Advance of immune checkpoint inhibitors in CNS disease
Abstract
Immune checkpoint inhibitors, innovative immunotherapies that include programmed cell death 1, programmed cell death ligand 1, and cytotoxic T lymphocyte antigen 4 inhibitors, have achieved unprecedented benefits in a variety of malignancies. Activation of immune response in body organs may cause immune-related adverse reactions involving the central nervous system. There is growing evidence that immune checkpoint plays an important role in the central nervous system. Immune checkpoints play key roles in regulating the immune response of the central nervous system in a variety of situations, and immune checkpoint modulators are promising therapeutic agents for the treatment of central nervous system disorders such as brain tumors, Alzheimer's disease, ischemic stroke, multiple sclerosis and cognitive function. Further understanding of immune checkpoints signaling of cell types such as glial cells, neurons, and peripheral immune cells in the central nervous system will provide clues to immune regulation and barrier-breaking strategies for treating brain diseases. This article will discuss the application of common immune checkpoints in the treatment of central nervous system diseases, especially programmed cell death protein-1 and cytotoxic T lymphocyte-associated protein 4.
References
- Angelopoulou, E., Paudel, Y. N., Villa, C., Shaikh, M. F., & Piperi, C. (2020). Lymphocyte-Activation Gene 3 (LAG3) Protein as a Possible Therapeutic Target for Parkinson's Disease: Molecular Mechanisms Connecting Neuroinflammation to α-Synuclein Spreading Pathology. Biology, 9(4). doi:10.3390/biology9040086
- Baruch, K., Deczkowska, A., Rosenzweig, N., Tsitsou-Kampeli, A., Sharif, A. M., Matcovitch-Natan, O., . . . Schwartz, M. (2016). PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer's disease. Nature Medicine, 22(2), 135-137. doi:10.1038/nm.4022
- Bodhankar, S., Chen, Y., Lapato, A., Dotson, A. L., Wang, J., Vandenbark, A. A., . . . Offner, H. (2015). PD-L1 Monoclonal Antibody Treats Ischemic Stroke by Controlling Central Nervous System Inflammation. Stroke, 46(10), 2926-2934. doi:10.1161/STROKEAHA.115.010592
- Bodhankar, S., Chen, Y., Vandenbark, A. A., Murphy, S. J., & Offner, H. (2013a). IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke. Metabolic Brain Disease, 28(3), 375-386. doi:10.1007/s11011-013-9413-3
- Bodhankar, S., Chen, Y., Vandenbark, A. A., Murphy, S. J., & Offner, H. (2013b). PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1. Journal of Neuroinflammation, 10, 111. doi:10.1186/1742-2094-10-111
- Borggrewe, M., Grit, C., Den Dunnen, W. F. A., Burm, S. M., Bajramovic, J. J., Noelle, R. J., . . . Laman, J. D. (2018). VISTA expression by microglia decreases during inflammation and is differentially regulated in CNS diseases. Glia, 66(12), 2645-2658. doi:10.1002/glia.23517
- Bradshaw, E. M., Chibnik, L. B., Keenan, B. T., Ottoboni, L., Raj, T., Tang, A., . . . De Jager, P. L. (2013). CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology. Nature Neuroscience, 16(7), 848-850. doi:10.1038/nn.3435
- Brunner, M. C., Chambers, C. A., Chan, F. K., Hanke, J., Winoto, A., & Allison, J. P. (1999). CTLA-4-Mediated inhibition of early events of T cell proliferation. Journal of Immunology (Baltimore, Md. : 1950), 162(10), 5813-5820. Retrieved from https://pubmed.ncbi.nlm.nih.gov/10229815
- Butte, M. J., Keir, M. E., Phamduy, T. B., Sharpe, A. H., & Freeman, G. J. (2007). Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity, 27(1), 111-122. Retrieved from https://pubmed.ncbi.nlm.nih.gov/17629517
- Chen, S., Wu, H., Klebe, D., Hong, Y., Zhang, J., & Tang, J. (2013). Regulatory T cell in stroke: a new paradigm for immune regulation. Clinical & Developmental Immunology, 2013, 689827. doi:10.1155/2013/689827
- Chen, Z.-Q., Yu, H., Li, H.-Y., Shen, H.-T., Li, X., Zhang, J.-Y., . . . Chen, G. (2019). Negative regulation of glial Tim-3 inhibits the secretion of inflammatory factors and modulates microglia to antiinflammatory phenotype after experimental intracerebral hemorrhage in rats. CNS Neuroscience & Therapeutics, 25(6), 674-684. doi:10.1111/cns.13100
- Cuzzubbo, S., Javeri, F., Tissier, M., Roumi, A., Barlog, C., Doridam, J., . . . Carpentier, A. F. (2017). Neurological adverse events associated with immune checkpoint inhibitors: Review of the literature. European Journal of Cancer (Oxford, England : 1990), 73, 1-8. doi:10.1016/j.ejca.2016.12.001
- Dumas, A. A., Pomella, N., Rosser, G., Guglielmi, L., Vinel, C., Millner, T. O., . . . Marino, S. (2020). Microglia promote glioblastoma via mTOR-mediated immunosuppression of the tumour microenvironment. The EMBO Journal, 39(15), e103790. doi:10.15252/embj.2019103790
- Durham, N. M., Nirschl, C. J., Jackson, C. M., Elias, J., Kochel, C. M., Anders, R. A., & Drake, C. G. (2014). Lymphocyte Activation Gene 3 (LAG-3) modulates the ability of CD4 T-cells to be suppressed in vivo. PloS One, 9(11), e109080. doi:10.1371/journal.pone.0109080
- Efthymiou, A. G., & Goate, A. M. (2017). Late onset Alzheimer's disease genetics implicates microglial pathways in disease risk. Molecular Neurodegeneration, 12(1), 43. doi:10.1186/s13024-017-0184-x
- Eppihimer, M. J., Gunn, J., Freeman, G. J., Greenfield, E. A., Chernova, T., Erickson, J., & Leonard, J. P. (2002). Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation (New York, N.Y. : 1994), 9(2), 133-145. Retrieved from https://pubmed.ncbi.nlm.nih.gov/11932780
- Galstyan, A., Markman, J. L., Shatalova, E. S., Chiechi, A., Korman, A. J., Patil, R., . . . Ljubimova, J. Y. (2019). Blood-brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nature Communications, 10(1), 3850. doi:10.1038/s41467-019-11719-3
- Ghorbaninezhad, F., Masoumi, J., Bakhshivand, M., Baghbanzadeh, A., Mokhtarzadeh, A., Kazemi, T., . . . Silvestris, N. (2022). CTLA-4 silencing in dendritic cells loaded with colorectal cancer cell lysate improves autologous T cell responses in vitro. Frontiers In Immunology, 13, 931316. doi:10.3389/fimmu.2022.931316
- Gong, D., Shi, W., Yi, S.-j., Chen, H., Groffen, J., & Heisterkamp, N. (2012). TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunology, 13, 31. doi:10.1186/1471-2172-13-31
- Griciuc, A., Patel, S., Federico, A. N., Choi, S. H., Innes, B. J., Oram, M. K., . . . Tanzi, R. E. (2019). TREM2 Acts Downstream of CD33 in Modulating Microglial Pathology in Alzheimer's Disease. Neuron, 103(5). doi:10.1016/j.neuron.2019.06.010
- Han, G., Chen, G., Shen, B., & Li, Y. (2013). Tim-3: an activation marker and activation limiter of innate immune cells. Frontiers In Immunology, 4, 449. doi:10.3389/fimmu.2013.00449
- Han, R., Luo, J., Shi, Y., Yao, Y., & Hao, J. (2017). PD-L1 (Programmed Death Ligand 1) Protects Against Experimental Intracerebral Hemorrhage-Induced Brain Injury. Stroke, 48(8), 2255-2262. doi:10.1161/STROKEAHA.117.016705
- Harada, H., Suzu, S., Hayashi, Y., & Okada, S. (2005). BT-IgSF, a novel immunoglobulin superfamily protein, functions as a cell adhesion molecule. Journal of Cellular Physiology, 204(3), 919-926. Retrieved from https://pubmed.ncbi.nlm.nih.gov/15795899
- Haugh, A. M., Probasco, J. C., & Johnson, D. B. (2020). Neurologic complications of immune checkpoint inhibitors. Expert Opinion On Drug Safety, 19(4), 479-488. doi:10.1080/14740338.2020.1738382
- Huang, J., Liu, F., Liu, Z., Tang, H., Wu, H., Gong, Q., & Chen, J. (2017). Immune Checkpoint in Glioblastoma: Promising and Challenging. Frontiers In Pharmacology, 8, 242. doi:10.3389/fphar.2017.00242
- Huang, X., Zhang, X., Li, E., Zhang, G., Wang, X., Tang, T., . . . Liang, T. (2020). VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy. Journal of Hematology & Oncology, 13(1), 83. doi:10.1186/s13045-020-00917-y
- Jansen, T., Tyler, B., Mankowski, J. L., Recinos, V. R., Pradilla, G., Legnani, F., . . . Olivi, A. (2010). FasL gene knock-down therapy enhances the antiglioma immune response. Neuro-oncology, 12(5), 482-489. doi:10.1093/neuonc/nop052
- Johnson, D. B., Manouchehri, A., Haugh, A. M., Quach, H. T., Balko, J. M., Lebrun-Vignes, B., . . . Salem, J.-E. (2019). Neurologic toxicity associated with immune checkpoint inhibitors: a pharmacovigilance study. Journal For Immunotherapy of Cancer, 7(1), 134. doi:10.1186/s40425-019-0617-x
- Kao, J. C., Brickshawana, A., & Liewluck, T. (2018). Neuromuscular Complications of Programmed Cell Death-1 (PD-1) Inhibitors. Current Neurology and Neuroscience Reports, 18(10), 63. doi:10.1007/s11910-018-0878-7
- Kerdiles, Y. M., Stone, E. L., Beisner, D. R., McGargill, M. A., Ch'en, I. L., Stockmann, C., . . . Hedrick, S. M. (2010). Foxo transcription factors control regulatory T cell development and function. Immunity, 33(6), 890-904. doi:10.1016/j.immuni.2010.12.002
- Khan, E., Shrestha, A. K., Elkhooly, M., Wilson, H., Ebbert, M., Srivastava, S., . . . Sriwastava, S. (2022). CNS and PNS manifestation in immune checkpoint inhibitors: A systematic review. Journal of the Neurological Sciences, 432, 120089. doi:10.1016/j.jns.2021.120089
- Khan, S., & Gerber, D. E. (2020). Autoimmunity, checkpoint inhibitor therapy and immune-related adverse events: A review. Seminars In Cancer Biology, 64. doi:10.1016/j.semcancer.2019.06.012
- Kim, J. E., Patel, K., & Jackson, C. M. (2021). The potential for immune checkpoint modulators in cerebrovascular injury and inflammation. Expert Opinion On Therapeutic Targets, 25(2), 101-113. doi:10.1080/14728222.2021.1869213
- Kummer, M. P., Ising, C., Kummer, C., Sarlus, H., Griep, A., Vieira-Saecker, A., . . . Heneka, M. T. (2021). Microglial PD-1 stimulation by astrocytic PD-L1 suppresses neuroinflammation and Alzheimer's disease pathology. The EMBO Journal, 40(24), e108662. doi:10.15252/embj.2021108662
- Larkin, J., Chmielowski, B., Lao, C. D., Hodi, F. S., Sharfman, W., Weber, J., . . . Reardon, D. A. (2017). Neurologic Serious Adverse Events Associated with Nivolumab Plus Ipilimumab or Nivolumab Alone in Advanced Melanoma, Including a Case Series of Encephalitis. The Oncologist, 22(6), 709-718. doi:10.1634/theoncologist.2016-0487
- Latchman, Y., Wood, C. R., Chernova, T., Chaudhary, D., Borde, M., Chernova, I., . . . Freeman, G. J. (2001). PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nature Immunology, 2(3), 261-268. Retrieved from https://pubmed.ncbi.nlm.nih.gov/11224527
- Li, T., Li, J., Chen, Z., Zhang, S., Li, S., Wageh, S., . . . Zhang, H. (2022). Glioma diagnosis and therapy: Current challenges and nanomaterial-based solutions. Journal of Controlled Release : Official Journal of the Controlled Release Society, 352, 338-370. doi:10.1016/j.jconrel.2022.09.065
- Li, W., Wu, F., Zhao, S., Shi, P., Wang, S., & Cui, D. (2022). Correlation between PD-1/PD-L1 expression and polarization in tumor-associated macrophages: A key player in tumor immunotherapy. Cytokine & Growth Factor Reviews, 67, 49-57. doi:10.1016/j.cytogfr.2022.07.004
- Linsley, P. S., Greene, J. L., Brady, W., Bajorath, J., Ledbetter, J. A., & Peach, R. (1994). Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity, 1(9), 793-801. Retrieved from https://pubmed.ncbi.nlm.nih.gov/7534620
- Liu, Y., & Zheng, P. (2020). Preserving the CTLA-4 Checkpoint for Safer and More Effective Cancer Immunotherapy. Trends In Pharmacological Sciences, 41(1). doi:10.1016/j.tips.2019.11.003
- Morisaki, Y., Ohshima, M., Suzuki, H., & Misawa, H. (2023). LAG-3 expression in microglia regulated by IFN-γ/STAT1 pathway and metalloproteases. Frontiers In Cellular Neuroscience, 17, 1308972. doi:10.3389/fncel.2023.1308972
- Ortler, S., Leder, C., Mittelbronn, M., Zozulya, A. L., Knolle, P. A., Chen, L., . . . Wiendl, H. (2008). B7-H1 restricts neuroantigen-specific T cell responses and confines inflammatory CNS damage: implications for the lesion pathogenesis of multiple sclerosis. European Journal of Immunology, 38(6), 1734-1744. doi:10.1002/eji.200738071
- Ostrom, Q. T., Bauchet, L., Davis, F. G., Deltour, I., Fisher, J. L., Langer, C. E., . . . Barnholtz-Sloan, J. S. (2014). The epidemiology of glioma in adults: a "state of the science" review. Neuro-oncology, 16(7), 896-913. Retrieved from https://pubmed.ncbi.nlm.nih.gov/24842956
- Qin, C., Zhou, L.-Q., Ma, X.-T., Hu, Z.-W., Yang, S., Chen, M., . . . Tian, D.-S. (2019). Dual Functions of Microglia in Ischemic Stroke. Neuroscience Bulletin, 35(5), 921-933. doi:10.1007/s12264-019-00388-3
- Ren, X., Akiyoshi, K., Dziennis, S., Vandenbark, A. A., Herson, P. S., Hurn, P. D., & Offner, H. (2011). Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience, 31(23), 8556-8563. doi:10.1523/JNEUROSCI.1623-11.2011
- Ren, X., Akiyoshi, K., Vandenbark, A. A., Hurn, P. D., & Offner, H. (2011). Programmed death-1 pathway limits central nervous system inflammation and neurologic deficits in murine experimental stroke. Stroke, 42(9), 2578-2583. doi:10.1161/STROKEAHA.111.613182
- Roesch, S., Rapp, C., Dettling, S., & Herold-Mende, C. (2018). When Immune Cells Turn Bad-Tumor-Associated Microglia/Macrophages in Glioma. International Journal of Molecular Sciences, 19(2). doi:10.3390/ijms19020436
- Rosenzweig, N., Dvir-Szternfeld, R., Tsitsou-Kampeli, A., Keren-Shaul, H., Ben-Yehuda, H., Weill-Raynal, P., . . . Schwartz, M. (2019). PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nature Communications, 10(1), 465. doi:10.1038/s41467-019-08352-5
- Schildberg, Frank A., Klein, Sarah R., Freeman, Gordon J., & Sharpe, Arlene H. (2016). Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family. Immunity, 44(5), 955-972. doi:10.1016/j.immuni.2016.05.002
- Shi, A.-P., Tang, X.-Y., Xiong, Y.-L., Zheng, K.-F., Liu, Y.-J., Shi, X.-G., . . . Zhao, J.-B. (2021). Immune Checkpoint LAG3 and Its Ligand FGL1 in Cancer. Frontiers In Immunology, 12, 785091. doi:10.3389/fimmu.2021.785091
- Spain, L., Walls, G., Julve, M., O'Meara, K., Schmid, T., Kalaitzaki, E., . . . Larkin, J. (2017). Neurotoxicity from immune-checkpoint inhibition in the treatment of melanoma: a single centre experience and review of the literature. Annals of Oncology : Official Journal of the European Society For Medical Oncology, 28(2), 377-385. doi:10.1093/annonc/mdw558
- Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., . . . Sakaguchi, S. (2000). Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. The Journal of Experimental Medicine, 192(2), 303-310. Retrieved from https://pubmed.ncbi.nlm.nih.gov/10899917
- Tobias, J., Steinberger, P., Drinić, M., & Wiedermann, U. (2021). Emerging targets for anticancer vaccination: PD-1. ESMO Open, 6(5), 100278. doi:10.1016/j.esmoop.2021.100278
- Tomaszewski, W., Sanchez-Perez, L., Gajewski, T. F., & Sampson, J. H. (2019). Brain Tumor Microenvironment and Host State: Implications for Immunotherapy. Clinical Cancer Research : an Official Journal of the American Association For Cancer Research, 25(14), 4202-4210. doi:10.1158/1078-0432.CCR-18-1627
- Valencia-Sanchez, C., Sechi, E., Dubey, D., Flanagan, E. P., McKeon, A., Pittock, S. J., & Zekeridou, A. (2023). Immune checkpoint inhibitor-associated central nervous system autoimmunity. European Journal of Neurology, 30(8), 2418-2429. doi:10.1111/ene.15835
- van Bussel, M. T. J., Beijnen, J. H., & Brandsma, D. (2019). Intracranial antitumor responses of nivolumab and ipilimumab: a pharmacodynamic and pharmacokinetic perspective, a scoping systematic review. BMC Cancer, 19(1), 519. doi:10.1186/s12885-019-5741-y
- van der Merwe, P. A., Bodian, D. L., Daenke, S., Linsley, P., & Davis, S. J. (1997). CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. The Journal of Experimental Medicine, 185(3), 393-403. Retrieved from https://pubmed.ncbi.nlm.nih.gov/9053440
- Vitkovic, L., Maeda, S., & Sternberg, E. (2001). Anti-inflammatory cytokines: expression and action in the brain. Neuroimmunomodulation, 9(6), 295-312. Retrieved from https://pubmed.ncbi.nlm.nih.gov/12045357
- Vogelgesang, A., May, V. E. L., Grunwald, U., Bakkeboe, M., Langner, S., Wallaschofski, H., . . . Dressel, A. (2010). Functional status of peripheral blood T-cells in ischemic stroke patients. PloS One, 5(1), e8718. doi:10.1371/journal.pone.0008718
- Wang, J., Wu, G., Manick, B., Hernandez, V., Renelt, M., Erickson, C., . . . Kalabokis, V. (2019). VSIG-3 as a ligand of VISTA inhibits human T-cell function. Immunology, 156(1), 74-85. doi:10.1111/imm.13001
- Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., . . . Sakaguchi, S. (2008). CTLA-4 control over Foxp3+ regulatory T cell function. Science (New York, N.Y.), 322(5899), 271-275. doi:10.1126/science.1160062
- Wintterle, S., Schreiner, B., Mitsdoerffer, M., Schneider, D., Chen, L., Meyermann, R., . . . Wiendl, H. (2003). Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Research, 63(21), 7462-7467. Retrieved from https://pubmed.ncbi.nlm.nih.gov/14612546
- Ye, Z., Ai, X., Yang, K., Yang, Z., Fei, F., Liao, X., . . . Zhou, S. (2023). Targeting Microglial Metabolic Rewiring Synergizes with Immune-Checkpoint Blockade Therapy for Glioblastoma. Cancer Discovery, 13(4). doi:10.1158/2159-8290.CD-22-0455
- Yeo, A. T., & Charest, A. (2017). Immune Checkpoint Blockade Biology in Mouse Models of Glioblastoma. Journal of Cellular Biochemistry, 118(9), 2516-2527. doi:10.1002/jcb.25948
- Yshii, L. M., Hohlfeld, R., & Liblau, R. S. (2017). Inflammatory CNS disease caused by immune checkpoint inhibitors: status and perspectives. Nature Reviews. Neurology, 13(12), 755-763. doi:10.1038/nrneurol.2017.144
- Zhao, J., Bang, S., Furutani, K., McGinnis, A., Jiang, C., Roberts, A., . . . Ji, R.-R. (2023). PD-L1/PD-1 checkpoint pathway regulates hippocampal neuronal excitability and learning and memory behavior. Neuron, 111(17). doi:10.1016/j.neuron.2023.05.022
- Zhao, J., Roberts, A., Wang, Z., Savage, J., & Ji, R.-R. (2021). Emerging Role of PD-1 in the Central Nervous System and Brain Diseases. Neuroscience Bulletin, 37(8), 1188-1202. doi:10.1007/s12264-021-00683-y
- Zhao, L., Cheng, S., Fan, L., Zhang, B., & Xu, S. (2021). TIM-3: An update on immunotherapy. International Immunopharmacology, 99, 107933. doi:10.1016/j.intimp.2021.107933
How to Cite
How to Cite
Downloads
Article Details
Most Read This Month
License
Copyright (c) 2023 Jianru Sun, Xiangqi Shao, Xue Wang, Fan Liu
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.