Skip to main content Skip to main navigation menu Skip to site footer

Regional- and cell type-specific changes of the human brain during aging

  • Yanxi Chen
  • Gaoyu Zu
  • Bill Ling Feng Zhang
  • Zhixin Bai
  • Qiong Liu
  • Wensheng Li
  • Linya You

Abstract

As individuals age, cognitive decline becomes more prominent, concomitant with an elevated susceptibility to neurodegenerative diseases and dementia. Additionally, symptoms of chronic neuropsychiatric diseases tend to worsen with age. It is crucial to highlight that the aging process does not affect individuals uniformly, and its effects can vary, even within the same person. This review aims to summary the impact of healthy aging on the human brain, focusing on the variations from different brain regions and cell types. Depending on specific brain regions, the brain exhibits thinning, volume reduction, regional shrinkage, disrupted tissue integrity, decreased cell complexity, or iron accumulation during aging. Moreover, the brain cells exhibit morphology and function changes during aging. Neurons undergo changes characterized by reduced dendrites, dendritic spines, and axons with less compact myelin sheaths, leading to a significant loss of synapses. Comparatively, glia often transform into a reactive phenotype.

Section

References

  1. Cai, Y. et al. Decoding aging-dependent regenerative decline across tissues at single-cell resolution. Cell Stem Cell 30, 1674-1691.e8 (2023).
  2. Cirillo, J. Physical activity, motor performance and skill learning: a focus on primary motor cortex in healthy aging. Experimental Brain Research vol. 239 Preprint at https://doi.org/10.1007/s00221-021-06218-1 (2021).
  3. Moulton, R. H., Rudie, K., Dukelow, S. P. & Scott, S. H. Quantitatively assessing aging effects in rapid motor behaviours: a cross-sectional study. J Neuroeng Rehabil 19, (2022).
  4. Van Swearingen, J. M. & Studenski, S. A. Aging, motor skill, and the energy cost of walking: Implications for the prevention and treatment of mobility decline in older persons. Journals of Gerontology - Series A Biological Sciences and Medical Sciences 69, (2014).
  5. Li, K. Z. H. & Lindenberger, U. Relations between aging sensory/sensorimotor and cognitive functions. Neurosci Biobehav Rev 26, (2002).
  6. Stephen R Lord, Kim Delbaere & Daina L Sturnieks. Aging. Handb Clin Neurol 159, 157–171 (2018).
  7. Saftari, L. N. & Kwon, O. S. Ageing vision and falls: A review. Journal of Physiological Anthropology vol. 37 Preprint at https://doi.org/10.1186/s40101-018-0170-1 (2018).
  8. Lighthall, N. R. Neural mechanisms of decision-making in aging. Wiley Interdisciplinary Reviews: Cognitive Science vol. 11 Preprint at https://doi.org/10.1002/wcs.1519 (2020).
  9. Löckenhoff, C. E. Aging and Decision-Making: A Conceptual Framework for Future Research - A Mini-Review. Gerontology vol. 64 Preprint at https://doi.org/10.1159/000485247 (2018).
  10. Frank, C. C. & Seaman, K. L. Aging, uncertainty, and decision making—A review. Cogn Affect Behav Neurosci 23, (2023).
  11. Marschner, A. et al. Reward-based decision-making and aging. in Brain Research Bulletin vol. 67 (2005).
  12. Pace-Schott, E. F. & Spencer, R. M. C. Sleep-dependent memory consolidation in healthy aging and mild cognitive impairment. Curr Top Behav Neurosci 25, (2015).
  13. Disterhoft, J. F. & Oh, M. M. Learning, aging and intrinsic neuronal plasticity. Trends in Neurosciences vol. 29 Preprint at https://doi.org/10.1016/j.tins.2006.08.005 (2006).
  14. Dutriaux, L., Nicolas, S. & Gyselinck, V. Aging and posture in the memory of manipulable objects. Aging, Neuropsychology, and Cognition 28, (2021).
  15. Nyberg, L. & Pudas, S. Successful Memory Aging. Annual Review of Psychology vol. 70 Preprint at https://doi.org/10.1146/annurev-psych-010418-103052 (2019).
  16. Ren, J., Wu, Y. D., Chan, J. S. Y. & Yan, J. H. Cognitive aging affects motor performance and learning. Geriatrics and Gerontology International vol. 13 Preprint at https://doi.org/10.1111/j.1447-0594.2012.00914.x (2013).
  17. Rieckmann, A. & Bäckman, L. Implicit learning in aging: Extant patterns and new directions. Neuropsychology Review vol. 19 Preprint at https://doi.org/10.1007/s11065-009-9117-y (2009).
  18. Terman, A. & Brunk, U. T. Is aging the price for memory? Biogerontology 6, (2005).
  19. Fjell, A. M. & Walhovd, K. B. Structural brain changes in aging: Courses, causes and cognitive consequences. Reviews in the Neurosciences vol. 21 Preprint at https://doi.org/10.1515/REVNEURO.2010.21.3.187 (2010).
  20. Allen, J. S., Bruss, J., Brown, C. K. & Damasio, H. Normal neuroanatomical variation due to age: The major lobes and a parcellation of the temporal region. Neurobiol Aging 26, (2005).
  21. Hedman, A. M., van Haren, N. E. M., Schnack, H. G., Kahn, R. S. & Hulshoff Pol, H. E. Human brain changes across the life span: A review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp 33, (2012).
  22. Zanto, T. P. & Gazzaley, A. Chapter 20 - Aging of the frontal lobe. in The Frontal Lobes vol. 163 (2019).
  23. Dekaban, A. S. & Sadowsky, D. Changes in brain weights during the span of human life: Relation of brain weights to body heights and body weights. Ann Neurol 4, (1978).
  24. Jernigan, T. L. et al. Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 22, (2001).
  25. Bartzokis, G. et al. Age-related changes in frontal and temporal lobe volumes in men: A magnetic resonance imaging study. Arch Gen Psychiatry 58, (2001).
  26. Guttmann, C. R. G. et al. White matter changes with normal aging. Neurology 50, (1998).
  27. Giedd, J. N. Structural magnetic resonance imaging of the adolescent brain. in Annals of the New York Academy of Sciences vol. 1021 (2004).
  28. Courchesne, E. et al. Normal brain development and aging: Quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216, (2000).
  29. Walhovd, K. B. et al. Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol Aging 32, (2011).
  30. Salat, D. H. et al. Regional white matter volume differences in nondemented aging and Alzheimer’s disease. Neuroimage 44, (2009).
  31. Chayer, C. & Freedman, M. Frontal lobe functions. Current neurology and neuroscience reports vol. 1 Preprint at https://doi.org/10.1007/s11910-001-0060-4 (2001).
  32. Cheong, Y. et al. The effects of epigenetic age and its acceleration on surface area, cortical thickness, and volume in young adults. Cereb Cortex 32, (2022).
  33. Nissim, N. R. et al. Frontal structural neural correlates of working memory performance in older adults. Front Aging Neurosci 8, (2017).
  34. Peng, K., Steele, S. C., Becerra, L. & Borsook, D. Brodmann area 10: Collating, integrating and high level processing of nociception and pain. Progress in Neurobiology vol. 161 Preprint at https://doi.org/10.1016/j.pneurobio.2017.11.004 (2018).
  35. Tsujimoto, S., Genovesio, A. & Wise, S. P. Frontal pole cortex: Encoding ends at the end of the endbrain. Trends in Cognitive Sciences vol. 15 Preprint at https://doi.org/10.1016/j.tics.2011.02.001 (2011).
  36. Tisserand, D. J. & Jolles, J. On the involvement of prefrontal networks in cognitive ageing. Cortex 39, (2003).
  37. Hasher, L., Lustig, C. & Zacks, R. Inhibitory Mechanisms and the Control of Attention. in Variation in Working Memory (2012). doi:10.1093/acprof:oso/9780195168648.003.0009.
  38. Dempster, F. N. The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging. Developmental Review 12, (1992).
  39. Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S. & Cabeza, R. Qué PASA? the posterior-anterior shift in aging. Cerebral Cortex 18, (2008).
  40. Cabeza, R. Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychol Aging 17, (2002).
  41. Larry R Squire, C. E. L. S. R. E. C. The medial temporal lobe. Annu Rev Neurosci (2004) doi:10.1146/annurev.neuro.27.070203.144130.
  42. Oschwald, J. et al. Brain structure and cognitive ability in healthy aging: A review on longitudinal correlated change. Rev Neurosci 31, (2020).
  43. Cheong, Y. et al. The effects of epigenetic age and its acceleration on surface area, cortical thickness, and volume in young adults. Cereb Cortex 32, (2022).
  44. Woodworth, D. C., Scambray, K. A., Corrada, M. M., Kawas, C. H. & Sajjadi, S. A. Neuroimaging in the Oldest-Old: A Review of the Literature. Journal of Alzheimer’s Disease vol. 82 Preprint at https://doi.org/10.3233/jad-201578 (2021).
  45. Herlin, B., Navarro, V. & Dupont, S. The temporal pole: From anatomy to function—A literature appraisal. Journal of Chemical Neuroanatomy vol. 113 Preprint at https://doi.org/10.1016/j.jchemneu.2021.101925 (2021).
  46. Setton, R., Sheldon, S., Turner, G. R. & Spreng, R. N. Temporal pole volume is associated with episodic autobiographical memory in healthy older adults. Hippocampus 32, (2022).
  47. Sele, S., Liem, F., Mérillat, S. & Jäncke, L. Decline Variability of Cortical and Subcortical Regions in Aging: A Longitudinal Study. Front Hum Neurosci 14, (2020).
  48. Whitlock, J. R. Posterior parietal cortex. Current Biology vol. 27 Preprint at https://doi.org/10.1016/j.cub.2017.06.007 (2017).
  49. Proskovec, A. L. et al. Association of Epigenetic Metrics of Biological Age with Cortical Thickness. JAMA Netw Open 3, (2020).
  50. Salinas, J. et al. Sex differences in parietal lobe structure and development. Gend Med 9, (2011).
  51. Flores, L. P. Occipital lobe morphological anatomy: Anatomical and surgical aspects. Arq Neuropsiquiatr 60, (2002).
  52. Yin, S., Xiong, J., Zhu, X., Li, R. & Li, J. Cognitive training modified age-related brain changes in older adults with subjective memory decline. Aging Ment Health 26, (2022).
  53. Daneault, V. et al. Aging reduces the stimulating effect of blue light on cognitive brain functions. Sleep 37, (2014).
  54. Uddin, L. Q., Nomi, J. S., Hébert-Seropian, B., Ghaziri, J. & Boucher, O. Structure and Function of the Human Insula. Journal of Clinical Neurophysiology vol. 34 Preprint at https://doi.org/10.1097/WNP.0000000000000377 (2017).
  55. Dong, J. et al. Hurst exponent analysis of resting-state fMRI signal complexity across the adult lifespan. Front Neurosci 12, (2018).
  56. Catani, M. The anatomy of the human frontal lobe. in Handbook of Clinical Neurology vol. 163 (2019).
  57. Tremblay, C. et al. Effect of olfactory bulb pathology on olfactory function in normal aging. Brain Pathology vol. 32 Preprint at https://doi.org/10.1111/bpa.13075 (2022).
  58. Kondo, K., Kikuta, S., Ueha, R., Suzukawa, K. & Yamasoba, T. Age-Related Olfactory Dysfunction: Epidemiology, Pathophysiology, and Clinical Management. Frontiers in Aging Neuroscience vol. 12 Preprint at https://doi.org/10.3389/fnagi.2020.00208 (2020).
  59. Fitzek, M. et al. Integrated age-related immunohistological changes occur in human olfactory epithelium and olfactory bulb. Journal of Comparative Neurology 530, (2022).
  60. Kovács, T. Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Research Reviews vol. 3 Preprint at https://doi.org/10.1016/j.arr.2003.10.003 (2004).
  61. Walhovd, K. B. et al. Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol Aging 26, (2005).
  62. Fjell, A. M. et al. Minute effects of sex on the aging brain: A multisample magnetic resonance imaging study of healthy aging and Alzheimer’s disease. Journal of Neuroscience 29, (2009).
  63. West, M. J., Coleman, P. D., Flood, D. G. & Troncoso, J. C. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. The Lancet 344, (1994).
  64. Lister, J. P. & Barnes, C. A. Neurobiological changes in the hippocampus during normative aging. Archives of Neurology vol. 66 Preprint at https://doi.org/10.1001/archneurol.2009.125 (2009).
  65. Van Hoesen, G. W., Augustinack, J. C., Dierking, J., Redman, S. J. & Thangavel, R. The parahippocampal gyrus in Alzheimer’s disease. Clinical and preclinical neuroanatomical correlates. in Annals of the New York Academy of Sciences vol. 911 (2000).
  66. Moffat, S. D., Elkins, W. & Resnick, S. M. Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiol Aging 27, (2006).
  67. Antonova, E. et al. Age-related neural activity during allocentric spatial memory. Memory 17, (2009).
  68. Rolls, E. T. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Structure and Function vol. 224 Preprint at https://doi.org/10.1007/s00429-019-01945-2 (2019).
  69. Frangou, S. et al. Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years. Hum Brain Mapp 43, (2022).
  70. Pezzoli, S. et al. Successful cognitive aging is associated with thicker anterior cingulate cortex and lower tau deposition compared to typical aging. Alzheimer’s and Dementia (2023) doi:10.1002/alz.13438.
  71. Winkler, P. & Helmke, K. Age‐Related Incidence of Pineal Gland Calcification in Children: A Roentgenological Study of 1,044 Skull Films and a Review of the Literature. J Pineal Res 4, (1987).
  72. Reiter, R. J. Functional Pleiotropy of the Neurohormone Melatonin: Antioxidant Protection and Neuroendocrine Regulation. Front Neuroendocrinol 16, (1995).
  73. Wolfe, M. S., Lee, N. R. & Zatz, M. Properties of clock-controlled and constitutiveN-acetyltransferases from chick pineal cells. Brain Res 669, (1995).
  74. Reiter, R. J. et al. Melatonin as an antioxidant: under promises but over delivers. Journal of Pineal Research Preprint at https://doi.org/10.1111/jpi.12360 (2016).
  75. Luo, F. et al. Melatonin and autophagy in aging-related neurodegenerative diseases. International Journal of Molecular Sciences vol. 21 Preprint at https://doi.org/10.3390/ijms21197174 (2020).
  76. Yang, H., Fang, B., Wang, Z., Chen, Y. & Dong, Y. The Timing Sequence and Mechanism of Aging in Endocrine Organs. Cells vol. 12 Preprint at https://doi.org/10.3390/cells12070982 (2023).
  77. Douet, V. & Chang, L. Fornix as an imaging marker for episodic memory deficits in healthy aging and in various neurological disorders. Frontiers in Aging Neuroscience vol. 7 Preprint at https://doi.org/10.3389/fnagi.2014.00343 (2015).
  78. Copenhaver, B. R. et al. The fornix and mammillary bodies in older adults with Alzheimer’s disease, mild cognitive impairment, and cognitive complaints: A volumetric MRI study. Psychiatry Res Neuroimaging 147, (2006).
  79. Frederiksen, K. S. Corpus callosum in aging and dementia. Dan Med J 60, (2013).
  80. Baynes, K. Corpus Callosum. Encyclopedia of the Human Brain 51–64 (2002) doi:10.1016/B0-12-227210-2/00107-2.
  81. Pietrasik, W., Cribben, I., Olsen, F., Huang, Y. & Malykhin, N. V. Diffusion tensor imaging of the corpus callosum in healthy aging: Investigating higher order polynomial regression modelling. Neuroimage 213, (2020).
  82. Fama, R. & Sullivan, E. V. Thalamic structures and associated cognitive functions: Relations with age and aging. Neuroscience and Biobehavioral Reviews vol. 54 Preprint at https://doi.org/10.1016/j.neubiorev.2015.03.008 (2015).
  83. Soule, S. G., Macfarlane, P., Levitt, N. S. & Millar, R. P. Contribution of growth hormone-releasing hormone and somatostatin to decreased growth hormone secretion in elderly men. South African Medical Journal 91, (2001).
  84. Valdearcos, M., Xu, A. W. & Koliwad, S. K. Hypothalamic inflammation in the control of metabolic function. Annu Rev Physiol 77, (2015).
  85. Burbridge, S., Stewart, I. & Placzek, M. Development of the neuroendocrine hypothalamus. Compr Physiol 6, (2016).
  86. Chi, L., Li, X., Liu, Q. & Liu, Y. Photoperiod regulate gonad development via kisspeptin/kissr in hypothalamus and saccus vasculosus of Atlantic salmon (Salmo salar). PLoS One 12, (2017).
  87. Gilbreath, E. T. et al. Chronic estrogen affects TIDA neurons through IL-1β and NO: Effects of aging. Journal of Endocrinology 240, (2019).
  88. Goyal, M. S. et al. Persistent metabolic youth in the aging female brain. Proc Natl Acad Sci U S A 116, (2019).
  89. Dillingham, C. M., Frizzati, A., Nelson, A. J. D. & Vann, S. D. How do mammillary body inputs contribute to anterior thalamic function? Neuroscience and Biobehavioral Reviews vol. 54 Preprint at https://doi.org/10.1016/j.neubiorev.2014.07.025 (2015).
  90. Żakowski, W. & Zawistowski, P. Neurochemistry of the mammillary body. Brain Structure and Function vol. 228 Preprint at https://doi.org/10.1007/s00429-023-02673-4 (2023).
  91. Baloyannis, S. J., Mavroudis, I., Baloyannis, I. S. & Costa, V. G. Mammillary Bodies in Alzheimer’s Disease: A Golgi and Electron Microscope Study. Am J Alzheimers Dis Other Demen 31, (2016).
  92. Tsutsumi, S., Sugiyama, N., Ueno, H. & Ishii, H. Do the mammillary bodies atrophy with aging? A magnetic resonance imaging study. Surgical and Radiologic Anatomy 45, (2023).
  93. Aghamohammadi-Sereshki, A. et al. Amygdala subnuclei and healthy cognitive aging. Hum Brain Mapp 40, (2019).
  94. Malykhin, N. V., Bouchard, T. P., Camicioli, R. & Coupland, N. J. Aging hippocampus and amygdala. Neuroreport 19, (2008).
  95. Villablanca, J. R. Why do we have a caudate nucleus? Acta Neurobiologiae Experimentalis vol. 70 Preprint at (2010).
  96. Martin, J. P. The caudate nuclei and locomotion. Ann R Coll Surg Engl 38, (1966).
  97. Abedelahi, A., Hasanzadeh, H., Hadizadeh, H. & Joghataie, M. T. Morphometric and volumetric study of caudate and putamen nuclei in normal individuals by MRI: Effect of normal aging, gender and hemispheric differences. Pol J Radiol 78, (2013).
  98. Sodums, D. J. & Bohbot, V. D. Negative correlation between grey matter in the hippocampus and caudate nucleus in healthy aging. Hippocampus 30, (2020).
  99. Viñas-Guasch, N. & Wu, Y. J. The role of the putamen in language: a meta-analytic connectivity modeling study. Brain Struct Funct 222, (2017).
  100. Raz, N., Gunning-Dixon, F., Head, D., Williamson, A. & Acker, J. D. Age and sex differences in the cerebellum and the ventral pons: A prospective MR study of healthy adults. American Journal of Neuroradiology 22, (2001).
  101. Dusek, P., Hofer, T., Alexander, J., Roos, P. M. & Aaseth, J. O. Cerebral Iron Deposition in Neurodegeneration. Biomolecules vol. 12 Preprint at https://doi.org/10.3390/biom12050714 (2022).
  102. Javed, N. & Cascella, M. Neuroanatomy, Globus Pallidus. StatPearls (2020).
  103. Choi, E. Y. et al. Thalamic nuclei atrophy at high and heterogenous rates during cognitively unimpaired human aging. Neuroimage 262, (2022).
  104. Guatteo, E., Cucchiaroni, M. L. & Mercuri, N. B. Substantia nigra control of basal ganglia nuclei. Journal of Neural Transmission, Supplementa Preprint at https://doi.org/10.1007/978-3-211-92660-4_7 (2009).
  105. A R Luft et al. Patterns of age-related shrinkage in cerebellum and brainstem observed in vivo using three-dimensional MRI volumetry. Cerebral Cortex 9, (1999).
  106. Trist, B. G., Hare, D. J. & Double, K. L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell vol. 18 Preprint at https://doi.org/10.1111/acel.13031 (2019).
  107. Collier, T. J., Kanaan, N. M. & Kordower, J. H. Aging and Parkinson’s disease: Different sides of the same coin? Movement Disorders vol. 32 Preprint at https://doi.org/10.1002/mds.27037 (2017).
  108. Zhu, K. et al. Primary age-related tauopathy in human subcortical nuclei. Front Neurosci 13, (2019).
  109. Bastide, L. & Herbaut, A. G. Cerebellum and micturition: What do we know? A systematic review. Cerebellum and Ataxias vol. 7 Preprint at https://doi.org/10.1186/s40673-020-00119-9 (2020).
  110. Arleo, A. et al. Consensus Paper: Cerebellum and Ageing. Cerebellum Preprint at https://doi.org/10.1007/s12311-023-01577-7 (2023).
  111. Samuel, M. A., Zhang, Y., Meister, M. & Sanes, J. R. Age-related alterations in neurons of the mouse retina. Journal of Neuroscience 31, (2011).
  112. Costa, M., Piché, M., Lepore, F. & Guillemot, J. P. Age-related audiovisual interactions in the superior colliculus of the rat. Neuroscience 320, (2016).
  113. Liu, M. et al. Mini-review: The neural circuits of the non-lemniscal inferior colliculus. Neuroscience Letters vol. 776 Preprint at https://doi.org/10.1016/j.neulet.2022.136567 (2022).
  114. Du, E. Y. et al. Volumetric analysis of the aging auditory pathway using high resolution magnetic resonance histology. Front Aging Neurosci 14, (2022).
  115. Walton, J. P., Simon, H., Frisina, R. D. & Giraudet, P. Age-related alterations in the neural coding of envelope periodicities. J Neurophysiol 88, (2002).
  116. Mafi, A. M., Hofer, L. N., Russ, M. G., Young, J. W. & Mellott, J. G. The Density of Perineuronal Nets Increases With Age in the Inferior Colliculus in the Fischer Brown Norway Rat. Front Aging Neurosci 12, (2020).
  117. Benarroch, E. E. The locus ceruleus norepinephrine system: Functional organization and potential clinical significance. Neurology 73, (2009).
  118. Mouton, P. R., Pakkenberg, B., Gundersen, H. J. G. & Price, D. L. Absolute number and size of pigmented locus coeruleus neurons in young and aged individuals. J Chem Neuroanat 7, (1994).
  119. Beardmore, R., Hou, R., Darekar, A., Holmes, C. & Boche, D. The Locus Coeruleus in Aging and Alzheimer’s Disease: A Postmortem and Brain Imaging Review. Journal of Alzheimer’s Disease vol. 83 Preprint at https://doi.org/10.3233/JAD-210191 (2021).
  120. Gargano, A., Olabiyi, B. F., Palmisano, M., Zimmer, A. & Bilkei-Gorzo, A. Possible role of locus coeruleus neuronal loss in age-related memory and attention deficits. Front Neurosci 17, (2023).
  121. Yang, A., Xiao, X. H. & Wang, Z. L. Evaluation of normal changes in pons metabolites due to aging using turbo spectroscopic imaging. American Journal of Neuroradiology 35, (2014).
  122. Lambert, C. et al. Characterizing aging in the human brainstem using quantitative multimodal MRI analysis. Front Hum Neurosci (2013) doi:10.3389/fnhum.2013.00462.
  123. Lee, N. J., Park, I. S., Koh, I. S., Jung, T. W. & Rhyu, I. J. No volume difference of medulla oblongata between young and old Korean people. Brain Res 1276, (2009).
  124. Sullivan, E. V., Rosenbloom, M., Serventi, K. L. & Pfefferbaum, A. Effects of age and sex on volumes of the thalamus, pons, and cortex. Neurobiol Aging 25, (2004).
  125. Raz, N., Ghisletta, P., Rodrigue, K. M., Kennedy, K. M. & Lindenberger, U. Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. Neuroimage 51, (2010).
  126. Waldman, S. D. The Medulla Oblongata. Pain Review 208 (2009) doi:10.1016/B978-1-4160-5893-9.00120-9.
  127. Soltanpour, N. & Santer, R. M. Vagal nuclei in the medulla oblongata: Structure and activity are maintained in aged rats. J Auton Nerv Syst 67, (1997).
  128. Tayebi Meybodi, A., Tabani, H. & Benet, A. Arachnoid and dural reflections. in Handbook of Clinical Neurology vol. 169 (2020).
  129. Fam, M. D. et al. Skull Base Dural Thickness and Relationship to Demographic Features: A Postmortem Study and Literature Review. J Neurol Surg B Skull Base 79, (2018).
  130. Woldenberg, R. F. & Kohn, S. A. Leptomeninges; Arachnoid and Pia. Encyclopedia of the Neurological Sciences 868–871 (2014) doi:10.1016/B978-0-12-385157-4.01155-6.
  131. Suzuki, H. et al. Aging-associated inflammation and fibrosis in arachnoid membrane. BMC Neurol 21, (2021).
  132. Wijesinghe, P., Steinbusch, H. W. M., Shankar, S. K., Yasha, T. C. & De Silva, K. R. D. Circle of Willis abnormalities and their clinical importance in ageing brains: A cadaveric anatomical and pathological study. J Chem Neuroanat 106, (2020).
  133. Warboys, C. M., Amini, N., De Luca, A. & Evans, P. C. The role of blood flow in determining the sites of atherosclerotic plaques. F1000 Medicine Reports vol. 3 Preprint at https://doi.org/10.3410/M3-5 (2011).
  134. Azevedo, F. A. C. et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology 513, (2009).
  135. Pelvig, D. P., Pakkenberg, H., Stark, A. K. & Pakkenberg, B. Neocortical glial cell numbers in human brains. Neurobiol Aging 29, (2008).
  136. Ward, N. S. Compensatory mechanisms in the aging motor system. Ageing Research Reviews vol. 5 Preprint at https://doi.org/10.1016/j.arr.2006.04.003 (2006).
  137. Marner, L., Nyengaard, J. R., Tang, Y. & Pakkenberg, B. Marked loss of myelinated nerve fibers in the human brain with age. Journal of Comparative Neurology 462, (2003).
  138. Pannese, E. Morphological changes in nerve cells during normal aging. Brain Structure and Function vol. 216 Preprint at https://doi.org/10.1007/s00429-011-0308-y (2011).
  139. Darbin, O. The aging striatal dopamine function. Parkinsonism and Related Disorders vol. 18 Preprint at https://doi.org/10.1016/j.parkreldis.2011.11.025 (2012).
  140. Mora, F., Segovia, G. & del Arco, A. Glutamate-dopamine-GABA interactions in the aging basal ganglia. Brain Research Reviews vol. 58 Preprint at https://doi.org/10.1016/j.brainresrev.2007.10.006 (2008).
  141. Arnth-Jensen, N., Jabaudon, D. & Scanziani, M. Cooperation between independent hippocampal synapses is controlled by glutamate uptake. Nat Neurosci 5, (2002).
  142. Melcangi, R. C., Magnaghi, V., Cavarretta, I., Martini, L. & Piva, F. Age-induced decrease of glycoprotein Po and myelin basic protein gene expression in the rat sciatic nerve. Repair by steroid derivatives. Neuroscience 85, (1998).
  143. Mattson, M. P., Gleichmann, M. & Cheng, A. Mitochondria in Neuroplasticity and Neurological Disorders. Neuron vol. 60 Preprint at https://doi.org/10.1016/j.neuron.2008.10.010 (2008).
  144. Hou, Y. et al. Mitochondrial superoxide production negatively regulates neural progenitor proliferation and cerebral cortical development. Stem Cells 30, (2012).
  145. Cheng, Y. W., Liu, J. & Finkel, T. Mitohormesis. Cell Metab 35, 1872–1886 (2023).
  146. Raefsky, S. M. & Mattson, M. P. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radical Biology and Medicine vol. 102 Preprint at https://doi.org/10.1016/j.freeradbiomed.2016.11.045 (2017).
  147. Ghosh, D., LeVault, K. R., Barnett, A. J. & Brewer, G. J. A reversible early oxidized redox state that precedes macromolecular ROS damage in aging nontransgenic and 3xTg-AD mouse neurons. Journal of Neuroscience 32, (2012).
  148. Halliwell, B. Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs and Aging vol. 18 Preprint at https://doi.org/10.2165/00002512-200118090-00004 (2001).
  149. Nixon, R. A. The role of autophagy in neurodegenerative disease. Nature Medicine vol. 19 Preprint at https://doi.org/10.1038/nm.3232 (2013).
  150. Graham, S. H. & Liu, H. Life and death in the trash heap: The ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral Ischemia. Ageing Research Reviews vol. 34 Preprint at https://doi.org/10.1016/j.arr.2016.09.011 (2017).
  151. Kerr, J. S. et al. Mitophagy and Alzheimer’s Disease: Cellular and Molecular Mechanisms. Trends in Neurosciences vol. 40 Preprint at https://doi.org/10.1016/j.tins.2017.01.002 (2017).
  152. Zhang, S., Eitan, E. & Mattson, M. P. Early involvement of lysosome dysfunction in the degeneration of cerebral cortical neurons caused by the lipid peroxidation product 4-hydroxynonenal. J Neurochem 140, (2017).
  153. Sulzer, D. et al. Neuronal pigmented autophagic vacuoles: Lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. Journal of Neurochemistry vol. 106 Preprint at https://doi.org/10.1111/j.1471-4159.2008.05385.x (2008).
  154. Shimabukuro, M. K. et al. Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes. Sci Rep 6, (2016).
  155. Cohen, S. M., Li, B., Tsien, R. W. & Ma, H. Evolutionary and functional perspectives on signaling from neuronal surface to nucleus. Biochemical and Biophysical Research Communications vol. 460 Preprint at https://doi.org/10.1016/j.bbrc.2015.02.146 (2015).
  156. Boczek, T., Radzik, T., Ferenc, B. & Zylinska, L. The puzzling role of neuron-specific PMCA isoforms in the aging process. International Journal of Molecular Sciences vol. 20 Preprint at https://doi.org/10.3390/ijms20246338 (2019).
  157. Vaarmann, A. et al. Mitochondrial biogenesis is required for axonal growth. Development (Cambridge) 143, (2016).
  158. Mattson, M. P. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metabolism vol. 16 Preprint at https://doi.org/10.1016/j.cmet.2012.08.012 (2012).
  159. Thibault, O., Hadley, R. & Landfield, P. W. Elevated postsynaptic [CA2+]i and L-type calcium channel activity in aged hippocampal neurons: Relationship to impaired synaptic plasticity. Journal of Neuroscience 21, (2001).
  160. Toescu, E. C., Verkhratsky, A. & Landfield, P. W. Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci 27, 614–620 (2004).
  161. Gant, J. C., Sama, M. M., Landfield, P. W. & Thibault, O. Early and simultaneous emergence of multiple hippocampal biomarkers of aging is mediated by Ca2+-induced Ca2+ release. Journal of Neuroscience 26, (2006).
  162. Porte, Y., Buhot, M. C. & Mons, N. Alteration of CREB phosphorylation and spatial memory deficits in aged 129T2/Sv mice. Neurobiol Aging 29, (2008).
  163. Deyo, R. A., Straube, K. T. & Disterhoft, J. F. Nimodipine facilitates associative learning in aging rabbits. Science (1979) 243, (1989).
  164. Fukushima, H. et al. Upregulation of calcium/calmodulin-dependent protein kinase IV improves memory formation and rescues memory loss with aging. Journal of Neuroscience 28, (2008).
  165. Gant, J. C. et al. Reversal of aging-related neuronal Ca2+ dysregulation and cognitive impairment by delivery of a transgene encoding FK506-binding protein 12.6/1b to the hippocampus. Journal of Neuroscience 35, (2015).
  166. Mattson, M. P. Apoptosis in neurodegenerative disorders. Nature Reviews Molecular Cell Biology vol. 1 Preprint at https://doi.org/10.1038/35040009 (2000).
  167. Nixon, R. A. The calpains in aging and aging-related diseases. Ageing Research Reviews vol. 2 Preprint at https://doi.org/10.1016/S1568-1637(03)00029-1 (2003).
  168. Fatokun, A. A., Dawson, V. L. & Dawson, T. M. Parthanatos: Mitochondrial-linked mechanisms and therapeutic opportunities. British Journal of Pharmacology vol. 171 Preprint at https://doi.org/10.1111/bph.12416 (2014).
  169. Chow, H. M. & Herrup, K. Genomic integrity and the ageing brain. Nature Reviews Neuroscience vol. 16 Preprint at https://doi.org/10.1038/nrn4020 (2015).
  170. Yang, J. L., Tadokoro, T., Keijzers, G., Mattson, M. P. & Bohr, V. A. Neurons efficiently repair glutamate-induced oxidative DNA damage by a process involving CREB-mediated up-regulation of apurinic endonuclease 1. Journal of Biological Chemistry 285, (2010).
  171. Lazarov, O., Mattson, M. P., Peterson, D. A., Pimplikar, S. W. & van Praag, H. When neurogenesis encounters aging and disease. Trends in Neurosciences vol. 33 Preprint at https://doi.org/10.1016/j.tins.2010.09.003 (2010).
  172. Stoll, E. A. et al. Aging neural progenitor cells have decreased mitochondrial content and lower oxidative metabolism. Journal of Biological Chemistry 286, (2011).
  173. Beckervordersandforth, R. et al. Role of Mitochondrial Metabolism in the Control of Early Lineage Progression and Aging Phenotypes in Adult Hippocampal Neurogenesis. Neuron 93, (2017).
  174. Chen, Y. & Swanson, R. A. Astrocytes and brain injury. Journal of Cerebral Blood Flow and Metabolism vol. 23 Preprint at https://doi.org/10.1097/01.WCB.0000044631.80210.3C (2003).
  175. Cerbai, F. et al. The Neuron-Astrocyte-Microglia Triad in Normal Brain Ageing and in a Model of Neuroinflammation in the Rat Hippocampus. PLoS One 7, (2012).
  176. Jyothi, H. J. et al. Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta. Neurobiol Aging 36, (2015).
  177. Robillard, K. N., Lee, K. M., Chiu, K. B. & MacLean, A. G. Glial cell morphological and density changes through the lifespan of rhesus macaques. Brain Behav Immun 55, (2016).
  178. Bitto, A. et al. Stress-induced senescence in human and rodent astrocytes. Exp Cell Res 316, (2010).
  179. Evans, R. J., Wyllie, F. S., Wynford-Thomas, D., Kipling, D. & Jones, C. J. A P53-dependent, telomere-independent proliferative life span barrier in human astrocytes consistent with the molecular genetics of glioma development. Cancer Res 63, (2003).
  180. Zou, Y. et al. Responses of human embryonic stem cells and their differentiated progeny to ionizing radiation. Biochem Biophys Res Commun 426, (2012).
  181. Limbad, C. et al. Astrocyte senescence promotes glutamate toxicity in cortical neurons. PLoS One 15, (2020).
  182. Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. Journal of Neuroscience 32, (2012).
  183. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, (2017).
  184. Boisvert, M. M., Erikson, G. A., Shokhirev, M. N. & Allen, N. J. The Aging Astrocyte Transcriptome from Multiple Regions of the Mouse Brain. Cell Rep 22, (2018).
  185. Wake, H., Moorhouse, A. J., Miyamoto, A. & Nabekura, J. Microglia: Actively surveying and shaping neuronal circuit structure and function. Trends in Neurosciences vol. 36 Preprint at https://doi.org/10.1016/j.tins.2012.11.007 (2013).
  186. Prinz, M., Jung, S. & Priller, J. Microglia Biology: One Century of Evolving Concepts. Cell vol. 179 Preprint at https://doi.org/10.1016/j.cell.2019.08.053 (2019).
  187. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Neuroscience: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science (1979) 308, (2005).
  188. Streit, W. J., Mrak, R. E. & Griffin, W. S. T. Microglia and neuroinflammation: A pathological perspective. J Neuroinflammation 1, (2004).
  189. Davies, D. S., Ma, J., Jegathees, T. & Goldsbury, C. Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer’s disease. Brain Pathology 27, (2017).
  190. Sierra, A. et al. The “Big-Bang” for modern glial biology: Translation and comments on Pío del Río-Hortega 1919 series of papers on microglia. Glia 64, (2016).
  191. Dipatre, P. L. & Gelman, B. B. Microglial cell activation in aging and Alzheimer disease: Partial linkage with neurofibrillary tangle burden in the hippocampus. J Neuropathol Exp Neurol 56, (1997).
  192. Gefen, T. et al. Activated microglia in cortical white matter across cognitive aging trajectories. Front Aging Neurosci 11, (2019).
  193. Morgan, T. E. et al. The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience 89, (1999).
  194. Yegla, B., Boles, J., Kumar, A. & Foster, T. C. Partial microglial depletion is associated with impaired hippocampal synaptic and cognitive function in young and aged rats. Glia 69, (2021).
  195. Vaughan, D. W. & Peters, A. Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: An electron microscope study. J Neurocytol 3, (1974).
  196. Conde, J. R. & Streit, W. J. Microglia in the aging brain. Journal of Neuropathology and Experimental Neurology vol. 65 Preprint at https://doi.org/10.1097/01.jnen.0000202887.22082.63 (2006).
  197. Rozovsky, I., Finch, C. E. & Morgan, T. E. Age-related activation of microglia and astrocytes: In vitro studies show persistent phenotypes of aging, increased proliferation, and resistance to down-regulation. Neurobiol Aging 19, (1998).
  198. Ozawa, M., Chambers, J. K., Uchida, K. & Nakayama, H. The relation between canine cognitive dysfunction and age-related brain lesions. Journal of Veterinary Medical Science 78, (2016).
  199. Hwang, I. K. et al. Comparison of ionized calcium-binding adapter molecule 1 immunoreactivity of the hippocampal dentate gyrus and CA1 region in adult and aged dogs. Neurochem Res 33, (2008).
  200. Capucchio, M. T. et al. Parenchymal and Vascular Lesions in Ageing Equine Brains: Histological and Immunohistochemical Studies. J Comp Pathol 142, (2010).
  201. Perry, V. H., Cunningham, C. & Holmes, C. Systemic infections and inflammation affect chronic neurodegeneration. Nature Reviews Immunology vol. 7 Preprint at https://doi.org/10.1038/nri2015 (2007).
  202. Hart, A. D., Wyttenbach, A., Hugh Perry, V. & Teeling, J. L. Age related changes in microglial phenotype vary between CNS regions: Grey versus white matter differences. Brain Behav Immun 26, (2012).
  203. Perry, V. H., Matyszak, M. K. & Fearn, S. Altered antigen expression of microglia in the aged rodent CNS. Glia 7, (1993).
  204. Ritzel, R. M. et al. Age- and location-related changes in microglial function. Neurobiol Aging 36, (2015).
  205. Wong, W. T. Microglial aging in the healthy CNS: Phenotypes, drivers, and rejuvenation. Frontiers in Cellular Neuroscience Preprint at https://doi.org/10.3389/fncel.2013.00022 (2013).
  206. Raj, D. et al. Increased white matter inflammation in aging- and alzheimer’s disease brain. Front Mol Neurosci 10, (2017).
  207. Sheng, J. G., Mrak, R. E. & Griffin, W. S. T. Enlarged and phagocytic, but not primed, interleukin-1α-immunoreactive microglia increase with age in normal human brain. Acta Neuropathol 95, (1998).
  208. Mattiace, L. A., Davies, P. & Dickson, D. W. Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors. American Journal of Pathology 136, (1990).
  209. Rodriguez-Callejas, J. D., Fuchs, E. & Perez-Cruz, C. Evidence of tau hyperphosphorylation and dystrophic microglia in the common marmoset. Front Aging Neurosci 8, (2016).
  210. Streit, W. J. & Xue, Q. S. The brain’s aging immune system. Aging and Disease vol. 1 Preprint at (2010).
  211. Godbout, J. P. et al. Exaggerated neuroinflammation and sickness behavior in aged mice after activation of the peripheral innate immune system. The FASEB Journal 19, (2005).
  212. Wong, A. M. et al. Macrosialin increases during normal brain aging are attenuated by caloric restriction. Neurosci Lett 390, (2005).
  213. Henry, C. J., Huang, Y., Wynne, A. M. & Godbout, J. P. Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1β and anti-inflammatory IL-10 cytokines. Brain Behav Immun 23, (2009).
  214. Godbout, J. P. et al. Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system. Neuropsychopharmacology 33, (2008).
  215. Keane, L. et al. mTOR-dependent translation amplifies microglia priming in aging mice. Journal of Clinical Investigation 131, (2021).
  216. Marschallinger, J. et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci 23, (2020).
  217. Smolek, T. et al. Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment. Journal of Comparative Neurology 524, (2016).
  218. Rodriguez-Callejas, J. D., Fuchs, E. & Perez-Cruz, C. Increased oxidative stress, hyperphosphorylation of tau, and dystrophic microglia in the hippocampus of aged Tupaia belangeri. Glia 68, (2020).
  219. Franklin, R. J. M. & Simons, M. CNS remyelination and inflammation: From basic mechanisms to therapeutic opportunities. Neuron vol. 110 Preprint at https://doi.org/10.1016/j.neuron.2022.09.023 (2022).
  220. Rivers, L. E. et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11, (2008).
  221. Young, K. M. et al. Oligodendrocyte dynamics in the healthy adult CNS: Evidence for myelin remodeling. Neuron 77, (2013).
  222. Franklin, R. J. M. & Ffrench-Constant, C. Regenerating CNS myelin - From mechanisms to experimental medicines. Nature Reviews Neuroscience vol. 18 Preprint at https://doi.org/10.1038/nrn.2017.136 (2017).
  223. Tremblay, M. È., Zettel, M. L., Ison, J. R., Allen, P. D. & Majewska, A. K. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60, (2012).
  224. Lasiene, J., Matsui, A., Sawa, Y., Wong, F. & Horner, P. J. Age-related myelin dynamics revealed by increased oligodendrogenesis and short internodes. Aging Cell 8, (2009).
  225. Peters, A. The effects of normal aging on myelinated nerve fibers in monkey central nervous system. Frontiers in Neuroanatomy vol. 3 Preprint at https://doi.org/10.3389/neuro.05.011.2009 (2009).
  226. Peters, A., Verderosa, A. & Sethaers, C. The neuroglial population in the primary visual cortex of the aging rhesus monkey. Glia 56, (2008).
  227. Peters, A. & Sethares, C. Is there remyelination during aging of the primate central nervous system? Journal of Comparative Neurology 460, (2003).
  228. Hill, R. A., Li, A. M. & Grutzendler, J. Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat Neurosci 21, (2018).
  229. Neumann, B. et al. Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells. Cell Stem Cell 25, (2019).
  230. Segel, M. et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 573, (2019).
  231. de la Fuente, A. G. et al. Changes in the oligodendrocyte progenitor cell proteome with ageing. Molecular and Cellular Proteomics 19, (2020).
  232. Neumann, B. et al. Myc determines the functional age state of oligodendrocyte progenitor cells. Nat Aging 1, (2021).
  233. Spitzer, S. O. et al. Oligodendrocyte Progenitor Cells Become Regionally Diverse and Heterogeneous with Age. Neuron 101, (2019).
  234. Ximerakis, M. et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat Neurosci 22, (2019).
  235. Minamino, T. et al. Endothelial cell senescence in human atherosclerosis: Role of telomere in endothelial dysfunction. Circulation 105, (2002).
  236. Yamazaki, Y. et al. Vascular cell senescence contributes to blood-brain barrier breakdown. Stroke 47, (2016).
  237. Hanisch, U. K. & Kettenmann, H. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience vol. 10 Preprint at https://doi.org/10.1038/nn1997 (2007).
  238. Shen, X. N. et al. Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: A meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry 90, (2019).
  239. Montagne, A. et al. Blood-Brain barrier breakdown in the aging human hippocampus. Neuron 85, (2015).
  240. Stichel, C. C. & Luebbert, H. Inflammatory processes in the aging mouse brain: Participation of dendritic cells and T-cells. Neurobiol Aging 28, (2007).

How to Cite

“Regional- and Cell Type-Specific Changes of the Human Brain During Aging”. Human Brain, vol. 2, no. 3, Jan. 2024, https://doi.org/10.37819/hb.3.1780.

How to Cite

“Regional- and Cell Type-Specific Changes of the Human Brain During Aging”. Human Brain, vol. 2, no. 3, Jan. 2024, https://doi.org/10.37819/hb.3.1780.

HTML
363

Total
157

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Yanxi Chen, Gaoyu Zu, Bill Ling Feng Zhang, Zhixin Bai, Qiong Liu, Wensheng Li, Linya You

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Most read articles by the same author(s)