017.09.021
  53. Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., . . . Shimizu, N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392(6676), 605-608. doi:10.1038/33416
  54. Klein, C., Djarmati, A., Hedrich, K., Schafer, N., Scaglione, C., Marchese, R., . . . Pramstaller, P. P. (2005). PINK1, Parkin, and DJ-1 mutations in Italian patients with early-onset parkinsonism. European Journal of Human Genetics, 13(9), 1086-1093. doi:10.1038/sj.ejhg.5201455
  55. Klein, H. U., McCabe, C., Gjoneska, E., Sullivan, S. E., Kaskow, B. J., Tang, A., . . . De Jager, P. L. (2019). Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer's human brains. Nature Neuroscience, 22(1), 37-46. doi:10.1038/s41593-018-0291-1
  56. Lancaster, M. A., Renner, M., Martin, C.-A., Wenzel, D., Bicknell, L. S., Hurles, M. E., . . . Knoblich, J. A. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501(7467), 373-+. doi:10.1038/nature12517
  57. Lee, G., Papapetrou, E. P., Kim, H., Chambers, S. M., Tomishima, M. J., Fasano, C. A., . . . Studer, L. (2009). Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 461(7262), 402-U100. doi:10.1038/nature08320
  58. Lewis, J., Dickson, D. W., Lin, W. L., Chisholm, L., Corral, A., Jones, G., . . . McGowan, E. (2001). Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science, 293(5534), 1487-1491. doi:10.1126/science.1058189
  59. Lewis, J., McGowan, E., Rockwood, J., Melrose, H., Nacharaju, P., Van Slegtenhorst, M., . . . Hutton, M. (2000). Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nature genetics, 25(4), 402-405. doi:10.1038/78078
  60. Lopes, K. P., Snijders, G. J. L., Humphrey, J., Allan, A., Sneeboer, M. A. M., Navarro, E., . . . Raj, T. (2022). Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies. Nature genetics, 54(1), 4-17. doi:10.1038/s41588-021-00976-y
  61. Lucking, C. B., Durr, A., Bonifati, V., Vaughan, J., De Michele, G., Gasser, T., . . . French Parkinsons Dis Genetics, S. (2000). Association between early-onset Parkinson's disease and mutations in the parkin gene. New England Journal of Medicine, 342(21), 1560-1567. doi:10.1056/nejm200005253422103
  62. Ma, C., Bao, A. M., & Yan, X. X. (2019). Significance of human brain banking and recent advances in China and foreign countries. Journal of Chongqing Medical University, 44(04), 547-550. doi:10.13406/j.cnki.cyxb.002068
  63. Ma, C., Bao, A. M., Yan, X. X., & Swaab, D. F. (2019). Progress in Human Brain Banking in China. Neuroscience Bulletin, 35(2), 179-182. doi:10.1007/s12264-019-00350-3
  64. Ma, Y., Dammer, E. B., Felsky, D., Duong, D. M., Klein, H. U., White, C. C., . . . De Jager, P. L. (2021). Atlas of RNA editing events affecting protein expression in aged and Alzheimer's disease human brain tissue. Nature Communications, 12(1), 7035. doi:10.1038/s41467-021-27204-9
  65. Macpherson, T. A., Garver, K. L., Turner, J. H., Diggans, G. R., Marchese, S. G., & Poole, G. C. (1985). Predicting in vitro tissue culture growth for cytogenetic evaluation of stillborn fetuses. European Journal of Obstetrics & Gynecology and Reproductive Biology, 19(3), 167-174. doi:10.1016/0028-2243(85)90151-0
  66. Marchetto, M. C. N., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., . . . Muotri, A. R. (2010). A Model for Neural Development and Treatment of Rett Syndrome Using Human Induced Pluripotent Stem Cells. Cell, 143(4), 527-539. doi:10.1016/j.cell.2010.10.016
  67. Mariani, J., Coppola, G., Zhang, P., Abyzov, A., Provini, L., Tomasini, L., . . . Vaccarino, F. M. (2015). FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders. Cell, 162(2), 375-390. doi:10.1016/j.cell.2015.06.034
  68. Maruyama, M., Shimada, H., Suhara, T., Shinotoh, H., Ji, B., Maeda, J., . . . Higuchi, M. (2013). Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron, 79(6), 1094-1108. doi:10.1016/j.neuron.2013.07.037
  69. McInerney-Leo, A., Hadley, D. W., Gwinn-Hardy, K., & Hardy, J. (2005). Genetic testing in Parkinson's disease. Movement Disorders, 20(1), 1-10. doi:10.1002/mds.20316
  70. Mellios, N., Feldman, D. A., Sheridan, S. D., Ip, J. P. K., Kwok, S., Amoah, S. K., . . . Sur, M. (2018). MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Molecular Psychiatry, 23(4), 1051-1065. doi:10.1038/mp.2017.86
  71. Metzger, J. M., & Emborg, M. E. (2019). Autonomic dysfunction in Parkinson disease and animal models. Clinical Autonomic Research, 29(4), 397-414. doi:10.1007/s10286-018-00584-7
  72. Miller, J. D., Ganat, Y. M., Kishinevsky, S., Bowman, R. L., Liu, B., Tu, E. Y., . . . Studer, L. (2013). Human iPSC-Based Modeling of Late-Onset Disease via Progerin-Induced Aging. Cell Stem Cell, 13(6), 691-705. doi:10.1016/j.stem.2013.11.006
  73. Montine, T. J., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Dickson, D. W., . . . Hyman, B. T. (2012). National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach. Acta Neuropathologica, 123(1), 1-11. doi:10.1007/s00401-011-0910-3
  74. Monzel, A. S., Smits, L. M., Hemmer, K., Hachi, S., Moreno, E. L., van Wuellen, T., . . . Schwamborn, J. C. (2017). Derivation of Human Midbrain-Specific Organoids from Neuroepithelial Stem Cells. Stem Cell Reports, 8(5), 1144-1154. doi:10.1016/j.stemcr.2017.03.010
  75. Moore, K. A., Kohno, T., Karchewski, L. A., Scholz, J., Baba, H., & Woolf, C. J. (2002). Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. Journal of Neuroscience, 22(15), 6724-6731. doi:10.1523/jneurosci.22-15-06724.2002
  76. Morris, R. G., & Salmon, D. P. (2007). The centennial of Alzheimer's disease and the publication of "Uber eine eigenartige Erkankung der Hirnrinde" by Alöis Alzheimer. Cortex, 43(7), 821-825. doi:10.1016/s0010-9452(08)70681-6
  77. Muguruma, K., Nishiyama, A., Ono, Y., Miyawaki, H., Mizuhara, E., Hori, S., . . . Sasai, Y. (2010). Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nature Neuroscience, 13(10), 1171-1180. doi:10.1038/nn.2638
  78. Munoz, E., Oliva, R., Obach, V., Marti, M. J., Pastor, P., Ballesta, F., & Tolosa, E. (1997). Identification of Spanish familial Parkinson's disease and screening for the Ala53Thr mutation of the alpha-synuclein gene in early onset patients. Neuroscience Letters, 235(1-2), 57-60. doi:10.1016/s0304-3940(97)00710-6
  79. Naj, A. C., Jun, G., Beecham, G. W., Wang, L.-S., Vardarajan, B. N., Buros, J., . . . Schellenberg, G. D. (2011). Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature genetics, 43(5), 436-441. doi:10.1038/ng.801
  80. Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., . . . Sasai, Y. (2012). Self-Formation of Optic Cups and Storable Stratified Neural Retina from Human ESCs. Cell Stem Cell, 10(6), 771-785. doi:10.1016/j.stem.2012.05.009
  81. Nativio, R., Lan, Y., Donahue, G., Sidoli, S., Berson, A., Srinivasan, A. R., . . . Berger, S. L. (2020). An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer's disease. Nature genetics, 52(10), 1024-1035. doi:10.1038/s41588-020-0696-0
  82. Nichols, W. C., Pankratz, N., Hernandez, D., Paisan-Ruiz, C., Jain, S., Halter, C. A., . . . Parkinson Study Grp, P. I. (2005). Genetic screening for a single common LRRK2 mutation in familial Parkinson's disease. Lancet, 365(9457), 410-412. doi:10.1016/s0140-6736(05)17828-3
  83. Nussbaum, R. L., & Polymeropoulos, M. H. (1997). Genetics of Parkinson's disease. Human Molecular Genetics, 6(10), 1687-1691. doi:10.1093/hmg/6.10.1687
  84. Pang, K. L., Jiang, R. C., Zhang, W., Yang, Z. Y., Li, L. L., Shimozawa, M., . . . Lu, B. (2022). An App knock-in rat model for Alzheimer's disease exhibiting A beta and tau pathologies, neuronal death and cognitive impairments. Cell Research, 32(2), 157-175. doi:10.1038/s41422-021-00582-x
  85. Panitch, R., Hu, J., Chung, J., Zhu, C., Meng, G., Xia, W., . . . Jun, G. R. (2021). Integrative brain transcriptome analysis links complement component 4 and HSPA2 to the APOE ε2 protective effect in Alzheimer disease. Molecular Psychiatry, 26(10), 6054-6064. doi:10.1038/s41380-021-01266-z
  86. Pasca, A. M., Sloan, S. A., Clarke, L. E., Tian, Y., Makinson, C. D., Huber, N., . . . Pasca, S. P. (2015). Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nature Methods, 12(7), 671-+. doi:10.1038/nmeth.3415
  87. Pringsheim, T., Jette, N., Frolkis, A., & Steeves, T. D. (2014). The prevalence of Parkinson's disease: a systematic review and meta-analysis. Movement Disorders, 29(13), 1583-1590. doi:10.1002/mds.25945
  88. Qi, Y. J., Lu, Y. R., Shi, L. G., Demmers, J. A. A., Bezstarosti, K., Rijkers, E., . . . Bao, A. M. (2022). Distinct proteomic profiles in prefrontal subareas of elderly major depressive disorder and bipolar disorder patients. Translational Psychiatry, 12(1). doi:10.1038/s41398-022-02040-7
  89. Qian, X., Ha Nam, N., Song, M. M., Hadiono, C., Ogden, S. C., Hammack, C., . . . Ming, G.-l. (2016). Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell, 165(5), 1238-1254. doi:10.1016/j.cell.2016.04.032
  90. Qian, X. Y., Jacob, F., Song, M. M., Nguyen, H. N., Song, H. J., & Ming, G. L. (2018). Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nature Protocols, 13(3), 565-580. doi:10.1038/nprot.2017.152
  91. Qiu, W., Zhang, H., Bao, A., Zhu, K., Huang, Y., Yan, X., . . . Ma, C. (2019). Standardized Operational Protocol for Human Brain Banking in China. Neuroscience Bulletin, 35(2), 270-276. doi:10.1007/s12264-018-0306-7
  92. Rademaker, M. C., de Lange, G. M., & Palmen, S. J. M. C. (2018). Chapter 1 - The Netherlands Brain Bank for Psychiatry. In I. Huitinga & M. J. Webster (Eds.), Handbook of Clinical Neurology (Vol. 150, pp. 3-16): Elsevier.
  93. Rathke-Hartlieb, S., Kahle, P. J., Neumann, M., Ozmen, L., Haid, S., Okochi, M., . . . Schulz, J. B. (2001). Sensitivity to MPTP is not increased in Parkinson's disease-associated mutant alpha-synuclein transgenic mice. Journal of Neurochemistry, 77(4), 1181-1184. doi:10.1046/j.1471-4159.2001.00366.x
  94. Rodriguez-Oroz, M. C., Jahanshahi, M., Krack, P., Litvan, I., Macias, R., Bezard, E., & Obeso, J. A. (2009). Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. Lancet Neurology, 8(12), 1128-1139. doi:10.1016/s1474-4422(09)70293-5
  95. Rogaeva, E., Johnson, J., Lang, A. E., Gulick, C., Gwinn-Hardy, K., Kawarai, T., . . . Singleton, A. B. (2004). Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease. Archives of Neurology, 61(12), 1898-1904. doi:10.1001/archneur.61.12.1898
  96. Sakaguchi, H., Kadoshima, T., Soen, M., Narii, N., Ishida, Y., Ohgushi, M., . . . Sasai, Y. (2015). Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nature Communications, 6. doi:10.1038/ncomms9896
  97. Samarasekera, N., Al-Shahi Salman, R., Huitinga, I., Klioueva, N., McLean, C. A., Kretzschmar, H., . . . Ironside, J. W. (2013). Brain banking for neurological disorders. Lancet Neurology, 12(11), 1096-1105. doi:10.1016/s1474-4422(13)70202-3
  98. Samarasekera, N., Salman, R. A.-S., Huitinga, I., Klioueva, N., McLean, C. A., Kretzschmar, H., . . . Ironside, J. W. (2013). Brain banking for neurological disorders. Lancet Neurology, 12(11), 1096-1105. doi:10.1016/s1474-4422(13)70202-3
  99. Sanchez-Varo, R., Mejias-Ortega, M., Fernandez-Valenzuela, J. J., Nuñez-Diaz, C., Caceres-Palomo, L., Vegas-Gomez, L., . . . Gutierrez, A. (2022). Transgenic Mouse Models of Alzheimer's Disease: An Integrative Analysis. international journal of molecular sciences, 23(10). doi:10.3390/ijms23105404
  100. Sanchez, G., Varaschin, R. K., Büeler, H., Marcogliese, P. C., Park, D. S., & Trudeau, L. E. (2014). Unaltered striatal dopamine release levels in young Parkin knockout, Pink1 knockout, DJ-1 knockout and LRRK2 R1441G transgenic mice. PLoS One, 9(4), e94826. doi:10.1371/journal.pone.0094826
  101. Sasaguri, H., Nilsson, P., Hashimoto, S., Nagata, K., Saito, T., De Strooper, B., . . . Saido, T. C. (2017). APP mouse models for Alzheimer's disease preclinical studies. Embo Journal, 36(17), 2473-2487. doi:10.15252/embj.201797397
  102. Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G. W., Cook, E. G., . . . Jaenisch, R. (2009). Parkinson's Disease Patient-Derived Induced Pluripotent Stem Cells Free of Viral Reprogramming Factors. Cell, 136(5), 964-977. doi:10.1016/j.cell.2009.02.013
  103. St George-Hyslop, P. H., Tanzi, R. E., Polinsky, R. J., Haines, J. L., Nee, L., Watkins, P. C., . . . et al. (1987). The genetic defect causing familial Alzheimer's disease maps on chromosome 21. Science, 235(4791), 885-890. doi:10.1126/science.2880399
  104. Stachowiak, E. K., Benson, C. A., Narla, S. T., Dimitri, A., Chuye, L. E. B., Dhiman, S., . . . Stachowiak, M. K. (2017). Cerebral organoids reveal early cortical maldevelopment in schizophrenia-computational anatomy and genomics, role of FGFR1. Translational Psychiatry, 7. doi:10.1038/s41398-017-0054-x
  105. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861-872. doi:10.1016/j.cell.2007.11.019
  106. Toker, L., Mancarci, B. O., Tripathy, S., & Pavlidis, P. (2018). Transcriptomic Evidence for Alterations in Astrocytes and Parvalbumin Interneurons in Subjects With Bipolar Disorder and Schizophrenia. Bbiological Psychiatry, 84(11), 787-796. doi:10.1016/j.biopsych.2018.07.010
  107. Valente, E. M., Abou-Sleiman, P. M., Caputo, V., Muqit, M. M. K., Harvey, K., Gispert, S., . . . Wood, N. W. (2004). Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science, 304(5674), 1158-1160. doi:10.1126/science.1096284
  108. Vallortigara, J., Rangarajan, S., Whitfield, D., Alghamdi, A., Howlett, D., Hortobágyi, T., . . . Francis, P. (2014). Dynamin1 concentration in the prefrontal cortex is associated with cognitive impairment in Lewy body dementia. F1000Research, 3, 108. doi:10.12688/f1000research.3786.1
  109. Vallortigara, J., Whitfield, D., Quelch, W., Alghamdi, A., Howlett, D., Hortobágyi, T., . . . Francis, P. T. (2016). Decreased Levels of VAMP2 and Monomeric Alpha-Synuclein Correlate with Duration of Dementia. Journal of Alzheimers Disease, 50(1), 101-110. doi:10.3233/jad-150707
  110. Vialle, R. A., de Paiva Lopes, K., Bennett, D. A., Crary, J. F., & Raj, T. (2022). Integrating whole-genome sequencing with multi-omic data reveals the impact of structural variants on gene regulation in the human brain. Nature Neuroscience, 25(4), 504-514. doi:10.1038/s41593-022-01031-7
  111. Wang, L., Xia, Y., Chen, Y., Dai, R., Qiu, W., Meng, Q., . . . Chen, C. (2019). Brain Banks Spur New Frontiers in Neuropsychiatric Research and Strategies for Analysis and Validation. Genomics Proteomics & Bioinformatics, 17(4), 402-414. doi:10.1016/j.gpb.2019.02.002
  112. Wang, Q., Zhang, Y., Wang, M., Song, W. M., Shen, Q., McKenzie, A., . . . Zhang, B. (2019). The landscape of multiscale transcriptomic networks and key regulators in Parkinson's disease. Nature Communications, 10(1), 5234. doi:10.1038/s41467-019-13144-y
  113. Webster, S. J., Bachstetter, A. D., Nelson, P. T., Schmitt, F. A., & Van Eldik, L. J. (2014). Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Frontiers in Genetics, 5, 88. doi:10.3389/fgene.2014.00088
  114. Whitfield, D. R., Vallortigara, J., Alghamdi, A., Howlett, D., Hortobágyi, T., Johnson, M., . . . Francis, P. T. (2014). Assessment of ZnT3 and PSD95 protein levels in Lewy body dementias and Alzheimer's disease: association with cognitive impairment. Neurobiology of Aging, 35(12), 2836-2844. doi:10.1016/j.neurobiolaging.2014.06.015
  115. Xiong, F., Ge, W., & Ma, C. (2019). Quantitative proteomics reveals distinct composition of amyloid plaques in Alzheimer's disease. Alzheimers & Dementia, 15(3), 429-440. doi:10.1016/j.jalz.2018.10.006
  116. Zareparsi, S., Kay, J., Camicioli, R., Kramer, P., Nutt, J., Bird, T., . . . Payami, H. (1998). Analysis of the alpha-synuclein G209A mutation in familial Parkinson's disease. Lancet, 351(9095), 37-38. doi:10.1016/s0140-6736(05)78089-2
  117. Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., . . . Suedhof, T. C. (2013). Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells. Neuron, 78(5), 785-798. doi:10.1016/j.neuron.2013.05.029
  118. Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., . . . Gasser, T. (2004). Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology. Neuron, 44(4), 601-607. doi:10.1016/j.neuron.2004.11.005
  119. Zou, F., Chai, H. S., Younkin, C. S., Allen, M., Crook, J., Pankratz, V. S., . . . Ertekin-Taner, N. (2012). Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants. PLoS Genetics, 8(6), e1002707. doi:10.1371/journal.pgen.1002707

How to Cite

Liu, Fan, et al. “Human Brain Banking As a Convergence Platform of Neuroscience and Neuropsychiatric Research”. Human Brain, vol. 1, no. 1, Oct. 2022, pp. 46-62, doi:10.37819/hb.001.001.0204.

HTML
311

Total
163

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2022 Fan Liu, Xiang-Sha Yin, Cong Cong, Yuanzhuo Wang, Chao Ma

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.